有机、无公害和常规蔬菜种植模式下温室土壤生物群落结构及食物网的特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
日光温室是中国北方的重要的农业土地利用类型之一,相比自然生境及室外农田生态系统具有半封闭、高投入和高扰动的特性。常规种植模式在带来高产的同时也引发了一系列环境问题,有机和无公害作为环境友好型农业模式改善了土壤环境,同时也会对土壤生物群落及地下食物网产生影响。本试验以中国农业大学曲周蔬菜日光温室长期定位试验为研究对象,对比了有机(ORG)、无公害(LOW)和常规(CON)种植模式下土壤生物生物量、群落结构、多样性及食物网特征。主要结果如下:
     温室土壤以细菌降解途径占优势;原生动物中鞭毛虫占绝对优势。管理模式对土壤真菌、细菌和微生物量总碳、原生动物各类群丰度及总数均有显著影响,但对真菌/细菌比率、鞭毛虫和肉足虫的相对丰度没有显著影响。细菌、真菌和微生物量碳在不同温室间总体呈现相同的规律,即ORG>LOW>CON;对于原生动物,有机模式下的鞭毛虫、肉足虫和原生动物总数量高于无公害和常规模式的,而后两者的数量较为接近。
     食细菌线虫是温室环境中最为丰富的线虫营养类群,其所占比例超过80%。其次是杂食捕食性线虫。有机模式同无公害和常规模式相比提高了线虫总数、食细菌线虫、食真菌线虫和杂食捕食性线虫的丰度。植食性线虫在无公害和有机温室中得到了抑制,且此效应在有机模式下更为明显。而种植模式对营养类群的组成和线虫区系分析的影响较小,三个温室均显示出富集的土壤养分和结构化的食物网状态。香浓指数(H')和优势度指数(λ)反映出大量的有机肥投入降低了线虫多样性,增加了优势度,尤其对于典型机会主义者。
     种植模式对土壤螨的总数、个亚目及菌食性隐气门螨和捕食性螨比例均无显著影响,仅对菌食性非隐气门螨和食线虫螨的比例有显著影响。土壤螨的总数及各营养类群的数量呈现不同程度的波动状态,且在不同的温室规律存在差异。粉螨是温室土壤中最为丰富的螨类(平均37.8%)。种植模式对螨的香浓指数(H')和优势度指数(λ)均无显著影响。
     有机模式下土壤食物网结构优于无公害和常规模式的,主要表现在:有机温室具有最高的功能群数目、连通度,食物链长度及食物网多样性。总生物量在不同温室间呈现ORG>LOW>CON的规律。大部分功能群的生物量在有机模式下最高,而无公害和常规模式总体处于同一水平。有机模式对高营养级生物量的促进作用更明显。功能群相互作用强度分析显示最高的取食强度和食物调控强度均出现在第2营养级功能群,在0-10cm土层,不同模式间各营养级功能群及总的取食强度和食物网调控强度均表现为ORG>LOW>CON,说明有机模式和无公害模式均不同程度的增强了食物网的上行效应和下行效应。能量流动途径主要发生在微生物对碎屑的取食上,最大值为细菌对碎屑的取食。相比无公害和常规模式,有机模式具有更高的碳矿化率和土壤表层的氮矿化率。土壤动物对碳矿化率的贡献为11.1%,对氮矿化率的贡献平均达48.3%,其中食细菌线虫的贡献最大。有机模式相比另两种模式提高了土壤动物对碳氮矿化率的贡献。
     对于微生物和小型土壤动物,种植模式对生物量的影响大于对群落结构(或功能群结构)的影响。而对于中型土壤动物(微节肢动物),二者在不同温室间都没有明显的差别。有机模式在多样性指数上没有表现出优势,尽管线虫和螨在该模式下均发现了更多的分类单位;而在基于功能群水平上的多样性在有机温室高于其他两个温室。
     总体而言,有机农业促进了地下食物网结构的优化和碳、氮矿化功能以及生物量。其中生物量的优势可进一步体现在生态系统功能上,即养分矿化。
Solar greenhouse is a typical intensive production model in north China. Compared with natural habitat and opened farmland system, the greenhouse is often in a semiclosed state with high input and high disturbance. Conventional management practices bring in high yield but induced serious environmental pollution. Low input and organic management practices improved soil condition, and affected soil organism and food web. Based on the Quzhou Experimental Station of China Agricultural University, A comparative study of organic (ORG), low input (LOW) and conventional (CON) vegetable greenhouse systems was conducted to assess the effect of management practices on the biomass of soil organism, community structure, diversity and food web characteristic. The mean results list below:
     All three greenhouse systems showed a bacterial-based decomposition pathway and flagellate was the most popular protozoa group. The soil fungal biomass carbon, bacterial biomass carbon, microbial biomass carbon, flagellate abundance, ciliate abundance, amoeba abundance and total protozoa abundance were significantly affected by management practices, while no significant effect was found on the fungal to bacterial ratio (FB) and the relative abundance of flagellate and amoeba. Generally, all soil bacterial, fungal and microbial biomass carbon among three systems presented a decreasing sequence of ORG>LOW>CON. The abundances of flagellate, amoeba and total protozoa under organic management practices were higher than that under low input and conventional management practices. The abundances of the above protozoa were closed in low input and conventional systems.
     Bacterivores were the most dominant trophic group in all three systems with a mean proportion of over80%, followed by omnivore-carnivores. In general, organic management practices increased the abundance of total nematodes, bacterivores, fungivores and omnivore-carnivores in comparison with low input and conventional management practices. Though inhibitory effects of plant feeders were found in organic and low input systems, these effects were more evident in organic systems. However, small differences were observed in the composition of trophic groups and fauna analysis. All three systems displayed enriched soil conditions and structured food webs. The Shannon index (H') and genus dominance (λ) suggested that in greenhouse conditions, excessive manure input would cause a decrease in nematode diversity but increase the dominance, particularly for enrichment opportunists.
     No significant management practices effect was found on the abundance of soil mites, the relative abundance of various suborder and the relative abundance of fungivorous cryptostigmatic and predaceous mites. Significant management practices effects were only found on the relative abundance of fungivorous non-cryptostigmatic and nematophagous mites. The abundance of total mites and various trophic groups fluctuated at different degrees during the sampling times, and they differed in different greenhouses. Acaridae was the most abundant family (meanly38.7%). No significant management practices effect was found on the Shannon index (H1) and dominance (λ) indices.
     The soil food web structure under organic management practices was better than that under low input and conventional management practices. Higher values of the number of functional groups, connectance, food chain length and food web diversity were obtained in organic greenhouse than in the other two greenhouses. The total biomass among three systems presented a decreasing sequence of ORG>LOW>CON. The biomass of most functional groups were higher in organic system compared with the other two systems, which exhibited similar levels to each other. Organic management practices was more effective in promoting the biomass of high trophic level. The analysis of interaction strengths of food webs showed that both the effect on prey and the effect on predator of various trophic levels were appeared at trophic level2. At0-10cm soil depth, the prey effects and food regulation effects of total organism and various trophic levels among three systems presented a decreasing sequence of ORG>LOW>CON, indicating an increased effect of both bottom-up and top-down effects in organic system than in low input and conventional systems. The energy flow pathway was mainly occurred at the process of microbe feeding on detritus. Higher C and N (only in the0-10cm depth) mineralization rates were found in organic greenhouse than in low input and conventional greenhouses. The contributions of soil fauna to C and N mineralization rates were11.1%and48.3%, respectively, and largest contribution was observed on bacterivore nematodes. Organic management practices improved the contributions of soil fauna to C and N mineralization rates compared with the other two management practices.
     Management practices were more influential on microorganism biomass than community structure (or functional groups structure). For mesofauna (micro-arthropodes), no evident difference was found on biomass and community structure among three greenhouses. Organic management practices did not show advantage on diversity index, although more taxon were found in this greenhouse. However, food web diversity, which the diversity is based on the functional groups level, presented a higher value than that in the other two greenhouses.
     We concluded that organic agriculture promoted the optimization of belowground food web structure, and improved the soil organism biomass and function of C and N mineralization. The advantage of biomass can be further reflected on the ecosystem function, such as nutrient mineralization.
引文
Abrol, I.P., Gupta, R.K., Malik, R.K.,2005. Conservation agriculture:status and prospects. Centre for Advancement of Sustainable Agriculture.
    Alphei, J., Bonkowski, M., Scheu, S.,1996. Protozoa, Nematoda and Lumbricidae in the rhizosphere of Hordelymus europeaus (Poaceae):feunal interactions, response of microorganisms and effects on plant growth. Oecologia 106,111-126.
    Alvarez, T., Frampton, GK., Goulson, D.,2001. Epigeic Collembola in winter wheat under organic, integrated and conventional farm management regimes. Agriculture, Ecosystems and Environment 83,95-110.
    Andren, O., Balandreau, J.,1999. Biodiversity and soil functioning—from black box to can of worms? Applied Soil Ecology 13,105-108.
    Andren, O., Lindberg, T., Bostrom, U., Clarholm, M., Hansson, A.C., Johansson, G., Lagerlof, J., Paustian, K., Persson, J., Pettersson, R.,1990. Organic carbon and nitrogen flows. Ecological Bulletins,85-126.
    Arroyo, J., Iturrondobeitia, J.C.,2006. Differences in the diversity of oribatid mite communities in forests and agrosystems lands. European Journal of Soil Biology 42,259-269.
    Arroyo, J., Iturrondobeitia, J.C., Rad, C., Gonzalez-Carcedo, S.,2005. Oribatid mite (Acari) community structure in steppic habitats of Burgos Province, central northern Spain. Journal of Natural History 39,3453-3470.
    Badejo, M.A., De Aquino, A.M., De-Polli, H., Correia, M.E.F.,2004. Response of soil mites to organic cultivation in an ultisol in southeast Brazil. Experimental and Applied Acarology 34,345-364.
    Balogh, J., Balogh, P.,1992. The Oribatid Mites Genera of the World. The Hungarian National Museum Press, Budapest.
    Bardgett, R.D., Hobbs, P.J., Frostegard, A.,1996. Changes in soil fungal:bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biology and Fertility of Soils 22,261-264.
    Barker, K.R.,1985. Sampling nematode communities, in:Barker, K.R., Carter, C.C., Sasser, J.N. (Eds.), An Advanced Treatise on Meloidogyne, Volume Ⅱ Methodology. USAID, North Carolina State University, Raleigh, NC, USA, pp.3-17.
    Beare, M.H., Reddy, M.V., Tian, G., Srivastava, S.C.,1997. Agricultural intensification, soil biodiversity and agroecosystem function in the tropics:the role of decomposer biota. Applied Soil Ecology 6,87-108.
    Behan-Pelletier, V.M.,1999. Oribatid mite biodiversity in agroecosystems:role for bioindication. Agriculture, Ecosystems and Environment 74,411-423.
    Berg, M., de Ruiter, P., Didden, W., Janssen, M., Schouten, T, Verhoef, H.,2001. Community food web, decomposition and nitrogen mineralisation in a stratified Scots pine forest soil. Oikos 94,130-142.
    Berg, M.P., Bengtsson, J.,2007. Temporal and spatial variability in soil food web structure. Oikos 116, 1789-1804.
    Berkelmans, R., Ferris, H., Tenuta, M., van Bruggen, A.H.C.,2003. Effects of long-term crop management on nematode trophic levels other than plant feeders disappear after 1 year of disruptive soil management. Applied Soil Ecology 23,223-235.
    Blagodatskaya, E.V., Anderson, T.H.,1998. Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and qCO2 of microbial communities in forest soils. Soil Biology and Biochemistry 30,1269-1274.
    Bloem, J., de Ruiter, P.C., Bouwman, L.A.,1997. Soil food webs and nutrient cycling in agro-ecosystems, in:van Elsas, J.D., Trevors, J.T., Wellington, E.M.H. (Eds.), Modern Soil Microbiology. Marcel Dekker Inc, New York, pp.245-278.
    Bloem, J., Lebbink, G., Zwart, K.B., Bouwman, L.A., Burgers, S.L.GE., De Vos, J.A., De Ruiter, PC., 1994. Dynamics of microorganisms, microbivores and nitrogen mineralisation in winter wheat fields under conventional and integrated management. Agriculture, Ecosystems and Environment 51,129-143.
    Bloem, J., Vos, A.,2004. Fluorescent staining of microbes for total direct counts, in:Kowalchuk, GA., de Bruijn F, J., Head, I.M., Akkermans, A.D.L., van Elsas, J.D. (Eds.), Molecular Microbial Ecology Manual. Kluwer Academic Publishers, pp.861-873.
    Bongers, T.,1990. The maturity index:an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83,14-19.
    Bongers, T.,1999. The maturity index, the evolution of nematode life history traits, adaptive radiation and cp-scaling. Plant and Soil 212,13-22.
    Bongers, T., Bongers, M.,1998. Functional diversity of nematodes. Applied Soil Ecology 10,239-251.
    Bossio, D.A., Scow, K.M., Gunapala, N., Graham, K.J.,1998. Determinants of soil microbial communities:effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microbial Ecology 36,1-12.
    Bouwman, L.A., Bloem, J., Van den Boogert, P.H.J.F., Bremer, F., Hoenderboom, G.H.J., de Ruiter, P.C.,1994. Short-term and long-term effects of bacterivorous nematodes and nematophagous fungi on carbon and nitrogen mineralization in microcosms. Biology and Fertility of Soils 17, 249-256.
    Briar, S.S., Grewal, P.S., Somasekhar, N., Stinner, D., Miller, S.A.,2007. Soil nematode community, organic matter, microbial biomass and nitrogen dynamics in field plots transitioning from conventional to organic management. Applied Soil Ecology 37,256-266.
    Brown, R.,1999. Grass margins and earthworm activity in organic and integrated systems. Aspects of applied Biology 54,207-210.
    Brussaard, L.,1994. An appraisal of the Dutch programme on soil ecology of arable farming systems (1985-1992). Agriculture, Ecosystems and Environment 51,1-6.
    Brussaard, L.,1998. Soil fauna, guilds, functional groups and ecosystem processes. Applied Soil Ecology 9,123-135.
    Brussaard, L., Bouwman, L.A., Geurs, M., Hassink, J., Zwart, K.B.,1990. Biomass, composition and temporal dynamics of soil organisms of a silt loam soil under conventional and integrated management. Netherlands Journal of Agricultural Science 38,283-302.
    Brussaard, L., Van Veen, J.A., Kooistra, M.J., Lebbink, G.,1988. The Dutch programme on soil ecology of arable farming systems I. Objectives, approach and some preliminary results. Ecological Bulletins 39,35-40.
    Bulluck, L.R., Ristaino, J.B.,2002. Effect of synthetic and organic soil fertility amendments on southern blight, soil microbial communities, and yield of processing tomatoes. Phytopathology 92, 181-189.
    Cao, Z.P., Chen, G.K., Chen, Y.F., Yang, H., Han, L.F., Dawson, R.,2005. Comparative performance of nematode resistant rootstock and non-resistant tomato cultivars on soil biota. Allelopathy Journal 15,85-94.
    Cao, Z.P., Han, X.M., Hu, C., Chen, J., Zhang, D.P., Steinberger, Y,2011. Changes in the abundance and structure of a soil mite (Acari) community under long-term organic and chemical fertilizer treatments. Applied Soil Ecology 49,131-138.
    Cao, Z.P., Yu, Y.L., Chen, G.K., Dawson, R.,2004. Impact of soil fumigation practices on soil nematodes and microbial biomass. Pedosphere 14,387-393.
    Chen, Y.F., Cao, Z.P., Popescu, L., Kiepper, B.H.,2014. Static and dynamic properties of soil food web structure in a greenhouse environment. Pedosphere 24,258-270.
    Chen, Y.F., Steinberger, Y, Cao, Z.P.,2008. Effects of alternatives to methyl bromide on soil free-living nematode community dynamics in a greenhouse study. Journal of Sustainable Agriculture 31, 95-113.
    Clarholm, M.,1981. Protozoan grazing of bacteria in soil—impact and importance. Microbial Ecology 7,343-350.
    Coleman, D., Fu, S.L., Hendrix, P., Crossley, D.,2002. Soil food webs in agroecosystems:impacts of herbivory and tillage management. European Journal of Soil Biology 38,21-28.
    de Ruiter, P.C., Bloem, J., Bouwman, L.A., Didden, W.A.M., Hoenderboom, G.H.J., Lebbink, G., Marinissen, J.C.Y., De Vos, J.A., Vreeken-Buijs, M.J., Zwart, K.B.,1994. Simulation of dynamics in nitrogen mineralisation in the belowground food webs of two arable farming systems. Agriculture, Ecosystems and Environment 51,199-208.
    de Ruiter, PC., Moore, J.C., Zwart, K.B., Bouwman, L.A., Hassink, J., Bloem, J., De Vos, J.A., Marinissen, J.C.Y., Didden, W.A.M., Lebrink, G.,1993a. Simulation of nitrogen mineralization in the below-ground food webs of two winter wheat fields. Journal of Applied Ecology 30,95-106.
    de Ruiter, P.C., Neutel, A.M., Moore, J.C.,1995. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269,1257-1257.
    de Ruiter, PC., Neutel, A.M., Moore, J.C.,1998. Biodiversity in soil ecosystems:the role of energy flow and community stability. Applied Soil Ecology 10,217-228.
    de Ruiter, P.C., Neutel, A.M., Moore, J.C.,2005. The balance between productivity and food web structure in soil ecosystems, in:Bardgett, R.D., Usher, M.B., Hopkins, D.W. (Eds.), The balance between productivity and food web structure in soil ecosystems. Cambridge university press, UK, pp.139-153.
    de Ruiter, P.C., Veen, J.A., Moore, J.C., Brussaard, L., Hunt, H.W.,1993b. Calculation of nitrogen mineralization in soil food webs. Plant and Soil 157,263-273.
    de Vries, F.T., Liiri, M.E., Bjornlund, L., Bowker, M.A., Christensen, S., Setala, H.M., Bardgett, R.D., 2012. Land use alters the resistance and resilience of soil food webs to drought Nature Climate Change 2,267-280.
    de Vries, F.T., Thebault, E., Liiri, M., Birkhofer, K., Tsiafouli, M.A., Bjirnlund, L., Jorgensen, H.B., Brady, M.V., Christensen, S., de Ruiter, P.C.,2013. Soil food web properties explain ecosystem services across European land use systems. Proceedings of the National Academy of Sciences 110, 14296-14301.
    Didden, W.A.M., Marinissen, J.C.Y., Vreeken-Buijs, M.J., Burgers, S., De Fluiter, R., Geurs, M., Brussaard, L.,1994. Soil meso-and macrofauna in two agricultural systems:factors affecting population dynamics and evaluation of their role in carbon and nitrogen dynamics. Agriculture, Ecosystems and Environment 51,171-186.
    Dong, D.F., Chen, Y.F., Steinberger, Y, Cao, Z.P.,2008. Effects of different soil management practices on soil free-living nematode community structure, Eastern China. Canadian Journal of Soil Science 88,115-127.
    Ekelund, F., Ronn, R.,1994. Notes on protozoa in agricultural soil with emphasis on heterotrophic flagellates and naked amoebae and their ecology. FEMS Microbiology Reviews 15,321-353.
    El Titi, A., Ipach, U.,1989. Soil fauna in sustainable agriculture:results of an integrated farming system at Lautenbach, FRG. Agriculture, Ecosystems and Environment 27,561-572.
    Elliott, E.T., Horton, K., Moore, J.C., Coleman, D.C., Cole, C.V.,1984. Mineralization dynamics in fallow dryland wheat plots, Colorado. Plant and Soil 76,149-155.
    Ferris, H.,2010. Form and function:Metabolic footprints of nematodes in the soil food web. European Journal of Soil Biology 46,97-104.
    Ferris, H., Bongers, T., de Goede, R.GM.,2001. A framework for soil food web diagnostics:extension of the nematode faunal analysis concept. Applied Soil Ecology 18,13-29.
    Ferris, H., Matute, M.M.,2003. Structural and functional succession in the nematode fauna of a soil food web. Applied Soil Ecology 23,93-110.
    Ferris, H., Sanchez-Moreno, S., Brennan, E.B.,2012. Structure, functions and interguild relationships of the soil nematode assemblage in organic vegetable production. Applied Soil Ecology 61,16-25.
    Ferris, H., Venette, R.C., Lau, S.S.,1996. Dynamics of nematode communities in tomatoes grown in conventional and organic farming systems, and their impact on soil fertility. Applied Soil Ecology 3,161-175.
    Fiscus, D.A., Neher, D.A.,2002. Distinguishing sensitivity of free-living soil nematode genera to physical and chemical disturbances. Ecological Applications 12,565-575.
    Fitter, A.H., Gilligan, C.A., Hollingworth, K., Kleczkowski, A., Twyman, R.M., Pitchford, J.W.,2005. Biodiversity and ecosystem function in soil. Functional Ecology 19,369-377.
    Fliessbach, A., Oberholzer, H.R., Gunst, L., Mader, P.,2007. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agriculture, Ecosystems and Environment 118,273-284.
    Foissner, W.,1987. Soil protozoa:fundamental problems, ecological significance, adaptations in ciliates and testaceans, bioindicators, and guide to the literature. Progress in Protistology 2, 69-212.
    Foissner, W.,1992. Comparative studies on the soil life in ecofarmed and conventionally farmed fields and grasslands of Austria. Agriculture, Ecosystems and Environment 40,207-218.
    Foissner, W.,1997. Protozoa as bioindicators in agroecosystems, with emphasis on farming practices, biocides, and biodiversity. Agriculture, Ecosystems and Environment 62,93-103.
    Foissner, W.,1999. Soil protozoa as bioindicators:pros and cons, methods, diversity, representative examples. Agriculture, Ecosystems and Environment 74,95-112.
    Forge, T.A., Bittman, S., Kowalenko, C.G.,2005. Responses of grassland soil nematodes and protozoa to multi-year and single-year applications of dairy manure slurry and fertilizer. Soil Biology and Biochemistry 37,1751-1762.
    Fraser, D.G., Doran, J.W., Sahs, W.W., Lesoing, G.W.,1988. Soil microbial populations and activities under conventional and organic management. Journal of Environmental Quality 17,585-590.
    Freckman, D.W.,1988. Bacterivorous nematodes and organic-matter decomposition. Agriculture, Ecosystems and Environment 24,195-217.
    Frey, S.D., Elliott, E.T., Paustian, K.,1999. Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients. Soil Biology and Biochemistry 31,573-585.
    Frouz, J., Thebault, E., Pizl, V., Adl, S., Cajthaml, T., Baldrian, P., Hanel, L., Stary, J., Tajovsky, K., Materna, J.,2013. Soil food web changes during spontaneous succession at post mining sites:a possible ecosystem engineering effect on food web organization? PloS one 8, e79694.
    Fu, S.L., Coleman, D.C., Hendrix, P.F., Crossley, D.A.,2000. Responses of trophic groups of soil nematodes to residue application under conventional tillage and no-till regimes. Soil Biology and Biochemistry 32,1731-1741.
    Fujita, M., Fujiyama, S.,2001. Comparison of soil fauna (Oribatids and Enchytraeids) between conventional and organic (tillage and no—tillage practices) farming crop fields in Japan. Pedosphere 11,11-20.
    Garcia-Ruiz, R., Ochoa, V., Vinegla, B., Hinojosa, M.B., Pena-Santiago, R., Liebanas, G., Linares, J.C., Carreira, J.A.,2009. Soil enzymes, nematode community and selected physico-chemical properties as soil quality indicators in organic and conventional olive oil farming:Influence of seasonality and site features. Applied Soil Ecology 41,305-314.
    Griffiths, B.S.,1994. Soil nutrient flow.
    Griffiths, B.S., Bonkowski, M., Dobson, G., Caul, S.,1999. Changes in soil microbial community structure in the presence of microbial-feeding nematodes and protozoa. Pedobiologia 43,297-304.
    Griffiths, B.S., Ritz, K., Wheatley, R.E.,1994. Nematodes as indicators of enhanced microbiological activity in a Scottish organic farming system. Soil Use and Management 10,20-24.
    Gunapala, N., Scow, K.M.,1998. Dynamics of soil microbial biomass and activity in conventional and organic farming systems. Soil Biology and Biochemistry 30,805-816.
    Helgason, B.L., Walley, F.L., Germida, J.J.,2009. Fungal and bacterial abundance in long-term no-till and intensive-till soils of the Northern Great Plains. Soil Science Society of America Journal 73, 120-127.
    Hendrix, P.F., Parmelee, R.W., Crossley, D.A., Coleman, D.C., Odum, E.P., Groffman, P.M.,1986. Detritus food webs in conventional and no-tillage agroecosystems. Bioscience 36,374-380.
    Hole, D.G., Perkins, A.J., Wilson, J.D., Alexander, I.H., Grice, P.V., Evans, A.D.,2005. Does organic farming benefit biodiversity? Biological conservation 122,113-130.
    Holland, E.A., Coleman, D.C.,1987. Litter placement effects on microbial and organic matter dynamics in an agroecosystem. Ecology 68,425-433.
    Holtkamp, R., Kardol, P., van der Wal, A., Dekker, S.C., van der Putten, W.H., de Ruiter, P.C.,2008. Soil food web structure during ecosystem development after land abandonment. Applied Soil Ecology 39,23-34.
    Holtkamp, R., van der Wal, A., Kardol, P., van der Putten, W.H., de Ruiter, P.C., Dekker, S.C.,2011. Modelling C and N mineralisation in soil food webs during secondary succession on ex-arable land. Soil Biology and Biochemistry 43,251-260.
    Hooper, D.J.,1986. Extraction of free-living stages from soil, in:Southey, J.F. (Ed.), Laboratory methods for work with plant and soil nematodes. Her Majesty's Stationery Office, London, pp. 5-30.
    Hopkins, D.W., Shiel, R.S.,1996. Size and activity of soil microbial communities in long-term experimental grassland plots treated with manure and inorganic fertilizers. Biology and Fertility of Soils 22,66-70.
    Hu, C., Qi, Y.C.,2010. Effect of compost and chemical fertilizer on soil nematode community in a Chinese maize field. European Journal of Soil Biology 46,230-236.
    Hunt, H.W., Coleman, D.C., Ingham, E.R., Ingham, R.E., Elliott, E.T., Moore, J.C., Rose, S.L., Reid, C.P.P., Morley, C.R.,1987. The detrital food web in a shortgrass prairie. Biology and Fertility of Soils 3,57-68.
    Ingham, E.R., Horton, K.A.,1987. Bacterial, fungal and protozoan responses to chloroform fumigation in stored soil. Soil Biology and Biochemistry 19,545-550.
    Ingham, R.E.,1994. Nematodes, in:Weaver, R.W., Angle, S., Bottomley, P., Bezdicek, D., Smith, S., Tabatabai, A., Wollum, A. (Eds.), Methods of soil analysis. Part 2. Microbiological and biochemical properties. Society of America Book Series, Madison, WI, pp.459-490.
    Ingham, R.E., Trofymow, J.A., Ingham, E.R., Coleman, D.C.,1985. Interactions of bacteria, fungi, and their nematode grazers:effects on nutrient cycling and plant growth. Ecological Monographs 55, 119-140.
    Ingwersen, J., Poll, C., Streck, T., Kandeler, E.,2008. Micro-scale modelling of carbon turnover driven by microbial succession at a biogeochemical interface. Soil Biology and Biochemistry 40, 864-878.
    Jansch, S., Rombke, J., Didden, W.,2005. The use of enchytraeids in ecological soil classification and assessment concepts. Ecotoxicology and Environmental Safety 62,266-277.
    Kae, M., Hiroyuki, T., Makoto, Y., Hiroshi, H., Tomomi, N.,2002. The effects of cropping systems and fallow managements on microarthropod populations. Plant Production Science 5,257-265.
    Koehler, H.H.,1999. Predatory mites (Gamasina, Mesostigmata). Agriculture, Ecosystems and Environment 74,395-410.
    Krantz, G.W.,1978. A Manual of Acarology. Oregon State University Book Stores, Oregon.
    Kuikman, P.J., Jansen, A.G., Veen, J.A., Zehnder, A.J.B.,1990. Protozoan predation and the turnover of soil organic carbon and nitrogen in the presence of plants. Biology and Fertility of Soils 10,22-28.
    Li, Q., Jiang, Y, Liang, W.J., Lou, Y.L., Zhang, E.P., Liang, C.H.,2010. Long-term effect of fertility management on the soil nematode community in vegetable production under greenhouse conditions. Applied Soil Ecology 46,111-118.
    Li, Y.F., Cao, Z.P., Hu, C., Li, J., Yang, H.F.,2014. Response of nematodes to agricultural input levels in various reclaimed and unreclaimed habitats. European Journal of Soil Biology 60,120-129.
    Liang, W.J., Lou, Y, Li, Q., Zhong, S., Zhang, X.K., Wang, J.K.,2009. Nematode faunal response to long-term application of nitrogen fertilizer and organic manure in Northeast China. Soil Biology and Biochemistry 41,883-890.
    Liu, M.Q., Chen, X.Y., Qin, J.T., Wang, D., Griffiths, B., Hu, F.,2008. A sequential extraction procedure reveals that water management affects soil nematode communities in paddy fields. Applied Soil Ecology 40,250-259.
    Liu, Y, Hua, J., Jiang, Y, Li, Q., Wen, D.,2006. Nematode communities in greenhouse soil of different ages from Shenyang suburb. Helminthologia 43,51-55.
    Lucia, P.,2009.两种农业生态系统下土壤食物网的比较研究:蔬菜温室与冬小麦农田.中农业大学,北京.
    Mader, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., Niggli, U.,2002. Soil fertility and biodiversity in organic farming. Science 296,1694-1697.
    Mabuhay, J.A., Nakagoshi, N., Isagi, Y.,2006. Microbial responses to organic and inorganic amendments in eroded soil. Land Degradation and Development 17,321-332.
    Martens, R.,1995. Current methods for measuring microbial biomass C in soil:potentials and limitations. Biology and Fertility of Soils 19,87-99.
    McSorley, R, Frederick, J.J.,1999. Nematode population fluctuations during decomposition of specific organic amendments. Journal of Nematology 31,37.
    McSorley, R., Frederick, J.J.,2004. Effect of extraction method on perceived composition of the soil nematode community. Applied Soil Ecology 27,55-63.
    Minor, M.A., Norton, R.A.,2004. Effects of soil amendments on assemblages of soil mites (Acari: Oribatida, Mesostigmata) in short-rotation willow plantings in central New York. Canadian Journal of Forest Research 34,1417-1425.
    Minor, M.A., Volk, T.A., Norton, RA.,2004. Effects of site preparation techniques on communities of soil mites (Acari:Oribatida, Acari:Gamasida) under short-rotation forestry plantings in New York, USA. Applied Soil Ecology 25,181-192.
    Moore, J.C.,1994. Impact of agricultural practices on soil food web structure:theory and application. Agriculture, Ecosystems and Environment 51,239-247.
    Moore, J.C., de Ruiter, P.C.,1991. Temporal and spatial heterogeneity of trophic interactions within below-ground food webs. Agriculture, Ecosystems and Environment 34,371-397.
    Moore, J.C., de Ruiter, P.C.,2012. Soil food webs in agricultural soils, in:Cheeke, T., Coleman, D.C., Wall, D.H. (Eds.), Microbial Ecology in Sustainable Agroecosystems. the Chemical Rubber Company (CRC) Press, Boca Raton, pp.63-88.
    Moore, J.C., de Ruiter, P.C., Hunt, H.W.,1993. Influence of productivity on the stability of real and model ecosystems. Science 261,906-906.
    Moore, J.C., de Ruiter, P.C., Hunt, H.W., Coleman, D.C., Freckman, D.W.,1996. Microcosms and soil Ecology:Critical Linkages between Fields Studies and Modelling Food Webs. Ecology 77, 694-705.
    Moore, J.C., Walter, D.E., Hunt, H.W.,1988. Arthropod regulation of micro-and mesobiota in below-ground detrital food webs. Annual Review of Entomology 33,419-435.
    Moore, J.C., Zwetsloot, H.J.C., De Ruiter, P.C.,1990. Statistical analysis and simulation modelling of the belowground food webs of two winter wheat management practices. Netherlands journal of agricultural science 38,303-316.
    Mulder, C., Zwart, D., Van Wijnen, H.J., Schouten, A.J., Breure, A.M.,2003. Observational and simulated evidence of ecological shifts within the soil nematode community of agroecosystems under conventional and organic farming. Functional Ecology 17,516-525.
    Nahar, M.S., Grewal, P.S., Miller, S.A., Stinner, D., Stinner, B.R., Kleinhenz, M.D., Wszelaki, A., Doohan, D.,2006. Differential effects of raw and composted manure on nematode community, and its indicative value for soil microbial, physical and chemical properties. Applied Soil Ecology 34,140-151.
    Neher, D.A.,1999. Nematode communities in organically and conventionally managed agricultural soils. Journal of Nematology 31,142-154.
    Neher, D.A.,2001. Role of nematodes in soil health and their use as indicators. Journal of Nematology 33,161-168.
    Neher, D.A., Olson, R.K.,1999. Nematode communities in soils of four farm cropping management systems. Pedobiologia 43,430-438.
    Neutel, A.-M., Heesterbeek, J.A.P., de Ruiter, P.C.,2002. Stability in real food webs:weak links in long loops. Science 296,1120-1123.
    Neutel, A.-M., Heesterbeek, J.A.P., van de Koppel, J., Hoenderboom, G., Vos, A., Kaldeway, C., Berendse, F., de Ruiter, P.C.,2007. Reconciling complexity with stability in naturally assembling food webs. Nature 449,599-602.
    OFDC,1999有机食品及认证简介.OFDC出版社,南京.
    Oka, Y.,2010. Mechanisms of nematode suppression by organic soil amendments—a review. Applied Soil Ecology 44,101-115.
    Pankhurst, C.E., Kirkby, C.A., Hawke, B.G., Harch, B.D.,2002. Impact of a change in tillage and crop residue management practice on soil chemical and microbiological properties in a cereal-producing red duplex soil in NSW, Australia. Biology and Fertility of Soils 35,189-196.
    Phillips, C.T., Kuperman, R.G., Checkai, R.T.,1999. A rapid and highly-efficient method for extracting enchytraeids from soil. Pedobiologia 43,523-527.
    Pimm, S.L., Lawton, J.H., Cohen, J.E.,1991. Food web patterns and their consequences. Nature 350, 669-674.
    Postma-Blaauw, M.B., de Goede, R.G.M., Bloem, J., Faber, J.H., Brussaard, L.,2010. Soil biota community structure and abundance under agricultural intensification and extensification. Ecology 91,460-473.
    Postma-Blaauw, M.B., de Goede, R.GM., Bloem, J., Faber, J.H., Brussaard, L.,2012. Agricultural intensification and de-intensification differentially affect taxonomic diversity of predatory mites, earthworms, enchytraeids, nematodes and bacteria. Applied Soil Ecology 57,39-49.
    Pual, E.A., Harris, D., Klug, M., Ruess, R.,1999. The determination of microbial biomass, in: Robertson, G.P., Coleman, D.C., Bledsoe, C.S., Sollins, P. (Eds.), Standard soil methods for long-term ecological research. Oxford University Press, New York, pp.291-317.
    Rahmann, G.,2011. Biodiversity and organic farming:What do we know? vTI Agriculture and Forstery Research 3,189-208.
    Renker, C., Otto, P., Schneider, K., Zimdars, B., Maraun, M., Buscot, F.,2005. Oribatid mites as potential vectors for soil microfungi:study of mite-associated fungal species. Microbial Ecology 50,518-528.
    Ruan, W.B., Ren, T., Chen, Q., Zhu, X., Wang, J.G,2013. Effects of conventional and reduced N inputs on nematode communities and plant yield under intensive vegetable production. Applied Soil Ecology 66,48-55.
    Sanchez-Moreno, S., Ferris, H.,2007. Suppressive service of the soil food web:effects of environmental management. Agriculture, Ecosystems and Environment 119,75-87.
    Sakamoto, K., Oba, Y,1994. Effect of fungal to bacterial biomass ratio on the relationship between CO 2 evolution and total soil microbial biomass. Biology and Fertility of Soils 17,39-44.
    Salamon, J.A., Alphei, J., Ruf, A., Schaefer, M., Scheu, S., Schneider, K., Suhrig, A., Maraun, M.,2006. Transitory dynamic effects in the soil invertebrate community in a temperate deciduous forest: effects of resource quality. Soil Biology and Biochemistry 38,209-221.
    Sarathchandra, S.U., Ghani, A., Yeates, G.W, Burch, G., Cox, N.R.,2001. Effect of nitrogen and phosphate fertilisers on microbial and nematode diversity in pasture soils. Soil Biology and Biochemistry 33,953-964.
    Savin, M.C., G6rres, J.H., Neher, D.A., Amador, J.A.,2001. Uncoupling of carbon and nitrogen mineralization:role of microbivorous nematodes. Soil Biology and Biochemistry 33,1463-1472.
    Schaefer, M., Schauermann, J.,1990. The soil fauna of beech forests:comparison between a mull and a moder soil. Pedobiologia 34,299-314.
    Scheu, S., Parkinson, D.,1994. Changes in bacterial and fungal biomass C, bacterial and fungal biovolume and ergosterol content after drying, remoistening and incubation of different layers of cool temperate forest soils. Soil Biology and Biochemistry 26,1515-1525.
    Scheu, S., Schaefer, M.,1998. Bottom-up control of the soil macrofauna community in a beechwood on limestone:manipulation of food resources. Ecology 79,1573-1585.
    Schroter, D., Wolters, V., de Ruiter, P.C.,2003. C and N mineralisation in the decomposer food webs of a European forest transect. Oikos 102,294-308.
    Shannon, C.E., Weaver, W.,1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL.
    Shannon, D., Sen, A.M., Johnson, D.B.,2002. A comparative study of the microbiology of soils managed under organic and conventional regimes. Soil Use and Management 18,274-283.
    Sohlenius, B., Sandor, A.,1987. Vertical distribution of nematodes in arable soil under grass (Festuca pratensis) and barley (Hordeum distich um). Biology and Fertility of Soils 3,19-25.
    Spaull, V.W., Braithwaite, J.M.C.,1979. A comparison of methods for extracting nematodes from soil and roots of sugarcane. Proceedings of the South African Sugar Technologists Association Annual Congress,103-107.
    Spedding, T.A., Hamel, C., Mehuys, GR., Madramootoo, C.A.,2004. Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biology and Biochemistry 36,499-512.
    Strickland, M.S., Rousk, J.,2010. Considering fungal:bacterial dominance in soils-Methods, controls, and ecosystem implications. Soil Biology and Biochemistry 42,1385-1395.
    Tiedje, J.M., Asuming-Brempong, S., Nusslein, K., Marsh, T.L., Flynn, S.J.,1999. Opening the black box of soil microbial diversity. Applied Soil Ecology 13,109-122.
    Tu, C., Ristaino, J.B., Hu, S.,2006. Soil microbial biomass and activity in organic tomato farming systems:Effects of organic inputs and straw mulching. Soil Biology and Biochemistry 38, 247-255.
    van Diepeningen, A.D., de Vos, O.J., Korthals, GW., van Bruggen, A.H.C.,2006. Effects of organic versus conventional management on chemical and biological parameters in agricultural soils. Applied Soil Ecology 31,120-135.
    Vereijken, P.,1986. From conventional to integrated agriculture. Netherlands journal of agricultural science 34,387-393.
    Vereijken, P.,1989. From integrated control to integrated farming, an experimental approach. Agriculture, Ecosystems and Environment 26,37-43.
    Verhoef, H.A., Brussaard, L.,1990. Decomposition and nitrogen mineralization in natural and agroecosystems:the contribution of soil animals. Biogeochemistry 11,175-211.
    Vonk, J.A., Breure, A.M., Mulder, C.,2013. Environmentally-driven dissimilarity of trait-based indices of nematodes under different agricultural management and soil types. Agriculture, Ecosystems and Environment 179,133-138.
    Vreeken-Buijs, M.J., Geurs, M., de Ruiter, PC., Brussaard, L.,1994. Microathropod biomass-C dynamics in the belowground food webs of two arable forming systems. Agriculture, Ecosystems and Environment 51,161-170.
    Walter, D.E., Proctor, H.C.,1999. Mites:Ecology, Evolution, and Behaviour. University of New South Wales Press, Sydney.
    Wang, K.H., Sipes, B.S., Schmitt, D.P.,2001. Suppression of Rotylenchulus reniformis by Crotalaria juncea, Brassica napus, and Tagetes erecta. Nematropica 31,235-249.
    Winter, J.P., Behan-Pelletier, V.M.,2007. Microarthropods, in:Carter, M.R., Gregorich, E.G (Eds.), Soil sampling and Methods of Analysis. CRC Press, Boca Raton, pp.399-414.
    Wolff, A., Paul, J.P., Martin, J.L., Bretagnolle, V,2002. The benefits of extensive agriculture to birds: the case of the little bustard. Journal of Applied Ecology 38,963-975.
    Wu, S.M., Hu, D.X., Ingham, E.R.,2005. Comparison of soil biota between organic and conventional agroecosystems in Oregon, USA. Pedosphere 15,395-403.
    Yeates, G.W.,2003. Nematodes as soil indicators:functional and biodiversity aspects. Biology and Fertility of Soils 37,199-210.
    Yeates, G.W., Bardgett, R.D., Cook, R., Hobbs, P.J., Bowling, P.J., Potter, J.F.,1997. Faunal and microbial diversity in three Welsh grassland soils under conventional and organic management regimes. Journal of Applied Ecology 34,453-470.
    Yeates, G.W., Bongers, T.,1999. Nematode diversity in agroecosystems. Agriculture, Ecosystems and Environment 74,113-135.
    Yeates, G.W, Bongers, T., De Goede, R.G.M., Freckman, D.W., Georgieva, S.S.,1993. Feeding habits in soil nematode families and genera-an outline for soil ecologists. Journal of Nematology 25, 315-331.
    Yussefi, M., Willer, H.,2007. Organic farming worldwide 2007:overview and main statistics, in:Willer, H., Yussefi, M. (Eds.), The World of Organic Agriculture-Statistics and Emerging Trends 2007. International Federation of Organic Agriculture Movements IFOAM, Bonn, pp.9-16.
    Zhang, X.K., Li, Q., Zhu, A.N., Liang, W.J., Zhang, J.B., Steinberger, Y.,2012. Effects of tillage and residue management on soil nematode communities in North China. Ecological Indicators 13, 75-81.
    Zwart, K.B., Burgers, S.L.G.E., Bloem, J., Bouwman, L.A., Brussaard, L., Lebbink, G., Didden, W.A.M., Marinissen, J.C., Vreeken-Buijs, M.J., de Ruiter, P.C.,1994. Population dynamics in the belowground food webs in two different agricultural systems. Agriculture, Ecosystems and Environment 51,187-198.
    卜照义,1990.净月潭地区土壤螨类及其群落生态学研究.生态学报10,355-361.
    万青,李季,曹志平,李钰飞,2014.温室不同种植模式对土壤线虫群落结构的影响.中国农业大学学报19,107-117.
    尹文英,1992.中国亚热带土壤动物.科学出版社,北京.
    尹文英,1998.中国土壤动物检索图鉴.科学出版社,北京.
    方新,王志学,周建树,2005.根结线虫生防菌剂介绍.微生物学杂志25,111-112.
    王继红,刘景双,于君宝,王金达,2004.氮磷肥对黑土玉米农田生态系统土壤微生物量碳、氮的影响.水土保持学报18,35-38.
    王长永,王光,万树文,钦佩,2007.有机农业与常规农业对农田生物多样性影响的比较研究进展.生态与农村环境学报23,75-80.
    付荣恕,苗明升,2001.泰山地区土壤甲螨的群落组成和季节变动.动物学报47,13-18.
    古曦,2009.山东寿光日光温室和农田土壤中螨类的群落结构.中国农业大学,北京.
    宁应之,沈韫芬,1996.珞珈山森林土壤原生动物生态学研究及土壤原生动物定量方法探讨.动物学研究17,225-232.
    李季,苏芳,2002.日光温室无污染蔬菜生产定位试验研究.中国生态农业学报10,123-125.
    沈静,王慧芙,1999.北京小龙门森林生态系统定位站土壤螨类的垂直分布和季节变动.蛛形学报8,111-117.
    辛颖,2011.线虫群落对不同农作措施及土壤环境变化的响应.中国农业大学,北京.
    林英华,张夫道,杨学云,宝德俊,石孝均,王胜佳,王伯仁,2004.农田土壤动物与土壤理化性质关系的研究.中国农业科学37,871-877.
    胡敦孝,吴珊眉,1995.不同施肥条件下土壤螨群落结构及其变化的研究.北京农业大学学报21,417-423.
    胡诚,2006.不同施肥条件下土壤线虫群落结构及其生态功能研究.中国农业大学,北京.
    胡诚,曹志平,叶钟年,吴文良,2006.不同的土壤培肥措施对低肥力农田土壤微生物生物量碳的影响.生态学报26,808-814.
    徐阳春,沈其荣,冉炜,2002.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响.土壤学报39,89-96.
    曹志平,2007.土壤生态学.化学工业出版社.
    曹志平,2013.生态农业未来的发展方向.中国生态农业学报21,29-38.
    曹志平,李德鹏,韩雪梅,2011.土壤食物网中的真菌/细菌比率及测定方法.生态学报31,4741-4748.
    曹志平,周乐听,韩雪梅,2010.引入小麦秸秆抑制番茄根结线虫病.生态学报30,765-773.
    曹志平,胡诚,叶钟年,吴文良,2006.不同土壤培肥措施对华北高产农田土壤微生物生物量碳的影响.生态学报26,1486-1493.
    曹志平,陈国康,张凯,吴文良,2005.不同土壤培肥措施对华北高产农田原生动物丰度的影响.生态学报25,2992-2996.
    梁丽娜,2009.有机、无公害和常规温室蔬菜生产土壤硝态氮累积和微生物学特性的季节变化.中国农业大学,北京.
    梁丽娜,李季,杨合法,解永利,徐智,张陇利,2009.不同蔬菜生产模式对日光温室土壤质量的影响.农业工程学报25,186-191.
    董道峰,胡诚,曹志平,2008.不同农业管理措施对土壤线虫的影响.中国生态农业学报16,80-85.
    乔玉辉,吴文良,徐芹,陈锴,2001.华北盐渍化改造区蚯蚓种群次生演替与生产投入的关系.应用生态学报12,1109-1113.
    刘益仁,郁洁,李想,徐阳春,沈其荣,2012.有机无机肥配施对麦-稻轮作系统土壤微生物学特性的影响.农业环境保护31,989-994.
    吴东辉,张柏,陈鹏,2005.吉林省中西部平原区土壤螨类群落结构特征.动物学报51,401-412.
    吴颖哲,2006.土壤原生动物测定方法研究.中国农业大学,北京.
    张四海,2012.引入纤维素碳源对土壤生物及土壤食物网的影响.中国农业大学,北京.
    张卫信,陈迪马,赵灿灿,2007.蚯蚓在生态系统中的作用.生物多样性15,142-153.
    张国,2011.不同农田固碳模式下的土壤有机碳和食物网的变化.中国农业大学,北京.
    张宝贵,1995.土壤无脊椎动物在土壤肥力中的作用,in:张福锁,龚元石,李晓林(Eds.),土壤与植物营养研究新动态.中国农业大学出版社,北京,pp.82-97.
    杨合法,范聚芳,戈志奇,沈广成,吕润海,李季,2009.有机,无公害及常规生产模式番茄病害 及防治效果比较研究.中国生态农业学报17,933-937.
    郑春燕,2011.不同农业措施下土壤螨群落结构的变化.中国农业大学,北京.
    郑长英,胡敦孝,李维炯,2001.农田土壤螨群落变化与环境因素关系的研究.中国生态农业学报9,52-53.
    陈云峰,2008.北方温室蔬菜土壤食物网研究.中国农业大学,北京.
    陈云峰,胡诚,李双来,乔艳,2011.农田土壤食物网管理的原理与方法.生态学报31,286-292.
    陈云峰,唐政,李慧,韩雪梅,李钰飞,胡诚,2014.基于土壤食物网的复杂性—稳定性关系研究进展.生态学报34,2173-2186.
    陈云峰,曹志平,2008.土壤食物网:结构,能流及稳定性.生态学报28,5055-5064.
    陈云峰,曹志平,2010.甲基溴消毒对番茄温室土壤食物网的抑制.生态学报30,6862-6871.
    陈国康,2006.甲基溴替代技术条件下温室土壤生物群落特征及地下食物网研究.中国农业大学,北京.
    韩雪梅,2010.施肥对土壤食物网的影响及螨和镰刀菌群落结构分析.中国农业大学,北京.
    韩雪梅,李丹丹,梁子安,陈云峰,胡诚,2013.北方常见农业土地利用方式对土壤螨群落结构的影响.生态学报33,5026-5034.
    鲍士旦,2005.土壤农化分析.中国农业出版社,北京.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700