黄土丘陵沟壑植被恢复区节肢动物群落特征及时空动态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以纸房沟流域为研究单元,采用群落生态学的方法,分析不同林分节肢动物群落的结构组成、时空动态、综合指数及稳定性,并分析了优势害虫、天敌之间的生态位及空间格局,探讨群落内物种之间的相互联系、相互制约的内在机制。以便在多元林分生态系统中寻找节肢动物类群综合生物指标,评价植被恢复状况,为黄土高原生态环境建设中的植被恢复提供理论依据。主要研究结果如下:
     1.不同林分节肢动物种-面积关系符合Sq=Cqm,得出相应最小调查面积,大小排序为:自然灌木林>自然乔木林>杨树刺槐混交林>柠条沙棘混交林>柠条林>沙棘林>刺槐林>柳树林。建立了不同林分节肢动物种-多度模型,天然恢复林地节肢动物以LN分布模型最为适合,表明群落中个体数量居中的种类最多,稀有种和常见种分不均衡;在混交林和纯林中以LC分布模型最为适合,群落中稀有种和常见种较多。
     2.不同林分的节肢动物群落中,共有节肢动物420种,分属15目93科。其中鳞翅目的种类最多,鞘翅目次之。各林分节肢动物以天然恢复林中物种数最多,其次为混交林,纯林的物种数较少。天然恢复林中优势科均为夜蛾科、尺蛾科和金龟科,混交林优势科前两个为夜蛾科和尺蛾科,四种人工纯林优势科差异较大。
     3.从特征指数来分析:林分组成结构越单一,节肢动物群落目级水平上多数目的多样性、均匀性及种间相遇几率在降低。天然恢复林节肢动物群落优势度值均低于其它林分,而种间相遇几率值比其它林分均高;不同功能亚类群H、J、PIF值大小为:天然恢复林>混交林>单纯林。优势度以纯林最高,其次为混交林,天然恢复林最低;在时间序列过程中多样性指数以天然恢复林>混交林>纯林分,且各林分在7月下旬至8月下旬节肢动物群落多样性均达到最大值;均匀度以纯林和混交林的节肢动物群落变化幅度较大,天然恢复林变化幅度最小;群落的优势度与种间相遇几率(PIF)、均匀度值的变化呈相反趋势。
     4.根据主成分分析原理,建立节肢动物群落多样性评价综合性指数,不同林分节肢动物目级水平、亚群落及时序三种综合指数排序一致表现为天然恢复林>混交林>纯林。目级水平、亚群落综合指数聚类以天然恢复林距离较小,发生情况最接近,混交林之间距离较近,四种纯林之间距离较小。时序聚类以天然恢复林发生情况最接近,混交林与拧条林、沙棘林发生情况最接近,柳树林和刺槐林发生情况最接近。采用最优分割方法,两种天然恢复林的时序划分为相同三个时段,而混交林和单纯林的时间格局相互不一致。
     5.天然恢复林节肢动物群落稳定性最高,混交林和纯林稳定性相对较低,其群落稳定性测度综合性指数小,不同林分群落稳定性总体综合指数的排序与多样性综合指数的排序不完全一致,但二者仍表现为天然恢复林>混交林>纯林。
     6.生态位分析表明,在柠条林中害虫之间以三种种实害虫三维生态位重叠较高,相互之间竞争激烈。从天敌三维生态位重叠看,豆象盾腹茧蜂与姬小蜂重叠值最高,二者之间竞争激烈。天敌与害虫之间以豆象盾腹茧蜂与拧条豆象生态位重叠值最高,说明豆象盾腹茧蜂对拧条豆象重控制和跟随作用最强。
     7.在柳树林中,害虫之间以柳弯角卷叶蛾与柳尖胸沫蝉三维生态位重叠最高,二者在时空资源上竞争激烈。天敌之间以七星瓢虫与异色瓢虫重叠值最高。从害虫与天敌生态位重叠看,七星瓢虫与柳瘤大蚜重叠值最高,说明七星瓢虫对柳瘤大蚜重控制和跟随作用最强。
     8.根据柳厚壁叶蜂为害特点,表明柳厚壁叶蜂幼虫均以个体群的形式呈聚集分布,在不同的空间阶元验证其分布型,而且在不同的空间其聚集原因存在一定的差异。根据公式,确定各种密度下的最适抽样数,通过公式以枝条空间m_0=10;叶片上m_0=0.2为防治指标制定了序贯抽样分析表。
The arthropods were investigated from 2006 to 2008 in 8 stands of Zhifanggou area on the loess plateau in China. The species-area and species-abundance relationship of arthropods in various stands were discussed by some mathematical models,Structure of arthropods community, space-time dynamics, diversity comprehensive index and stability in various stands were concluded by the analysis on diversity, principal component and clustering. And the multidimensional niches of the pests and their enemies in Periploca sepium and Caragana mocrophylla and spatial distribution pattern of Pontania dolichura larvae and sampling technique were analyzed as follows:
     1.The species-area relationship of arthropods in various stands accorded with the formula Sq=Cqm , the smallest investigation area was computed, and the order was: Natural bush > Natural arbor > Populus davidiana+Robinia pseudoacacia > Hippaphae rhamnoides L+Caragana mocrophylla >Periploca sepium> Hippaphae rhamnoides L > Robinia pseudoacacia > Caragana mocrophylla, the more complex stand type was, the larger the need to investigate minimum area was. On the basis of sampling investigation, species-abundance model of arthropods in various stands was established, lognormal distribution model was the most suitable in natural recovery stand, there were more species of medial individual amount ,and there were fewer abundant species and rare species in community。logcauchy distribution model was the most suitable in mixed stand and pure stand, there were more abundant species and rare species than in natural recovery.
     2.There were 420 spcies of arthropods in different stands; they belong to 93 families and15 orders. Most of them were Lepidoptera, 25 families and 122 species, followed by Coleoptera, 12 families, 107 species. In various stands, arthropods species in natural recovery stand were the most, followed by mixed stand, and species in pure stand were the least. Most arthropods dominant families in various stands were Lepidoptera and Coleoptera. The proportion of dominant species was the most in pure stand, followed by mixed stand, and dominant species were obvious. The proportion of dominant species was the least in natural recovery stand, and dominant species were not prominent. The result showed that arthropods were stable in natural recovery stand, which had more complex bio-system, followed by mixed stand; pure stand eco-system was single and had the least stability.
     3.The arthropod community structure of natural recovery stand was the most complex in different orders, and the species of arthropods were the most, followed by mixed stand, pure stand was the least. Lepidoptera and Coleoptera had the most families and orders, followed by Hemiptera, Hymenoptera, Araneae, Diptera and Homoptera, etc, and other orders were the least. From individual numbers in different orders, the arthropod amounts of natural stand were relative mean in various population, followed by mixed stand, pure stand were the worst. The phytophagous group is common dominance group, and species and individuals were the highest in different function groups. The species and individuals of natural enemies in natural recovery stand were obviously higher than other stand. From season changes of arthropod community in various stands, arthropods chiefly occurred from late April to September. the species number of arthropod were more from late July to mid August, and the most in Natural bush and Natural arbor. the individuals of arthropods was more from mid-June to early August, and the most in Periploca sepium and Caragana mocrophylla, followed by mixed stand, Hippaphae rhamnoides L and Robinia pseudoacacia, the individual change of arthropods in the natural recovery forests were the smallest
     4.From features index: arthropods community in different orders had the diversity index(H), the eveness index(J), the dominanc index(D)and probability of interspecific encounter(PIF), which associated with stand complexity. The more complex the stand was, the more orders which had higher indexes in H, J and PIF was, and H, J and PIF increased in majority of orders. On the contrary, the less complex the stand was, the larger dominance was, and dominance index increased. the sequence of H,J and PIF in various function sub-community was natural recovery stand, mixed stand, pure stand. Evenness index of arthropods community changed in the following order: natural stand, mixed stand, and pure stand. D was the highest in pure stand, followed by mixed stand, and the the lowest in natural recovery stand. In time series, diversity index of arthropods community in various stands was: natural recovery stand> mixed stand> pure stand, and diversity index of arthropods community in various stands was the highest from late July to late August. Evenness index of arthropods community changed larder in pure stand and mixed stand, smaller in natural recovery stand. Dominance of community was opposite to PIF and J.
     5.Based on the principal component analysis,the synthetic indices for community diversity evaluation were established.The results of the order of arthropods’synthetic index in order level, sub-community and season showed that natural recovery stand> mixed stand> pure stand. The clustering of order level and sub-community synthetic index showed that Natural bush and Natural arbor had shorter distance, Populus davidiana + Robinia pseudoacacia and Hippaphae rhamnoides L+Caragana mocrophylla had shorter distance , and four pure stands had shorter distance. The clustering of timing synthetic index showed that Natural bush and Natural arbor had shorter distance, Populus davidiana+Robinia pseudoacacia, Hippaphae rhamnoides L+Caragana mocrophylla, Periploca sepium and Hippaphae rhamnoides L had shorter distance, Robinia pseudoacacia and Caragana mocrophylla had shorter distance. Using the optimal segmentation, time pattern of arthropods community was divided, and all kinds of stands were divided to three phases by ordered phase, which could better reflect the community’s variation.
     6.Arthropods community had the higher stability in natural recovery stand, and lower stability in mixed stand and pure stand, which had small community stability synthetic index. The sort of community stability synthetic index was not completely consistent with diversity synthetic index in various stands. Community diversity synthetic index was high, and community stability of arthropods was not necessarily high, but they showed that natural recovery stand> mixed stand> pure stand. It illustrated that natural recovery stand bio-system was complex, it increased the relative stability of arthropods community, and provided a theoretical basis for pest ecological control.
     7.Niche analyses showed that three kinds of seed pests had higher dimensional niche overlap between pests in Periploca sepium, and they had fierce competition each other, secondly .From dimensional niche overlap of natural enemies, Phanerotomella sp. and Entedon sp. had the highest overlap index and fierce competition. From dimensional niche overlap of natural enemies and pests, Phanerotomella sp., Entedon sp. had higher overlap index with three kinds of seed pests, Phanerotomella sp. and Kytorhinus immixtus Motschulsky had the highest overlap index, which showed that Phanerotomella sp. had the strongest control to Kytorhinus immixtus Motschulsky among them. Among all the natural enemies of aphid, Aphidius sp. had the highest overlap index. Pandemis heparana and Aphrophora costalis had the highest overlap index between pests in Caragana mocrophylla, which showed that they had fierce competition in time and space resources. From niche overlap of natural enemies, Coccinella septempunctata and Harmonia ascyridis had the highest overlap index, which had fierce competition. From niche overlap of pests and enemies, Coccinella septempunctata and Tuberolachnus salignus had the highest overlap, which showed that Coccinella septempunctata had the strongest control and follow function to Tuberolachnus salignus. So niche overlap should be considered in controlling pests, and took measures to control the pests. In pests’ecological regulation, natural enemies’protection measures should be taken to give full play to their roles.
     8.The spatial distribution pattern of Pontania dolichum larvae was analyzed with Taylor's power law, Iwao's distribution function, and six aggregation indexes.The results showed that the spatial distribution pattern of P. dolichura larvae was of aggregated, and the basic component of the distribution was individual colony, with the aggregation intensity increased with density. On branches, the aggregation was caused by the adult behavior of laying eggs and the spatial position of leaves, while on leaves, the aggregation was caused by the spatial position of news leaves in s pring when m < 2.37 ,and by the spatial position of news leaves in spring and the behavior o f eclosion and laying eggs when m >2.37.By using the parametersαandβin Iwan's,m*-m regression equation, the optimal and sequential sampling numbers were determined
引文
蔡万伦,石尚柏,杨长举,等. 2005. Bt水稻田不同斑块设计对田间节肢动物群落稳定性的影响[J]. 生态学报, 25(11): 2968-2975
    陈超英. 2005.节肢动物群落稳定性测度的灰色模型及其应用[J].生态学报. 25(11): 3112-3116·
    陈灵芝,陈伟烈. 1995.中国退化生态系统研究.北京:中国科学技术出版社:61-93
    陈佐忠,汪诗平. 2000.中国典型草地生态系统[M].北京:科学出版社:67-76
    从建国. 1997.鲁中山地侧柏林区蜘蛛群落的研究[J].蛛形学报. 6(l):26~30.
    丁岩钦. 1994.昆虫数学生态学[M].北京:科学出版社: 426-495
    董百丽,姬兰柱,魏春艳,等. 2005.长白山阔叶红松林植物群落与昆虫群落的相互关系研究[J].生态学杂志, 24(9): 1013-1016
    高宝嘉,高素红,张炬红.2002.不同林木类型昆虫群落结构及变化规律研究[J].河北林果研究, 17(1):52-57
    高宝嘉,高素红,张炬红,等. 2002.不同林木类型昆虫群落结构及变化规律研究[J].河北林业科技, 17(2):53-57
    高宝嘉,申曙光,王正文,等. 1998.园林昆虫群落时间结构及动态研究[J].生态学报, 18(2):193-197
    高宝嘉,张执中,李镇宇. 1992.封山育林对昆虫群落结构、多样性及稳定性影响的研究[J].生态学报, 12(1):l-7.
    戈峰. 1996.棉田生态系统中害虫、天敌群落结构与功能关系的研究[J].生态学报, 16(5):535-54
    戈峰. 2000.棉田节肢动物群落的数量与能流量多样性特征分析[J].生态学报, 20(6):971-976.
    郭线茹,付晓伟,罗梅浩,等. 2008.小麦生长中后期麦蚜及其天敌生态位的研究[J].河南农业大学学报, (04):430-442
    郭线茹. 2000.桃园昆虫群落的时间结构研究[J].河南农业大学学报, 34(2):146-149
    郭依泉. 1987.桔园昆虫群落的季节格局研究[J].西南农业大学学报, 9(2):27-32.
    郭依泉. 1988.桔园昆虫群落空间结构研究[J] .西南农业大学学报, 10(2):144-149.
    郭玉杰. 1995. 4种生态类型稻区节肢动物群落的基本组成与结构特征分析[J].生态学报, 15(4):433-440.
    韩宝瑜. 1996.皖南冬季马尾松林昆虫、蜘蛛和虫生真菌群落结构和动态的研究[J].林业科学研究, 9(4):338-343.
    韩宝瑜. 1996.皖南冬季马尾松林昆虫、蜘蛛和虫生真菌群落结构和动态的研究[J].林业科学研究, 9(4):338-343.
    韩宝瑜. 2000.茶园昆虫群落稳定性机制[J].茶业科学, 20(1): 1-4·
    侯有明,车俊义. 1998.油菜田昆虫群落结构及其害虫防治策略研究.西北农业学报, 7(2):51-54
    黄保宏,邹运鼎,毕守东. 2005.梅园昆虫群落特征、动态及优势种生态位[J].应用生态学报, 16(2):307-312
    黄建辉,韩兴国. 1995 .生物多样性和生态系统稳定性[J].生物多样性, 3(1):31-37
    黄凯,郭怀成,刘永,等. 2007.河岸带生态系统退化机制及其恢复研究进展[J].应用生态学报, 18 (6): 1373-1382.
    黄正恩,杜相革,董民,等. 2004.有机管理对茶园节肢动物群落稳定性的影响.中国农学通报, 20(6):57~98.
    贾玉珍,赵秀海,孟庆繁. 2008.长白山红松阔叶林不同恢复阶段蛾类组成和多样性研究[J].应用与环境生物学报, 14(5): 630-634
    姜凤岐,曹成有,曾德慧,等. 2002.科尔沁沙地生态系统退化与恢复[M].北京:中国林业出版社:102-112
    蒋国芳. 2000.英罗港红树林昆虫群落及其多样性的研究[J].应用生态学报, 11(1):95-98.
    金翠霞,吴亚. 1981.群落多样性测定及其应用的探讨.昆虫学报, 24(1):28-33.
    金翠霞. 1990.稻田节肢动物群落多样性[J].昆虫学报, 33(3):287-295.
    康乐. 1995.放牧干扰下的蝗虫—植物相互作用关系[J].生态学报, 15(1):1-10.
    郎南军,郑科,温少龙,等. 2002.金沙江流域高原山地土壤侵蚀相关分析[J].北京林业大学学报, 24(3):39-44
    雷相东,唐守正,李冬兰. 2002.东北过伐林灌木层物种多样性与林分因子的典型相关分析[J].应用与环境生物学报, 8(4) :346-350
    雷相东,唐守正,李冬兰. 2003.影响天然林下层植物物种多样性的林分因子的研究[J].应用与环境生物学报, 22(3) :18-22.
    李代芹. 1993.棉田蜘蛛群落及其多样性研究[J].生态学报, 13(3):205-213.
    李俊清,崔国发. 2000.西北地区天然林保护与退化生态系统恢复理论思考[J].北京林业大学学报, 22(4): 1-7
    李巧,陈又清,郭萧,等. 2006.节肢动物作为生物指示物对生态恢复的评价[J].中南林学院学报, 26(3): 117-122.
    李巧,陈又清,郭萧,等. 2007.云南元谋干热河谷不同生境地表蚂蚁多样性[J].福建林学院学报, 27(3): 272-277
    李巧,陈又清,施永泽,等. 2005.金沙江干热河谷退化生态系统的昆虫多样性[J].南京林业大学学报:自然科学版, 29(5): 37-40.
    李生才. 2004.果园节肢动物群落生态学研究.[博士学位论文].太原:山西农业大学:102
    李生才等. 1998.棉蚜、棉铃虫及其捕食性天敌时空生态位的研究[J].生态农业研究, 6(1):132-135
    廖崇惠,李健雄,海涛,等. 1997.南亚热带森林土壤动物群落的多样性研究[J].生态学报, 17(5): 549-555.
    廖崇惠,李健雄. 2002.华南热带和亚热带森林土壤动物的群落结构[A].见:尹文英主编.中国土壤动物[C].北京:科学出版社.67-72
    刘缠民. 2000.陕西北部蝗虫群落多样性及生境片断化对其的影响研究[硕士论文].西安:陕西师范大学: 37-39
    刘德广,熊锦君,谭炳林,等. 2001.荔枝—牧草复合系统节肢动物群落多样性与稳定性分析[J].生态学报, 21 (10): 1596-1601·
    刘德广,熊锦君,谭炳林,等. 2001.荔枝—牧草复合系统竹肢动物群落多样性与稳定性分析[J].生态学报, 21(10):1596-1601
    刘桂林,庞虹,周昌清. 2003.南亚热带退化生态系统恢复中昆虫群落的研究[J].中山大学学报:自然科学版, 42(5):82-86
    刘国华,傅伯杰,陈利顶,等. 2000.中国生态退化的主要类型、特征及分布[J].生态学报, 20(l):l3-19.
    刘丽丹,贺答汉,赵建明,等. 2004.人工固沙封育区昆虫群落组成及其多样性和稳定性的初步研究. 宁夏农学院学报, 25(1):8-11.
    刘满强,胡锋,李辉信,等. 2002.退化红壤不同人工林恢复下土壤节肢动物群落特征[J].生态学报,22(1): 54-61.
    吕文彦,娄国强,秦雪峰,等, 2008,短季棉棉田主要害虫及天敌时间生态位研究[J].中国棉花, 35(11):13-14
    罗志义.1982.上海余山地区棉田竹肢动物群落多样性及杀虫剂对多样性的影响[J].生态学报, 2(3):255-266.
    马克明,孔红梅,关文彬,等. 2001.生态系统健康评价:方法与方向[J].生态学报, 21(12): 2106-2116.
    马世骏. 1990.现代生态学透视[M].北京:科学出版社:43-127, 261-316.
    孟庆繁,金敏,胡隐月. 2000.帽儿山森林昆虫群落结构及多样性[J].吉林林学院学报, 16(2):63-67
    莫建初. 1993.丘陵区湿地松林昆虫群落结构的初步研究[J].中南林学院学报, 13(2):203~208.
    庞保平. 1993.麦田昆虫群落的时间结构[J].昆虫知识, 30 (5) : 163-266.
    庞雄飞,尤民生. 1996.昆虫群落生态学[M].北京:中国农业出版字:147.
    彭少麟,方炜. 1995.鼎湖山植被演替过程中椎栗和荷木种群的动态[J].植物生态学报, 19(4):311-318.
    彭少麟. 1996.南亚热带退化生态系统恢复和重建的生态学理论和应用[J].热带亚热带植物学报, 4(3) :36-44.
    彭少麟. 1998.热带亚热带退化生态系统的恢复与复合农林业[J].应用生态学报, 9(6):587-59
    彭少麟. 2003.热带亚热带恢复生态学研究与实践[M].北京:科学出版社:145-153
    彭艳琼,杨大荣,王秋艳,等. 2002.木瓜榕上昆虫群落结构及分布特征[J].昆虫学报, 45 (5):629-635.
    秦玉川,蔡宁华. 1991.山楂叶螨、苹果全爪螨及其捕食性天敌生态位的研究—时间与空间生态位[J].生态学报, 11(4):331-337.
    秦玉川,管致和. 1995.山植叶螨、苹果全爪螨及其捕食性天敌生态位的研究[J].微气候生态位.生态学报, 15(2):128-133.
    秦玉川,沈佐锐,黄可训,等. 1994.山植叶螨、苹果全爪螨及其捕食性天敌生态位的研究—营养生态位[J].生态学报, 14(1):1-8.
    任海,彭少麟. 2001.恢复生态学导论[M].北京:科学出版社:76
    任海,彭少麟.1998.中国南亚热带退化生态系统恢复及可持续发展[A].见:陈竺主编.生命科学-中国科协第三届青年学术研讨会论文集[M].北京:中国科技出版社:112-114
    任立宗. 1988.马尾松昆虫群落及时空结构的研究[J].林业科学研究, l(4):397-403.
    师光禄,席银宝,王海香,等. 2003.枣园生态系统中主要害虫、天敌生态位及种间竞争的研究[J].林业科学, 39 (5) : 28-34
    师光禄,赵莉蔺,苗振旺,等. 2005.不同间作枣园害虫的群落结构与动态[J].生态学报, 25(9):2263-2271
    师光禄. 1998.枣树昆虫群落结构及其综合治理效果研究[J].林业科学, 34 (1) : 28-34.
    石根生,李典漠. 1997.马尾松毛虫空间格局的地学统计学分析[J].应用生态报, 8(6):612-616
    石万成,李建荣,刘旭. 1996.苹果园昆虫群落及害虫控制技术研究[J].果树科学, 13(4):229-23
    石万成. 1990.苹果害虫防治与群落演替研究[J].西南农业大学学报, 12(2):137-147
    石万成. 1991.苹果园昆虫群落时间结构的研究[J].昆虫知识, 28 (5) : 279-285.
    谭济才,邓欣,袁哲明. 1998.不同类型茶园昆虫、蜘蛛群落结构分析[J].生态学报, 18 (3): 289-294·
    谭济才,邓欣. 1998.不同类型茶园昆虫、蜘蛛群落结构分析[J].生态学报, 18(3):289-294.
    谭济才. 1997.南岳茶场害虫-天敌群落结构及季节动态[J].植物保护学报, 24(4):341-346.
    汤孟平,唐守正,洪玲霞,等.2003.森林类型多样性最大覆盖模型与一种可行算法.林业科学,2003,39(3):70-75.
    陶正良. 1992.桔园野生植物层节肢动物群落的研究[J].生态学报, 12(2):125-133.
    田自强,陈钥,赵常明,等.2004.中国神农架地区的植被制图及植物群落物种多样性[J].生态学报, 24(8):1611-1620
    万方浩. 1986.综防区与化防区稻田害虫—天敌群落组成与多样性研究[J].生态学报, 6(2):159~170.
    王国宏. 2002.再论生物多样性与生态系统的稳定性生物多样性[J].生物多样性, 10(1): 126-134
    王国梁,刘国彬,侯喜禄. 2002 .黄土高原丘陵沟壑区植被恢复重建后物种多样性研究[J].山地学报, 20(2):182-187
    王开洪,周新运,李隆术. 1985.柑桔叶螨及其天敌的生态位研究[J].西南农学院学报, 3:70-84.
    王丽,张志勇,王进忠,等. 2008.北京山区板栗园主要害虫及其天敌生态位初步研究[J].北京农学院学报, (01):14-17
    王淑芬. 1986.马尾松林冠层昆虫群落结构及演替研究初报[J].中南林学院学报, 6 (1): 1-11
    王勇. 1991.茶园蜘蛛、昆虫群落动态的研究[J].生态学报, 11(2):135-138.
    王云龙,刘慧,廉振民. 2008.陕西吴起县生态恢复区直翅目昆虫的多样性[J].昆虫知识, 45(5):629-634
    王智,曾伯平,李文彪,等. 2002.稻田蜘蛛优势种和目标害虫的时间生态位研究[J].湖南农业科学, (2):28-29
    温秀军,张明伟,李文皋,等. 1997.油松天然次生林昆虫群落结构及多样性的研究[J].河北林业科技(1):1-5
    吴进才,胡国文,唐健,等. 1993.稻田节肢动物群落营养物种的初步研究[J].农业科学集刊, 1:234-238
    夏敬源. 1998.不同类型棉田节肢动物群落结构的研究[J].棉花学报, 10(1):26-32.
    谢振伦,戴素贤,曹潘荣,等. 1994.雷州半岛无公害茶园昆虫群落的演替[J].茶叶科学, 14 (2):141-141·
    杨效东,唐勇,唐建纬. 2001.热带次生林火烧前后土壤节肢动物群落组成和分布特征的变化[J].生态学杂志, 20(5):32-35
    杨云峰,古德祥,周之铭. 1990.稻田蜘蛛的空间生态位的初步研究[J].昆虫天敌,12(3): 108-110
    尤平,李后魂. 2006.天津湿地蛾类丰富度和多样性及其环境评价[J].生态学报, 26(3): 629-637
    余作岳,彭少麟主编.1996.热带亚热带退化生态系统植被恢复生态学研究[M].广州:广东科学技术出版社,:1-35.
    原国辉,尹新明,王高平,等. 2000.菜田潜叶蝇及其天敌生态位的研究[J].河南农业大学学报, 34(1):59-62.
    袁忠林,沈长朋,傅建祥. 2002.萝卜田节肢动物群落生态位研究[J].山东农业大学学报(自然科学), 31(3):294-296
    岳明,崔延裳,王双峰. 2003.陕北黄土高原森林群落物种多样性分析[J].水土保持通报, 23(1): 39-45
    张金屯. 2004.数量生态学[M].北京:科学出版社:45-47
    张文庆,古德祥,张古忍. 2000.论短期农作物生境中节肢动物群落的重建[J].生态学报,20(6):1107-1112.
    张文庆,张古忍,古德祥. 1995.稻飞虱及其节肢类捕食者的生态位关系研究[J].中山大学学报报丛,(2):21-26
    张翌楠,赵惠燕,李鑫等.苹果生长前期昆虫群落空间结构分析[J].昆虫知识,2002,39(5):353-357.
    张真. 1998.马尾松林昆虫群落动态及稳定性研究[J].林业科学,34(1):65-71.
    章家恩,徐琪. 1997.生态退化研究的基本内容与框架[J].水土保持通报,17(3):46-53.
    章家恩,徐琪. 1999.恢复生态学研究的一些基本问题探讨[J].应用生态学报,10(1):109-113
    赵桂久,刘燕华,赵名茶. 1993,1995.生态环境综合整治与恢复技术研究(第1集、第2集).科学技术出版社
    赵晓英,陈怀顺,孙成权. 2001.恢复生态学一生态恢复的原理和方法[M].北京:中国环境科学出版社:344
    赵晓英,孙成权. 1998.恢复生态学及其发展[J] .地球科学进展,13(5):474- 480
    赵志模,郭依泉. 1990.群落生态学原理与方法[M].重庆:科技文献出版社: 1-46
    郑方强,张晓华,墨铁路,等. 2008.苹果园主要害虫及其天敌生态位和集团分析[J].生态学报, (10):4830-4840
    郑师章,吴千红,王海波. 1994.普通生态学原理、方法和应用[M].上海:复旦大学出版社:165~166.
    钟平生,梁广文,曾玲. 2005.有机稻田主要天敌类群及其群落多样性演替[J].中国生物防治, 21(3): 155-158.
    朱华,王洪,李保贵. 2004.滇南勋宋热带山地雨林的物种多样性与生态学特征[J].植物生态学报,28(3):351-360
    朱志诚,黄可.1989.陕北黄土高原森林地带草本植物群落类型及其动态[J].中国草地, (3) : 18-23
    竺锡武. 2000.自控与受控棉田生态系统稳定性的比较[J].生态学杂志, 19(2):20-23.
    Adama J A. 1985. The definition and interpretation of sub-community structure in ecological communities[J]. Journal of Animal Ecology,53– 59
    Arrhenius, O. 1922. on the relation between species and area-a reply[J]. Ecology, 4:90-91
    Cain S A. 1938. The species-area curve. American Midland Naturalist. 19,573-581
    Cain S A. 1943. Sample plot technique applied to alpine vegetation in Wyoming. American Journal of Botany 30: 240-247
    Cassie R.M . 1962. Frequency distribution modes in the ecology of plankton and other o rganisms[J]. Journal of Animal Ecology, 31:65-92
    Colwell R K, Futuyma D J. 1971. On the measurement of niche breadth and overlap. Ecology,52:567– 576
    Cortina J, Maestre F T, Vallejo R, et al. 2006. Ecosystem structure, function, and restoration success: Are they related[J]. Journal for Nature Conservation, (14): 152-160.
    David F .N, Moore P .G . 1954. Notes on contagious distributions in plant populations[J]. Annals of Botany, 18:47-53
    Dorren L K A, Berger F, Imeson A C, et al. 2004. Integrity, stability and management of protection forests in the European Alps [J]. Forest Ecology and Management, 195:165-176.
    Elmqvist T, Folke C, Nystrom M, et al. 2003. Response diversity, ecosystem change, and resilience [J]. Frontiers in Ecology and the Environment, (1): 488-494.
    Elton C S. 1958. The Ecology of Invasions by Animals and Plant[M]. Chapman and Hall, London. 143~153.
    Fisher R A, Corbet A S, Williams C B. 1943. The relation between the number of species and the number of individuals in a random sample from an animal population[J]. Journal of Animal Ecology, 12:42-58.
    Gleason H A. 1952. On the relation species and area. Ecology,3: 158-162
    Gratton C, Denno R F. 2005. Restoration of arthropod assemblages in a Spartina salt marsh followingremoval of the invasive plant phragmites australis [J]. Restoration Ecology,13(2): 358-372.
    Grime J P. 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects[J]. Journal of Ecology, 86: 902~910.
    Hobbs R J, Norton D A. 1996. Towards a conceptual frameworkfor restoration ecology [J]. Restoration Ecology, 4(2): 93-110.
    Hou Y M, You M S, Pang X F, et al. 2002. Characteristics of arthropod community and their diversity restoration in leafy vegetable fields [J]. Entomologia Sinica, 9(2): 35-42
    Hurbert S H. 1978. The measurement of niche and some derivative[J]. Ecology ,59:66-77
    Hutchison G E. 1965. The niche:an abstractly inhabited hyper volume [M]. Yale University Press. Conn. New Haven: 26– 78
    Iawton J H . 1978. Host plant influences on inseet diversity: the effects of space and time. In Diversity of inscet faunas[J].Symposia of the Royal Entomological Soeiety of London:No.9,105-125.
    Iwao S. 1968. A new regression method for analyzing the aggregation pattern of animal po pulations[J]. Research of Population Ecology, 10 (1):1-20
    IwaoS. 1972. Application of the m*-m method to the analysis of spatial patterns by changing the q uadraticsize[J]. Research of Population Ecology, 14(1):97-128
    Jordan W, Gilpin M E, Aber J D. 1987. Restoration Ecology: Asynthetic approach to ecological restoration [M]. Cambridge:Cambridge University Press:123-129
    Kempton R A, Taylor L R.. 1974. Log-series and log-normal parameters as diversity discriminants for the Lepidoptera[J]. Journal of Animal Ecology, 43: 381-399.
    Kremen C, Colwell R K, Erwin T L, et al. 1993. Terrestrial arthropod assemblages: their use in conservation planning [J].Conservation Biology, (7): 796-808.
    Kvalseth. 1991 .Note on biological diversity,evenness and homogeneity measures.Oikos,62:123~127.
    Lamd D. 1994. Restoration of degraded tropical forest lands in the Asia-Pacific region [J]. Journal of Tropical Forest Science, 7(1): 1-7.
    Lawton.J.H. 1978. Host–plant influences on inseet diversity: the effects of space and time. In Diversity of insect faunas[J]. Symposia of the Royal Entomological Soeiety of London:No.9, 105-125.
    Levins R..1968. Evolution in changing environments [M]. Princeton University Press, New Jersey:136-147 Lloyd M . 1967. Mean crowding[J]. Journal of Animal Ecology, 36:1-30
    Longcore T. 2003. Terrestrial arthropods as indicators of ecological restoration success in coastal Sage scrub [J]. Restoration Ecology (11): 397-409.
    Naughton S J. 1978. Stability and biodiversity of ecological communities Nature,274:251~253
    Macarthur R H. 1957. On the relative abundance of bird species[J].Proceedings of the National Academy of Sciences(USA), 43:293-295.
    Macarthur R H. 1960. On the relative abundance of species[J]. American Naturalist, 94: 25-36
    MacArthur R.. 1955. Fluctuations of animal populations, and a measure of community stability[J]. Ecology, 36: 533~537.
    MacArthur R H. 1967.And E.o. Wilson. The Theory of Island Biogeography. Princeton: princeton University press:345-349
    MaeArthur R H. 1955. Fluctuation of animal population and ameaure of community stability[J]. Ecology 36:533-537.
    MaeArthur, R M, Wilson,E O. 1967. The theory of is land biogeography.Prineeton University Press:234-239.
    Maestre F T, Cortina J, Vallejo R.. 2006. Are Ecosystem Composition, Structure, and Functional Status Related to Restoration Success A Test from Semiarid Mediterranean Steppes [J].Restoration Ecology, 14(2): 258-266.
    May R M. 1972. Will a large complex system be stable?[J]. Nature, 238: 413~414.
    May R M. 1973. Stability and Complexity in Model Systems [M]. Princeton: Princeton University Press, New Jersey:447
    Mcgill B J. 2003. A test of the unified neutral theory of biodiversity[J]. Nature, 422: 881-885.
    Moon D C. 1999. Stiling P, Cattell MV. Experimental tests of trophic dynamics: Taking a closer look. Oecologia, 119(2): 275-280.
    Naeem S, L J Thompson and S P Lawler. 1994. Declining biodiversity can alter the performance of ecosystems[J]. Nature, 368: 734~736.
    Odum E P.1969.The strategy of ecosystem development. Science, 164:262~270
    Owles M B, Whelan C J. 1994. Restoration of endangered species:Conceptual issues, planning and implementation [M]. NewYork: Cambridge University Press:245-249
    Parsons P A. 1991. Biodiversity conservation under global climatic change: the insect Drosophila as a biological indicator [J].Global Ecology and Biogeography Letters, (1): 77-83.
    Pianka Eric.R. . 1981. Competition and niche theory, Thearetical ecology:167-196
    Pielou E C. 1985. Mathematical Ecology[M]. 2nd ed. New York:Wiley-Interscience:34-39
    Pinkus-Rendón M A, León-Cortés J L, Ibarra-Núez G. 2006. Spider diversity in a tropical habitat gradient in Chiapas,Mexico [J]. Diversity and Distributions, 12(1): 61-69.
    Pinkus-Rendón M A, León-Cortés J L, Parra-Tabla V, et al. 2006. Spider diversity in coffee plantations with different management in southeast Mexico[J].The Journal of Arachnology, 34: 104-112
    Plotkin J B, Muller-Landau H C. 2002. Sampling the species composition of a landscape[J]. Ecology, 83(12): 3344-3356.
    Preston F W. 1948. The commonness and rarity of species[J]. Ecology, 29: 254-283.
    Preston F W. 1980. Noncanonical distributions of commonness and rarity[J]. Ecology, 61: 88-97.
    Putman E J. 1989. PrinCiples of ecology[J].Billing & Son、Ltd., 338-353.
    Root R B. .1973. organization of a plan arthropod assoeiationin simple and diversehabitats:The fauna of collards[J].Eeol.Monogr,43:95-124.
    Ruiz-Jaén M C, Aide T M. 2005. Restoration Success: How Is It Being Measured ? [J]. Restoration Ecology, 13(3):569-577.
    Ruiz-Jaén M C, Aide T M. 2005.Vegetation structure, species diversity, and ecosystem processes as measures of restoration success [J]. Forest Entomology and Management, 218: 159-173.
    Ruiz-Jaén M C, Aide T M. 2006. An integrated approach for measuring urban forest restoration success [J]. Urban Forestryand Urban Greening, (4): 55-6
    Samways M J. 1992.Some comparative insect conservation issues of north temperate, tropical, and south temperate landscapes Agriculture Ecosystems and Environment, 40:137-154
    Seheirin.J.E. 1979. Spatial and temporal patterns in Iowa shore fly diversity [J].Environ.Entomol. 8(5):879-882
    Shugart H H , Patten B C. 1978. Niche quantification and the concept of niche pattern, in“systems and simulation in ecologyⅡ(BC Patten Ed)[M].Academic press, NewYork: 283-324
    Southwood T R E. 1979. There lationship sofplant and inseet diversity insueeession.Biol.J.of the Linn.Soei.,12:327-348.
    Taylor L R . 1961. Aggregation variance and the mean. Nature,189:732-735
    Tilman D , Downing J A. 1994. Biodiversity and stability in grasslands[J]. Nature, 367: 363~365.
    Volkov I, Banavar J R, Hubbell S P, et al. 2003. Neutral theory and relative species abundance in ecology[J]. Nature, 424: 1035-1037
    Williams W M. 1975. Diversity,complexity,stability and pest control[J] .Journal of applied ecology, 12:795~807
    Yin Z ,Peng S, Ren H, et al. 2005. LogCauchy, log-sech and lognormal distributions of species abundances in forest communities[J]. Ecological Modelling, 184(2-4): 329-340.
    Young T P. 2000. Restoration ecology and conservation biology[J]. Biological Conservation,92:73-83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700