松嫩沙地固定沙丘土壤动物群落特征及其在凋落物分解中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤动物群落特征是土壤动物生态学研究的基础内容。主要包括土壤动物的生态分布、多样性和随时间的变化等。虽然已经在很多地区开展了土壤动物群落特征研究,但是多数集中在森林生态系统,而干旱和半干旱生态系统的研究则相对较缺乏。因此,研究松嫩沙地固定沙丘土壤动物的群落特征可以为半干旱生态系统提供土壤动物学理论基础。
     土壤动物是生态系统重要的组成部分,其对加速有机质分解和养分转化有重要的功能作用。尽管多数分解是土壤微生物(真菌和细菌)和凋落物本身资源分解代谢的结果,但是土壤无脊椎动物能改变微生物活动和凋落物分解条件。土壤动物主要通过破碎凋落物、消化和刺激微生物活动控制分解过程。土壤动物对凋落物分解的贡献机理包括基底消化、通过破碎增加表面积和加速微生物向凋落物的移植。土壤动物有多种营养作用。
     特定体型土壤动物类群的排除能显示土壤动物群落组成对凋落物分解速率控制的重要性。随着全球环境变化,土壤动物群落组成发生变化,进而影响分解作用和养分新陈代谢。因此需要了解大型土壤动物、中小型土壤动物和微生物对凋落物分解的影响。研究区选定在吉林省长岭县腰井子羊草草原自然保护区内的松嫩沙地固定沙丘,在固定沙丘阳坡的顶部、中部和底部设置3个生境。
     根据研究内容的不同,本文主要采用两种实验方法。对于土壤动物群落特征研究,采用国际上通用的土壤动物研究方法——综合定位研究法,即在野外定点进行土壤动物调查。大型土壤动物采用野外就地手捡法获得。中小型土壤动物采用室内Tullgren法分离获得。同时采集样地土壤样品测定土壤含水率及其他土壤理化性质(土壤pH值、有机质、总N和总P含量)。
     对于土壤动物在凋落物分解中作用的研究,采用另一种国际上通用的研究方法——凋落物袋法。根据土壤动物的一般划分方法,选取3种孔径凋落物袋进行研究:4.7 mm(允许大型和中小型土壤动物及微生物作用)、2 mm(允许中小型土壤动物和微生物作用)和0.01 mm(仅允许微生物作用)。选取松嫩沙地优势植物种贝加尔针茅、燕麦芨芨草、兴安胡枝子和冰草地上部分的凋落物进行研究。将凋落物袋进行野外布设,随后定期取回,用Tullgren法分离4.7 mm和2 mm孔径凋落物袋内的土壤动物,测定凋落物的质量损失速率,分析凋落物分解与土壤动物群落特征的关系。
     研究结果显示,研究期内共获得土壤动物61类,平均密度为2238.95个/m2。土壤动物构成上具有明显的半干旱地区的特点,即鞘翅目昆虫数量较多。从水平分布来看,土壤动物的密度排序是固定沙丘底部>中部>顶部,类群数量排序是固定沙丘中部>底部>顶部。从土壤动物群落动态特征来看,土壤动物密度的总体趋势是第一年(2007年)明显低于第二年(2008年),但是个别生境略有差异;土壤动物类群数量在两年相同的取样月份,第一年数值均高于第二年。从土壤动物群落多样性特征来看,3个生境Shannon-Wiener多样性指数和Margalef丰富度指数的时间动态特征一致,而Pielou均匀度指数和Simpson优势度指数动态特征则正好相反。固定沙丘顶部土壤密度和类群数与土壤理化性质均无关,而中部和底部土壤动物密度与某些土壤性质表现出了一定的相关性。
     研究期内,4种凋落物的分解速率随时间的变化表现出了一定的规律性。尤其是贝加尔针茅和冰草凋落物分解过程可以明显分为两个阶段,首先是快速分解阶段,凋落物质量损失较快,随后很快进入稳定分解阶段,质量损失速率比较平稳。从3种孔径凋落物袋分解速率来看,总体规律是4.7 mm > 2 mm > 0.01 mm,可见土壤动物加速了凋落物分解过程。
     从凋落物袋内土壤动物特征来看,4.7 mm和2 mm孔径凋落物袋表现出了一致的特征,个体数量和类群数量最多的均是贝加尔针茅凋落物,最少的则分别是燕麦芨芨草凋落物和兴安胡枝子凋落物。
     从土壤动物对凋落物分解的贡献率来看,不同种凋落物间存在一定的差异性,随时间的变化规律也不同。除兴安胡枝子凋落物外,土壤动物对其他三种凋落物分解的贡献率基本随时间逐渐降低,显示土壤动物的作用越来越小。另外,生境间土壤动物的贡献率也存在一定的差异性,主要是由于地形分异造成的。
Community characteristics of soil fauna are fundamental of research of soil fauna ecology. Ecological distribution, biodiversity and dynamic of soil fauna are included. Although some researches have been conducted in some regions, most of them are focused in forest ecosystem, while research in arid and semiarid ecosystems is still lack. Therefor, study on community characteristics of soil fauna in Songnen sandy lands is very important.
     Soil fauna are important components in ecosystems, due to their functional role in acceleration of organic matter decomposition and nutrient transformation. Although most decomposition is ultimately the result of catabolic activities of soil microbes (fungi and bacteria) associated with litter resources, soil invertebrates can alter microbial activity and the condition of decomposing litter. Soil fauna largely control decomposition process through breakdown of litter, digestion and stimulation of microbial activities. Mechanisms of soil faunal contribution to litter decomposition include digestion of substrates, increase of surface area through fragmentation and acceleration of microbial inoculation to litter. Soil fauna represent multiple trophic functions. Exclusion of soil fauna groups with special size indicates the significance of soil fauna community composition to control the litter decomposition rate. Soil fauna community composition changes affect litter decomposition and nutrient metabolism through global environmental changes. Consequently, knowledge on effects of macro-, mesofauna and microbial to litter decomposition is necessary.
     Research region was selected in Songnen sandy land in Jilin Province. Top, middle and bottom of sun slope of fixed dune were chosen. According to different purposes, two methods were taken in this experiment. Sampling of soil fauna in habitats was conducted in field. Soil macrofauna were picked up by hands in field and soil meso-microfauna were extracted by Tullgren method in laboratory. At the same time, soil samples of three habitats were collected to determine soil physical and chemical properties (pH, organic matter content, total nitrogen and total phosphor).
     Litterbags were selected to research the role of soil fauna in litter decomposition. According to classification to soil fauna, three types of nylon mesh size litterbags (15 cm×20 cm) were chosen: 0.01 mm (only microbe), 2 mm (include microbe and mesofauna) and 4.7 mm (include microbe, mesofauna and macrofauna). Dominant plant species litter of S. baicalensis, A. avinoides, L. davurica and A. cristatum were collected as decomposition materials during the peak litter fall period in October of 2006. Soil macrofauna were collected by hand from the litterbag first, then the materials of litterbags (4.7 mm and 2 mm) were placed in Tullgren extractors to remove the litter mesofauna.
     Results showed that 61 groups of soil fauna, average density was 2238.95 ind/m2, were obtained during two years. Significant characteristic of semiarid region has shown in soil fauna composition, which meant that there were more Coleoptera. For horizontal distribution, density of soil fauna showed bottom > middle > top of fixed dune and group numbers of soil fauna showed middle > bottom > top of fixed dune. Densities of soil fauna in 2007 were significant lower than in 2008; but, group numbers of soil fauna were in the opposition.
     Dynamic characteristics of Shannon-Wiener Diversity Index and Margalef Richness Index were same, while Pielou Evenness Index and Simpson Dominance Index were in the opposition. There was no significant relation between density and group number of soil fauna and soil physical and chemical properties in top of fixed dune, but there were some significant relation between them in middle and bottom of fixed dune.
     Some regularity was shown in dynamic of litter decomposition rate during two years. Process of decomposition of S. baicalensis and A. cristatum could be separated into two stages. First was the rapid decomposition stage and litter decomposition rate was very fast. Followed was the stable decomposition stage and mass loss of litter was relatively stable. Decomposition rates of three mesh size litterbags were 4.7 mm > 2 mm > 0.01 mm. Thus, decomposition rates were accelerated by soil fauna.
     For the community characteristics of soil fauna in litterbags, the same characteristics were shown in 4.7 mm and 2 mm mesh size litterbags. The highest individual number and group number of soil fauna were both in litterbags of S. baicalensis and the lowest were in litterbags of A. avinoides and L. davurica, respectively.
     There were differences in dynamics and in contributions of soil fauna to litter decomposition among litter. Contributions of soil fauna to litter decomposition were declined with time, except L. davurica which shown role of soil fauna in litter decomposition were declined with time. There were also differences among habitats in contributions of soil fauna to litter decomposition which were resulted from landform differentiation.
引文
[1] Swift MJ, Heal OW, Anderson JM. Decomposition in terrestrial ecosystems[M]. Berkeley and Los Angeles: University of California Press, 1979.
    [2] Darwin CR. On the formation of mould[J]. Transactions of the Geological Society of London, 1840, 5: 505-509.
    [3] Darwin CR. The formation of vegetable mould through the action of worms, with observation on their habits[M]. Chicago: University of Chicago Press, 1881.
    [4] Edwards CA, Lofty JR. Biology of earthworms[M]. London: Chapman & Hall, 1977.
    [5] Edwards CA. Earthworms, soil fertility and plant growth. in: Dindal D (Ed.). Workshop on the role of earthworms in the stabilization of organic residues[M]. Kalamazoo: Beech Leaf Press, 1981.
    [6] Lavelle P. Earthworm activities and the soil system[J]. Biology and Fertility of Soils, 1988, 6: 237-251.
    [7]尹文英.土壤动物学研究的回顾与展望[J].生物学通报, 2001, 36(8): 1-3.
    [8] Berlese A. Apparachio per raccoglieried in gran numero piccoli artropodi[J]. Redia, 1905, 2: 85-89.
    [9] Tullgren A. Ein sehr einiacher Berlese apparat fur terricole tierformen[J]. Z angew Ent, 1917, 4: 149-150.
    [10] Pearse AS. Observations on the microfauna of the Duke Forest[J]. Ecological Monographs, 1946, 16: 127-160.
    [11] Fenton GR. The soil fauna with special reference to the ecosystem of forest soil[J]. Animal Ecology, 1947, 16: 76-93.
    [12] Linden DR, Hendrix PF, Coleman DC, et al. Faunal indicators of soil quality, defining soil quality for a sustainable environment[J]. Proc. symposium, Minneapolis, MN, 1992, 1994, 35: 91-106.
    [13]张志罡.土壤动物研究综述[J].生命科学研究, 2006, 10(4): 72-75.
    [14]青木淳一.土壤动物学[M].东京:北隆馆, 1973.
    [15]北沢右三.土壤动物生态研究法[M].东京:共立出版株式会社, 1977.
    [16] Heneghan L, Coleman DC, DA Crossley, et al. Nitrogen dynamics in decomposing chestnut oak (Quercus prinus L.) in mesic temperate and tropical forest[J]. Applied Soil Ecology, 1999, 13: 169-175.
    [17] Fonte SJ, Schowalter TD. Decomposition of greenfall vs. senescent foliage in a tropical forest ecosystem in Puerto Rico[J]. Biotropica, 2004, 36: 474-482.
    [18] Decaens T, Jimenez J, Barros E, et al. Soil macrofaunal communities in permanent pastures derived from tropical forest or savanna[J]. Agriculture, Ecosystems & Environment, 2004, 103: 301-312.
    [19] Bardgett RD, Shine A. Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands[J]. Soil Biology and Biochemistry, 1999, 31: 317-321.
    [20] Addison J. Functional role of Collembola in successional coastal temperate forests on VancouverIsland, Canada[J]. Applied Soil Ecology, 2003, 24: 247-261.
    [21] Huhta V, Persson T, Setala H. Functional implications of soil fauna diversity in boreal forests[J]. Applied Soil Ecology, 1998, 10: 277-288.
    [22] Wardle D. Determinants of litter mixing effects in a Swedish boreal forest[J]. Soil Biology and Biochemistry, 2003, 35: 827-835.
    [23] Ludley K, Robinson C.‘Decomposer’Basidiomycota in Arctic and Antarctic ecosystems[J]. Soil Biology and Biochemistry, 2008, 40: 11-29.
    [24] Convey P, Block W, Peat HJ. Soil arthropods as indicators of water stress in Antarctic terrestrial habitats? [J]. Global Change Biology, 2003, 9: 1718-1730.
    [25] Anderson JM, Ineson P. A soil microcosm system and its application to measurements of respiration and nutrient leaching[J]. Soil Biology and Biochemistry, 1982, 14: 415-416.
    [26] Seastedt TR, Crossley DA. Nutrients in forest litter treated with naphthalene and simulated throughfall: a field microcosm study[J]. Soil Biology and Biochemistry, 1983, 15: 159-165.
    [27] Prescott CE. Influence of forest floor type on rates of litter decomposition in microcosms[J]. Soil Biology and Biochemistry, 1996, 28: 1319-1325.
    [28] Bardgett RD, Keiller S, Cook R, et al. Dynamic interactions between soil animals and microorganisms in upland grassland soils amended with sheep dung: a microcosm experiment[J]. Soil Biology and Biochemistry, 1998, 30: 531-539.
    [29] Sulkava P, Huhta V. Habitat patchiness affects decomposition and faunal diversity: a microcosm experiment on forest floor[J]. Oecologia, 1998, 116: 390-396.
    [30] Ke X, Winter K, Filser J. Effects of soil mesofauna and farming management on decomposition of clover litter: a microcosm experiment[J]. Soil Biology and Biochemistry, 2005, 37: 731-738.
    [31] Nieminen JK. Linking food webs to ecosystem processes: piecewise linear models of soil microcosms[J]. Ecological Modelling, 2008, 217: 87-94.
    [32] Anderson JM, Ineson P, Huish SA. The effects of animal feeding activities on element release from deciduous forest litter and soil organic matter. in: Lebrun P(Ed.). New trends in soil biology[M]. Dieu-Brichart: Ottignies-Louvain-la-Neuve, 1983.
    [33] Coleman DC, Reid CPP, Cole CV, Biological strategies of nutrient cycling in soil systems. in: MacFadyen A(Ed.). Advances in ecological research[M]. New York: Academic Press, 1983.
    [34] Birkhofer K, Diekotter T, Boch S, et al. Soil fauna feeding activity in temperate grassland soils increases with legume and grass species richness[J]. Soil Biology and Biochemistry, 2011, 43: 2200-2207.
    [35]贺金生,王政权,方精云.全球变化下的地下生态学:问题与展望[J].科学通报, 2004, 49(13): 1226-1233.
    [36] Aerts R. The freezer defrosting: global warming and litter decomposition rates in cold biomes[J]. Journal of Ecology, 2006, 94: 713-724.
    [37] Dollery R, Hodkinson ID, Jonsdottir IS, Impact of warming and timing of snow melt on soilmicroarthropod assemblages associated with Dryas-dominated plant communities on Svalbard[J]. Ecography, 2006, 29: 111-119.
    [38] Briones M, Ostle N, McNamara N, et al. Functional shifts of grassland soil communities in response to soil warming[J]. Soil Biology and Biochemistry, 2009, 41: 315-322.
    [39] Brennan KEC, Christie FJ, York A. Global climate change and litter decomposition: more frequent fire slows decomposition and increases the functional importance of invertebrates[J]. Global Change Biology, 2009, 15: 2958-2971.
    [40] Young IM, Blanchart E, Chenu C, et al. The interaction of soil biota and soil structure under global change[J]. Global Change Biology, 1998, 4: 703-712.
    [41] Blomqvist MM, Olff H, Blaauw MB, et al. Interactions between above- and belowground biota importance for small-scale vegetation mosaics in a grassland ecosystem[J]. Oikos, 2000, 90: 582-598.
    [42] Hooper DU, Bignell DE, Brown VK, et al., Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks[J]. BioScience, 2000, 50: 1049-1061.
    [43] Wolters V, Silver WL, Bignell DE, et al. Effects of global changes on above- and belowground biodiversity in terrestrial ecosystems: implications for ecosystem functioning[J]. BioScience, 2000, 50: 1089-1098.
    [44] Schroter D. Trophic interactions in a changing world: modelling aboveground-belowground interactions[J]. Basic and Applied Ecology, 2004, 5: 515-528.
    [45] Wardle DA, Yeates GW, Williamson WM, et al. Linking aboveground and belowground communities the indirect influence of aphid species identity and diversity on a three trophic level soil food web[J]. Oikos, 2004, 107: 283-294.
    [46] Bardgett R, Bowman W, Kaufmann R, et al. A temporal approach to linking aboveground and belowground ecology[J]. Trends in Ecology & Evolution, 2005, 20: 634-641.
    [47] Blouin M, Zuily-Fodil Y, Pham-Thi AT, et al. Belowground organism activities affect plant aboveground phenotype, inducing plant tolerance to parasites[J]. Ecology Letters, 2005, 8: 202-208.
    [48] Sackett TE, Classon AT, Sanders NJ, et al. Linking soil food web structure to above- and belowground ecosystem processes: a meta-analysis[J]. Oikos, 2010, 119: 1984-1992.
    [49] Wardle DA, Bardgett RD, Klironomos JN, et al. Ecological linkages between aboveground and belowground biota[J]. Science, 2004, 304: 1629-1633.
    [50] DA Wardle. Communities and ecosystems: linking the aboveground and belowground components[M]. Princeton: Princeton University Press, 2002.
    [51]曹安堂,王庆忠.土壤动物研究概述[J].潍坊教育学院学报, 2003, 16(4): 37-40.
    [52]张荣祖,杨明宪,陈鹏,等.长白山北坡森林生态系统土壤动物初步调查[J].森林生态系统研究, 1980,(1): 133-152.
    [53]张荣祖.生态系统中土壤动物国外研究动态[J].森林生态系统研究, 1981,(1): 257-263.
    [54]陈鹏,张一.长白山北坡针叶林带土壤动物调查[J].地理科学, 1983, 3(2): 133-140.
    [55]陈鹏,富德义.长白山土壤动物在物质循环中的作用初步探讨[J].生态学报, 1984, 4(2): 172-179.
    [56]陈鹏,文在根,青木淳一,等.长春净月潭地区土壤螨类的调查研究[J].动物学报, 1988, 34(3): 282-293.
    [57]陈鹏,田中真悟.长春净月潭地区土壤跳虫的生态分布[J].昆虫学报, 1990, 33(2): 219-226.
    [58]陈鹏,李景科,殷秀琴,等.吉林省土壤甲虫的地理分布[J].东北师大学报(自然科学版), 1990,增刊: 59-74.
    [59]殷秀琴.吉林省不同植被类型土壤昆虫的调查研究[J].东北师大学报(自然科学版), 1990,增刊: 75-82.
    [60]殷秀琴,刘亚杰,于德江.吉林省蚯蚓的初步调查[J].东北师大学报(自然科学版), 1990,增刊: 133-136.
    [61]李景科,陈鹏.土壤动物区系生态地理研究[M].长春:东北师范大学出版社, 1993.
    [62] Yin Xiuqin, Song Bo, Dong Weihua, et al. A review on the eco-geography of soil fauna in China[J]. Journal of Geographical Sciences, 2010, 20(3): 333-346.
    [63]尹文英.中国亚热带土壤动物[M].北京:科学出版社, 1992.
    [64]尹文英.中国土壤动物检索图鉴[M].北京:科学出版社, 1998.
    [65]尹文英.中国土壤动物[M].北京:科学出版社, 2000.
    [66]王宗英,路有成.九华山土壤动物的垂直分布[J].地理研究, 1994, 13(2): 74-81.
    [67]王振中,张友梅,邓继福,等.重金属在土壤生态系统中的富集及毒性效应[J].应用生态学报, 2006, 17(10): 1948-1952.
    [68]柯欣,张立军.青冈林土壤跳虫群落结构在落叶分解过程中的变化[J].生态学报, 2001, 21(6): 982-987.
    [69]廖崇惠,李建雄,杨悦屏,等.海南尖峰岭热带雨林土壤动物群落——群落的组成及其特征[J].生态学报, 2002, 22(1): 1867-1872.
    [70] Fu S, Zou X, Coleman D. Highlights and perspectives of soil biology and ecology research in China[J]. Soil Biology and Biochemistry, 2009, 41: 868-876.
    [71]殷秀琴,陈鹏,赵红音,等.东北羊草草原区土壤动物群落结构特征的研究[J].东北师大学报(自然科学版), 1994, 26(3): 51-56.
    [72]殷秀琴,赵红音.松嫩平原南部土壤动物组成与分布研究[J].草业学报, 1994, 3(1): 62-70.
    [73]殷秀琴,张宝田.吉林省西部沙地和甸子地土壤动物的比较研究[J].中国沙漠, 1996, 16(2): 149-156.
    [74]殷秀琴,李建东.羊草草原土壤动物群落多样性的研究[J].应用生态学报, 1998, 9(2): 186-188.
    [75]殷秀琴,王海霞,周道玮.松嫩草原区不同农业生态系统土壤动物群落特征[J].生态学报, 2003, 23(6): 1071-1078.
    [76]殷秀琴,仲伟彦.羊草草地不同放牧强度下土壤动物的研究[J].草业学报, 1997, 6(4): 71-75.
    [77]殷秀琴.松嫩沙地天然草地与人工草地的土壤动物对比研究[J].中国沙漠, 1998, 18(3): 249-254.
    [78]王海霞,殷秀琴,周道玮.松嫩草原区农牧林复合系统大型土壤动物群落生态学研究[J].草业学报, 2003, 12(4): 84-89.
    [79]王海霞,殷秀琴,周道玮.松嫩草原区农牧林复合系统中小型土壤动物群落生态学研究[J].应用生态学报, 2003, 14(10): 1715-1718.
    [80]董满宇,殷秀琴,付关强,等.羊草草原植被不同演替阶段土壤鞘翅目昆虫群落特征[J].土壤学报, 2011, 48(2): 397-404.
    [81]王星丽,殷秀琴,宋博,等.羊草草原主要凋落物分解及土壤动物的作用[J].草业学报, 2011, 20(6): 143-149.
    [82] Xin WD, Yin XQ, Song B. Contribution of soil fauna to litter decomposition in Songnen sandy lands in northeastern China[J]. Journal of Arid Environments, 2012, 77: 90-95.
    [83]辛未冬,殷秀琴,秦丽杰,等.小兴安岭森林生态系统中小型土壤动物生态地理分布特征[J].地理科学, 2009, 29(1): 129-133.
    [84]殷秀琴,吴东辉,韩晓梅.小兴安岭森林土壤动物群落多样性研究[J].地理科学, 2003, 23(3): 316-322.
    [85]殷秀琴,邱丽丽,杨令宾,等.森林凋落物-土壤动物-土壤亚系统中营养元素含量关系及分异[J].地理研究, 2006, 25(2): 320-326.
    [86]殷秀琴,宋博,邱丽丽.红松阔叶混交林凋落物-土壤动物-土壤系统中N、P、K的动态特征[J].生态学报, 2007, 27(1): 128-134.
    [87] Song B, Yin XQ, Zhang Y, et al. Dynamics and relationship of Ca, Mg, Fe in litter, soil fauna and soil in Pinus koraiensis-broadleaf mixed forest[J]. Chinese Geographical Science, 2008, 18: 284-290.
    [88] Dong WH, Yin XQ. Transformation of carbon and nitrogen by earthworms in decomposition processes of broad-leaved litters[J]. Chinese Geographical Science, 2007, 17: 166-172.
    [89]殷秀琴,仲伟彦,王海霞,等.小兴安岭森林落叶分解与土壤动物的作用[J].地理研究, 2002, 21(6): 689-699.
    [90]殷秀琴,顾卫,董炜华,等.公路边坡人工恢复植被后土壤动物群落变化及多样性[J].生态学报, 2008, 28(9): 4295-4305.
    [91]殷秀琴,安静超,陶岩,等.拉萨河流域健康湿地与退化湿地大型土壤动物群落比较研究[J].资源科学, 2010, 32(9): 1643-1649.
    [92]殷秀琴,蒋云峰,陶岩,等.长白山红松阔叶混交林土壤动物生态分布[J].地理科学, 2011, 31(8): 935-940.
    [93]李博.生态学[M].北京:高等教育出版社, 2000.
    [94]殷秀琴.生物地理学[M].北京:高等教育出版社, 2004.
    [95]胡圣豪.青冈林落叶分解过程中甲螨群落的演替. in:尹文英(Ed.).中国土壤动物[M].北京:科学出版社, 2000.
    [96]柯欣,赵立军.三林相落叶分解过程中跳虫群落结构的演替变化. in:尹文英(Ed.).中国土壤动物[M].北京:科学出版社, 2000.
    [97] Zou X. Species effects on earthworm density in tropical tree plantations in Hawaii[J]. Biology andFertility of Soils, 1993, 1: 35-38.
    [98] Schon NL, Mackay AD, Minor MA. Soil fauna in sheep-grazed hill pastures under organic and conventional live stock management and in an adjacent ungrazed pasture[J]. Pedobiologia, 2011, 54: 161-168.
    [99] Bongers T, Ferris H. Nematodes community structures as a bioindicator in environmental monitoring[J]. Trends in Ecology & Evolution, 1999, 14: 224-228.
    [100] Frouz J, Kalcik J, Velichova V. Factors causing spatial heterogeneity in soil properties, plant cover, and soil fauna in a non-reclaimed post-mining site[J]. Ecological Engineering, 2011, 37: 1910-1913.
    [101] Ponge J. Collembolan communities as bioindicators of land use intensification[J]. Soil Biology and Biochemistry, 2003, 35: 813-826.
    [102] H El Zemrany, J Cortet, M Peter Lutz, et al. Field survival of the phytostimulator Azospirillum lipoferum CRT1 and functional impact on maize crop, biodegradation of crop residues, and soil faunal indicators in a context of decreasing nitrogen fertilisation[J]. Soil Biology and Biochemistry, 2006, 38: 1712-1726.
    [103] Riggins JJ, Craig DA, Hoback WW, et al. Biodiversity of belowground invertebrates as an indicator of wet meadow restoration success (Platte River, Nebraska) [J]. Restoration Ecology, 2009, 17: 495-505.
    [104] Liang WJ, Zhong S, Hua JF, et al. Nematode faunal response to grassland degradation in Horqin sandy land[J]. Pedosphere, 2007, 17: 611-618.
    [105] Wu JH, Fu CZ, Chen SS, et al. Soil faunal response to land use: effect of estuarine tideland reclamation on nematode communities[J]. Applied Soil Ecology, 2002, 21: 131-147.
    [106]殷秀琴.东北森林土壤动物研究[M].长春:东北师范大学出版社, 2001.
    [107] Decaens T, Mariani L, Lavelle P. Soil surface macrofaunal communities associated with earthworm cats in grasslands of the Eastern Plains of Colombia[J]. Applied Soil Ecology, 1999, 13: 87-100.
    [108] Bardgett R, Cook R. Functional aspects of soil animal diversity in agricultural grasslands[J]. Applied Soil Ecology, 1998, 10: 263-276.
    [109]章家恩.土壤生物多样性的研究内容及持续性利用展望[J].生物多样性, 1999, 7(2): 140-144.
    [110] Copley J. Ecology goes underground[J]. Nature, 2000, 406: 452-454.
    [111] Crowther TW, Boddy L, Jones TH. Species-specific effects of soil fauna on fungal foraging and decomposition[J]. Oecologia, 2011, 167: 535-545.
    [112] Pieper S. Interactions between isopods and collembolans modulate the mobilization and transport of nutrients from urban soils[J]. Applied Soil Ecology, 2008, 39: 109-126.
    [113] Wardle DA. The influence of biotic interactions on soil biodiversity[J]. Ecology Letters, 2006, 9: 870-886.
    [114] Duc C, Nentwig W, Lindfeld A. No adverse effect of genetically modified antifungal wheat on decomposition dynamics and the soil fauna community - a field study[J]. PLoS ONE, 2011, 6: e25014.
    [115]张雪萍,仲伟彦,马志伟,等.阔叶树落叶分解过程与土壤动物的作用[J].林业科技, 1996, 21(3): 1-4.
    [116]杨效东.热带季节雨林凋落叶分解过程中的中小型土壤节肢动物的群落结构和动态[J].生物多样性, 2004, 12(2): 252-261.
    [117] Cortet J, Bouche MB. Decomposition of Mediterranean leaf litter by Nicodrilus merdionalis (Lumbricidae) in laboratory and field experiments[J]. Soil Biology and Biochemistry, 2001, 33: 2023-2035.
    [118] Verhoef HA, Brussaard L. Decomposition and nitrogen mineralization in natural and agroecosystems: the contribution of soil animals[J]. Biogeochemistry, 1990, 11: 175-211.
    [119] Carrillo Y, Ball BA, Bradford MA, et al. Soil fauna alter the effects of litter decomposition on nitrogen cycling in a mineral soil[J]. Soil Biology and Biochemistry, 2011, 43: 1440-1449.
    [120] Milcu A, Manning P. All size classes of soil fauna and litter quality control the acceleration of litter decay in its home environment[J]. Oikos, 2011, 120: 1366-1370.
    [121]张雪萍,黄初龙,李景科.赤子爱胜蚓对森林凋落物的分解效率[J].生态学报, 2005, 25(9): 2427-2433.
    [122]张雪萍.马陆的摄食分解作用. in:殷秀琴(Ed.).东北森林土壤动物研究[M].长春:东北师范大学出版社, 2001.
    [123] Vetter S, Fox O, Ekschmitt K, et al. Limitations of faunal effects on soil carbon flow: density dependence, biotic regulation and mutual inhibition[J]. Soil Biology and Biochemistry, 2004, 36: 387-397.
    [124]殷秀琴,仲伟彦,王海霞,等.小兴安岭森林落叶分解与土壤动物的作用[J].地理研究, 2002, 21(6): 689-699.
    [125] Joo SJ, Yim MH, Nakane K. Contribution of microarthropods to the decomposition of needle litter in a Japanese cedar (Cryptomeria japonica D. Don) plantation[J]. Forest Ecology and Management, 2006, 234: 192-198.
    [126] Yang X, Chen J. Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forests, southwestern China[J]. Soil Biology and Biochemistry, 2009, 41: 910-918.
    [127] Wang S, Ruan H, Wang B. Effects of soil microarthropods on plant litter decomposition across an elevation gradient in the Wuyi Mountains[J]. Soil Biology and Biochemistry, 2009, 41: 891-897.
    [128] Elkins NZ, Whitford WG. The role of microarthropods and nematodes in decomposition in a semi-arid ecosystem[J]. Oecologia, 1982, 55: 303-310.
    [129] Petersen H, Luxton M. A comparative analysis of soil fauna populations and their role in decomposition processes[J]. Oikos, 1982, 39: 288-388.
    [130] Noble J, Muller W, Whitford W, et al. The significance of termites as decomposers in contrasting grassland communities of semi-arid eastern Australia[J]. Journal of Arid Environments, 2009, 73: 113-119.
    [131] Cole L, Bradford M, Shaw P, et al. The abundance, richness and functional role of soil meso- and macrofauna in temperate grassland—a case study[J]. Applied Soil Ecology, 2006, 33: 186-198.
    [132] Kampichler C, Bruckner A. The role of microarthropods in terrestrial decomposition: a meta-analysis of 40 years of litterbag studies[J]. Biological Reviews, 2009, 84: 375-389.
    [133] Cragg RG, Bardgett RD. How changes in soil faunal diversity and composition within a trophic group influence decomposition processes[J]. Soil Biology and Biochemistry, 2001, 33: 2073-2081.
    [134] Qiu SW. Sandy land and desertification in the west of Northeast of China[M]. Beijing: Science Press, 2008.
    [135]郑慧莹,李建东.松嫩平原的草地植被及其利用保护[M].北京:科学出版社, 1993.
    [136]肖荣寰.松嫩沙地的土地沙漠化研究[M].长春:东北师范大学出版社, 1995.
    [137]李建东,吴榜华,盛连喜.吉林植被[M].长春:吉林科学技术出版社, 2001.
    [138]李宝林.松嫩沙地沙漠化气候因素的分析. in:肖荣寰(Ed.).松嫩沙地的土地沙漠化研究[M].长春:东北师范大学出版社, 1995.
    [139] Bradford MA, Tordoff GM, Eggers T, et al. Microbiota, fauna, and mesh size interactions in litter decomposition[J]. Oikos, 2002, 99: 317-323.
    [140]曹志平.土壤生态学[M].北京:化学工业出版社, 2007.
    [141] Crossley DA, Coleman D. Microfauna. in: Summer ME(Ed.). Handbook of soil science[M]. Boca Raton: CRC Press, 1999.
    [142]南开大学,中山大学,北京大学.昆虫学[M].北京:人民教育出版社, 1980.
    [143]唐祖庭.昆虫分类学[M].北京:中国林业出版社, 1989.
    [144]钟觉民.昆虫分类图谱[M].南京:江苏科学技术出版社, 1985.
    [145]郑乐怡,归鸿.昆虫分类[M](上、下).南京:南京师范大学出版社, 1999.
    [146]钟觉民.幼虫分类学[M].北京:农业出版社, 1990.
    [147]鲍士旦.土壤农化分析[M].北京:中国农业出版社, 2000.
    [148]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社, 1978.
    [149] Olsen JS. Energy Storage and the Balance of Producers and Decomposers in Ecological Systems[J]. Ecology, 1963, 44: 322-331.
    [150] Seastedt TR. The role of microarthropods in decomposition and mineralization processes[J]. Annual Review of Entomology, 1984, 29: 25-46.
    [151] Irmler U. Changes in the fauna and its contribution to mass loss and N release during leaf litter decomposition in two deciduous forests[J]. Pedobiologia, 2000, 44: 105-118.
    [152]廖崇惠,李建雄,黄海涛.南亚热带森林土壤动物群落多样性研究[J].生态学报, 1997, 17(5): 549-555.
    [153] Cheng W, Coleman DC. Effect of living roots on soil organic matter decomposition[J]. Soil Biology and Biochemistry, 1990, 22: 781-787.
    [154] Liljeroth E, Kuikman P, Veen JA. Carbon translocation to the rhizosphere of maize and wheat and influence on the turnover of native soil organic matter at different soil nitrogen levels[J]. Plant and Soil, 1994, 161: 230-240.
    [155] Kurcheva GF. The role of invertebrates in the decomposition of oak litter[J]. Pedobiologia, 1960, 4:16-23.
    [156]廖崇惠,李健雄.华南热带和南亚热带地区森林土壤动物群落生态[M].广州:广东科技出版社, 2008.
    [157]廖崇惠,林少明,李健雄.不同类型人工林土壤动物群落结构与功能.Ⅲ.3个人工林凋落物的分解试验[J].生态学报, 1995, 15(增A): 198-203.
    [158]郝树广,康乐.昆虫耐寒性的进化与生活史对策:不同起源昆虫的比较分析. in:邬建国(Ed.).现代生态学讲座(III)学科进展与热点论题[M].北京:高等教育出版社, 2007.
    [159] Koponen HT, Jaakkola T, Keinanen-Toivola MM. Microbial communities, biomass, and activities in soils as affected by freeze thaw cycles[J]. Soil Biology and Biochemistry, 2006, 38: 1861-1871.
    [160] Konestabo HS, Michelsen A, Holmstrup M. Responses of springtail and mite populations to prolonged periods of soil freeze-thaw cycles in a sub-arctic ecosystem[J]. Applied Soil Ecology, 2007, 36: 136-146.
    [161] Meentemeyer V. Macroclimate the lignin control of litter decomposition rates[J]. Ecology, 1978, 59: 465-472.
    [162] Aber JD, Melillo JM. Nitrogen immobilization in decaying hardwood leaf litter as a function of initial nitrogen and nitrogen content[J]. Canadian Journal of Botany-Revue, 1982, 60: 2263-2269.
    [163] Austin AT. Differential effects of precipitation on production and decomposition along a rainfall gradient in Hawaii[J]. Ecology, 2002, 83: 328-338.
    [164] Gholz HL, Wedin DA, Smitherman SM. Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition[J]. Global Change Biology, 2000, 6: 751-765.
    [165] Montaňa C, Ezcurra E, Carrillo A, et al. The decomposition of litter in grasslands of northern Mexico: a comparison between arid and non-arid environments[J]. Journal of Arid Environments, 1988, 14: 55-60.
    [166] Moorhead DL, Reynolds JF. Mechanisms of surface litter mass loss in the northern Chihuahuan desert: a reinterpretation[J]. Journal of Arid Environments, 1989, 16: 157-163.
    [167] Vossbrinck CR, Coleman DC, Wooley TA. Abiotic and biotic factors in litter decomposition in a semiarid grassland[J]. Ecology, 1979, 60: 265-271.
    [168] Steinberger Y, Shmida A, Whitford WG. Decomposition along a rainfall gradient in the Judean desert, Israel[J]. Oecologia, 1990, 82: 322-324.
    [169] Whitford WG. Rainfall and decomposition in the Chihuahuan desert[J]. Oecologia, 1986, 68: 512-515.
    [170] Schlesinger WH, Lichter J. Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2[J]. Nature, 2001, 411: 466-469.
    [171] Nemani RR. Climate-driven increases in global terrestrial net primary production from 1982 to 1999[J]. Science, 2003, 300:1560-1563.
    [172] Kieber DJ, McDaniel J, Mopper K. Photochemical source of biological substrates in sea water:implications for carbon cycling[J]. Nature, 1989, 341: 637-639.
    [173] Miller WL, Zepp RG. Photochemical production of dissolved inorganic carbon from terrestrial organic matter: significance to the oceanic organic carbon cycle[J]. Geophysical Research Letters, 1995, 22: 417-420.
    [174] Mopper K. Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle[J]. Nature, 1991, 353: 60-62.
    [175] Tarr MA, Miller WL, Zepp RG. Direct carbon monoxide production from plant matter[J]. Journal of Geophysical Research, 1995, 100: 11403-11413.
    [176] Anesio AM, Tranvik LJ, Granéli W. Production of inorganic carbon from aquatic macrophytes by solar radiation[J]. Ecology, 1999, 80: 1852-1859.
    [177] Schade GW, Hormann RM, Crutzen PJ. CO emissions from degrading plant matter[J]. Tellus, 1999, 51B: 899-908.
    [178] Johnson D, Campbell CD, Lee JA, et al. Arctic microorganisms respond more to elevated UV-B radiation than CO2[J]. Nature, 2002, 416: 82-83.
    [179] Pancotto VA, Sala OE, Robson TM, et al. Direct and indirect effects of solar ultraviolet-B radiation on long-term decomposition[J]. Global Change Biology, 2005, 11: 1982-1989.
    [180] Gehrke C, Johanson U, Callaghan TV, et al. The impact of enhanced UV-B radiation on litter quality and decomposition processes in Vaccinum leaves from the subarctic[J]. Oikos, 1995, 72: 213-222.
    [181] Moody SA. The direct effects of UV-B radiation on Betula pubescens litter decomposition ar four European field sites[J]. Plant Ecology, 2001, 154: 29-36.
    [182] Moorhead DL, Callaghan TV. Effects of increasing UV-B radiation on decomposition and soil organic matter dynamic: a synthesis and modelling study[J]. Biology and Fertility of Soils, 1994, 18: 19-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700