氟磺胺草醚对土壤微生物多样性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氟磺胺草醚主要用于防除大豆田阔叶杂草。然而,氟磺胺草醚在土壤中在土壤中半衰期较长,易对后茬作物产生影响。除草剂大量残留易导致土壤质量的下降。土壤微生物的变化可以直接反映土壤生态系统的健康状况。本研究中,通过室内培养和田间调查相结合的方式,采用土壤生态环境评价的微生物指标体系,从微生物呼吸作用、微生物量碳、群落结构和功能多样性等阐述氟磺胺草醚影响土壤生态环境的微生物学机制。主要研究结果如下:
     1、利用QuEChERS提取结合超高液相色谱-串联四级杆质谱法(UPLC-MS/MS),检测氟磺胺草醚在土壤中残留量。样品经乙腈(含0.5%甲酸)提取,N-丙基乙二胺(PSA)净化,UPLC-MS/MS检测。在5min内实现氟磺胺草醚的检测。在0.05mg kg-1~5mg kg-1范围内,此方法显示了良好的线性(r=0.9945)。在0.25mg kg-1、10mg kg-1、100mg kg-1三个水平上的平均回收率为91.5~100.3%,变异系数为5.9~11.7%。
     2、室内培养实验,选择2种土壤(粉砂质壤土和黑土),添加3种浓度的氟磺胺草醚(推荐剂量、10倍推荐剂量、100推荐剂量),培养箱中恒温培养,样品采集时间7天、15天、30天、60天和90天。实验结果表明,培养过程中,氟磺胺草醚降解呈现出先快后慢的趋势。在2种土壤中,高浓度氟磺胺草醚的施用(375mg kg-1;T100),显著性抑制了土壤微生物总体活性,土壤基础呼吸、诱导呼吸、微生物量碳及土壤总菌PLFA,而且抑制了土壤总细菌,总真菌,革兰氏阴性菌(GN)和革兰氏阳性菌(GP)。同时,氟磺胺草醚显著改变了2种土壤的GN/GP和bacteria/fungi(B/F),显著提高了2种土壤的压力指数。然而,高浓度氟磺胺草醚的处理却增加了土壤表征细菌的氧化代谢的能力。主成分分析(PCA)结果分析表明,氟磺胺草醚尤其是高浓度(375mg kg-1;T100)下,严重改变了土壤微生物的群落结构和功能多样性(Shannon, McIntoshand Simpson),而且整个培养时间内,土壤微生物的群落结构和功能多样性未恢复。而且,高浓度氟磺胺草醚处理(37.5mg kg-1;375mg kg-1),显著抑制2种土壤固氮菌nifH的基因丰度。且375mg kg-1处理下,固氮菌nifH的基因丰度一直被被抑制。
     3、田间调查实验,样品采自连续施用氟磺胺草醚的东北大豆连作区。氟磺胺草醚施药年限为3年、5年和10年,推荐使用量是375g a.i. hm-2。随着氟磺胺草醚施药年限的增加,微生物量碳和总PLFA显著下降。施药历史10年的土壤中,GN、GN/GP和真菌显著增加;GP和bacteria/fungi(B/F)显著低于对照。PCA分析结果表明即使氟磺胺草醚推荐剂量下,随着氟磺胺草醚施用年限的增加,同样改变了土壤微生物的群落结构。然而,氟磺胺草醚不同施药历史的土壤中,微生物功能多样性没有改变。
Fomesafen, as selective post-emergence herbicide, are used agriculturally for broad-leaved weedscontrol in soybean field in China. However, fomesafen degrades slowly in soils and has been linked tocrop damage. The long-term pesticide residues lead to decline of the quality of soil. The changes ofmicrobial diversity directly reflect the health of the soil ecosystem. In this work, I focus on cultureexperiments, field investigation of contaminated soil and using microbial indicators of system of soilhealth evaluation, and the project clarify the microbiology mechanism of long residual herbicidefomesafen on soil health from the intensity of soil respiration, soil microbes microbial biomass carbon,community structure and functional diversity. The results are as follows:
     1: An effective and rapid analytical method for the determination of fomesafen residues in soilwas developed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS)using the modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction concept.The fomesafen was extracted from soil matrices with0.5%(V/V) formic acid aqueous solution andacetonitrile then cleaned by dispersive solid phase extraction (dSPE) with PSA. The determination ofthe fomesafen was achieved within a5minute run time by using an UPLC C18column connected to anelectrospray ionization source (ESI, negative ion mode). The method showed excellent linearity (r=0.9945). The mean recoveries from soil matrices ranged from91.5to100.3%, with intra-day relativestandard deviations (RSDr) in the range of5.9~11.7%. The proposed method is a useful tool in routinefomesafen residue monitoring in soil.
     2: Culture experiments was conducted to evaluate the impact of different concentrations offomesafen on [1-fold,10-fold, and100-fold of the recommended field rate (T1, T10, T100)] on soilmicrobial activity, the structure of the soil microbial community, and functional diversity of the soilmicrobial community using the soil microbial respiration, microbial biomass, phospholipid fatty acids(PLFAs), community level physiological profiles (CLPPs), and real-time PCR in two different soils.Soil sampling was performed after7,15,30,60, and90days of application to determine the fomesafenconcentration. Fomesafen degradation appeared to consist of a rapid initial phase and a slower or morestagnant second phase. Our results indicate that applying100times the recommended dose offomesafen (T100) adversely affects soil microbial activity and stresses soil microbial communities asreflected by the reduced respiratory quotient (qCO2, QR). The PLFA analysis showed that high levels offomesafen treatment (T100) decreased the total amount of PLFAs and both bacterial (bothGram-positive (GP) bacteria and Gram-negative (GN) bacteria) and fungal biomass but increased themicrobial stress level. However, the BIOLOG results are not consistent with our other results. Theaddition of fomesafen significantly increased the average well color development, substrate utilization,and the functional diversity index (Shannon, McIntosh and Simpson). Additionally, the abundance ofthe nifH (N2-fixing bacteria) gene was reduced in the presence of high concentrations of fomesafen (T100). Taken together, these results suggest that the addition of fomesafen can alter the microbialcommunity structure and functional diversity of the soil, and these parameters do not recover even aftera90-day incubation period.
     3: Fomesafen has been widely used for the soybean production of China, but less information isavailable on the possible risk of long-term application of fomesafen. Soil samples were collected fromthe plots having been received375g active component of fomesafen/ha per year for3,5and10yearsin a continuously cropped soybean field of Northeast China with their microbial biomass, the structureof the soil microbial community, and functional diversity of the soil microbial community analyzed byphospholipid fatty acids (PLFAs) and community level physiological profiles (CLPPs). The microbialbiomass and total PLFA were suppressed with the increasing year of fomesafen application. Analysis ofthe PLFA profiles revealed that Gram-negative (GN), the GN/GP ratio and as well as total fungi in soilwith3,5and10year history of fomesafen application were much higher than blank soil. However, thebacterial biomass, Gram-positive (GP) bacteria and bacteria/fungi (B/F) had a significant decrease in theplot having been received fomesafen for10years. A principal component analysis (PCA) of the PLFAsrevealed that fomesafen treatment significantly shifted the microbial community structure. However,regarding AWCD, Shannon, McIntosh and Simpson, no clear differences were observed betweenfomesafen treatments and controls.
引文
[1]鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,2000:25-108
    [2]陈中云,闵航,吴伟祥,陈美慈,张夫道,赵兼强.农药污染对水稻田土壤反硝化细菌种群数量及其活性的影响[J].应用生态学报,2003,14(10):1765-1769.
    [3]陈中云,闵航,张夫道,赵秉强.农药污染对水稻田土壤硫酸盐还原菌种群数量及其活性影响的研究[J].土壤学报,2004,41(1):97-102
    [4]丁伟,杨隆华,程茁,戴航宇.氟磺胺草醚对大豆根瘤固氮酶活性及光合速率的影响[J].作物杂志,2010,4:81-84.
    [5]郭江峰,陆贻通,孙锦荷.氟磺胺草醚在花生和大豆田中的残留动态[J].农业环境保护,2000,19(2):82-84.
    [6]韩雪,孙龙,仕相林,尹晓玉,文景芝.种衣剂对大豆根际固氮菌多样性的影响[J].中国油料作物学报,2010,32(1):132-135.
    [7]焦晓丹,吴凤芝.土壤微生物多样性研究方法的进展[J].土壤通报,2005,35(6):789-792.
    [8]开美玲,郭江峰,金仁耀,徐步进.氟磺胺草醚在模拟水生生态系统中的行为特征[J].农业环境科学学报,2005,24(3):486-489.
    [9]李永山,范巧兰,陈耕,柴永峰,张冬梅,李燕娥.利用PLFA方法研究转Bt基因棉花对土壤微生物群落结构变化的影响[J].棉花学报,2009,21(6):503-507.
    [10]李玉侠,侯振中,赵树臣,管延杰,陈爽,韩玉.氟磺胺草醚致突变性的研究[J].黑龙江畜牧兽医,2012,23:124-125.
    [11]廖敏,张海军,谢晓梅.拟除虫菊酯类农药残留降解菌产气肠杆菌的分离,鉴定及降解特性研究[J].环境科学,2009,30(8):2445-2451.
    [12]林启美,吴玉光,刘焕龙.熏蒸法测定土壤微生物量碳的改进[J].生态学杂志,1999,18(2):63-66.
    [13]刘朴方.农肥和化肥施用对大豆根瘤菌和土壤固氮菌多样性的影响[刘朴方硕士学位论文].哈尔滨:东北农业大学,2012.
    [14]刘文娜,吴文良,王秀斌,王明新,毛文峰.不同土壤类型和农业用地方式对土壤微生物量碳的影响[J].植物营养与肥料学报,2006,12(3):406-411.
    [15]刘友香,王险峰.氟磺胺草醚药害原因分析与处理[J].现代化农业,2010,(12):8-9.
    [16]陆贻通,朱有为.二苯醚类除草剂在土壤中的降解动态及作物上的残留[J].浙江农业大学学报,1996,22(5):485-488.
    [17]罗海峰,齐鸿雁,张洪勋.乙草胺对农田土壤细菌多样性的影响[J].微生物学报,2004,44(4):519-522.
    [18]马艳军.抗三种除草剂大豆根瘤菌的培育及其根瘤固氮酶活性的研究[马艳军硕士学位论文].哈尔滨:东北农业大学,2009
    [19]牛红榜,刘万学,万方浩.紫茎泽兰(Ageratina adenophora)入侵对土壤微生物群落和理化性质的影响[J].生态学报,2007,7:3051-3060.
    [20]彭少麟,李跃林,任海,赵平.全球变化条件下的土壤呼吸效应[J].地球科学进展,2002,17(5):705-713.
    [21]沈标,李顺鹏,赵硕伟,刘进军.氯苯,对硝基酚对土壤生物活性的影响[J].土壤学报,1997,34(3):309-314.
    [22]沈世华,荆玉祥.中国生物固氮研究现状和展望[J].科学通报,2003,48(6):535-540.
    [23]盛宇,徐军,刘新刚,董丰收,张昌朋,路彩红,郑永权.氯嘧磺隆对土壤微生物群落结构的影响[J].应用生态学报,2010,21(11):2992-2996.
    [24]时鹏,高强,王淑平,张妍.玉米连作及其施肥对土壤微生物群落功能多样性的影响[J].生态学报,2010,30(22):6173-6182.
    [25]时亚南,张奇春,王光火,郭海超.不同施肥处理对水稻土微生物生态特性的影响[J].浙江大学学报,农业与生命科学版,2007,33(5):551-556.
    [26]孙军德,赵春燕,曲宝成,李飒铖.氯化苦熏蒸土壤对微生物种群数量的影响[J].土壤通报,2005,36(2):283-285.
    [27]滕春红,陶波.氯嘧磺隆对土壤微生物类群及土壤呼吸强度的影响[J].土壤通报,2008,39(2):384-387.
    [28]汪业勖,赵士洞.陆地碳循环研究中的模型方法[J].应用生态学报,1998,9(6):658-664.
    [29]汪业勖,赵士洞,牛栋.陆地土壤碳循环的研究动态[J].生态学杂志,1999,18(5):29-35.
    [30]王军.莠去津对土城微生物群落结构及分子多样性的影响[王军博士学位论文].泰安:山东农业大学,2012
    [31]王秀国.杀菌剂多菌灵高频投入对土壤微生物群落的影响及其生物修复[王秀国博士学位论文].杭州:浙江大学,2009.
    [32]吴金水,林启美,黄巧云,肖和艾.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006:
    [33]吴秋彩,刘艳,王晓萍.氟磺胺草醚降解菌F-12的分离鉴定及降解特性研究[J].中国农学通报,2012,28(12):216-222.
    [34]吴愉萍.基于磷脂脂肪酸(PLFA)分析技术的土壤微生物群落多样性研究[吴愉萍博士学位论文].杭州:浙江大学,2009.
    [35]席劲瑛,胡洪营,钱易. Biolog方法在环境微生物群落研究中的应用[J].微生物学报,2003,43(1):138-141.
    [36]谢红薇,颜冬冬,毛连纲,吴篆芳,郭美霞,王秋霞,李园,曹坳程.熏蒸剂对土传病原菌的防效和对土壤微生物群落的影响[J].中国农学通报,2012,28(12):223-229.
    [37]谢文军,周健民,王火焰.重金属Cu2+, Cd2+及氯氰菊酯对不同施肥模式土壤微生物功能多样性的影响[J].环境科学,2008,29(10):2919-2924.
    [38]徐谦.我国化肥和农药非点源污染状况综述[J].农村生态环境,1996,12(2):39-43.
    [39]闫雷,于淼,张景欣,李淑芹,侯利园,秦智伟.三种杀菌剂对土壤细菌群落多样性影响[J].东北农业大学学报,2013,44(8):29-33.
    [40]杨峰山,刘亮,刘春光,李云龙,于慧颖,宋福强,耿贵.除草剂氟磺胺草醚降解菌FB8的分离鉴定与土壤修复[J].微生物学报,2011,51(9):1232-1239.
    [41]杨会青,孔祥清,王智慧,崔战利.四种除草剂对根瘤菌、AMF等土壤微生物的影响[J].微生物学通报,2009,36(4):511-514.
    [42]杨隆华,程茁,丁伟.氟磺胺草醚对大豆根瘤及产量的影响[J].科技信息,2010,(9):434-435.
    [43]杨校华,顾刘金,黄雅丽,陈琼姜,朱勇,徐娟,孙建析,吴立仁,陈日萍,张幸.氟磺胺草醚的亚慢性经口毒性研究[J].毒理学杂志,2009,(6):512-513.
    [44]杨永华,华晓梅.农药污染对土壤微生物群落功能多样性的影响[J].微生物学杂志,2000,20(2):23-25.
    [45]姚斌,汪海珍,徐建民,张超兰.除草剂对水稻土微生物的影响[J].环境科学学报,2004,24(2):349-354.
    [46]姚槐应.土壤微生物生态学及其实验技术[M].科学出版社,2006:26
    [47]姚晓华,闵航,袁海平.啶虫脒污染下土壤微生物多样性[J].生态学报,2006,26(9):3074-3080.
    [48]于黎莎,程新胜.甲霜灵根施对土壤硝化作用的抑制效应[J].烟草科技,2001,(8):42-44.
    [49]虞云龙,盛国英,傅家谟,宋凤鸣,郑重,葛秀春,陈鹤鑫,樊德方.一株农药降解菌的分离与鉴定[J].华南理工大学学报:自然科学版,1996,24(1):183-187.
    [50]张金屯.全球气候变化对自然土壤碳、氮循环的影响[J].地理科学,1998,18(5):463-71.
    [51]张清明.除草剂氟磺胺草醚对土壤酶、微生物与蚯蚓的生态毒理研究.[张清明博士学位论文].泰安:山东农业大学,2012
    [52]张盈,李晓刚,徐军,董丰收,刘新刚,郑永权.分散固相萃取-超高效液相色谱-串联质谱联用快速检测大豆及土壤中氟磺胺草醚残留[J].环境化学,2012,31(9):1399-1404.
    [53]章家思,蔡燕飞,高爱霞,朱丽霞.土壤微生物多样性实验研究方法概述[J].土壤,2004,36(4):346-350.
    [54]郑景瑶,王百慧,岳中辉,郭立波,田宇,刘宝林.氟磺胺草醚对黑土微生物数量及酶活性的影响[J].植物保护学报,2013,40(005):468-472.
    [55]郑丽萍,龙涛,林玉锁,于赐刚,刘燕,祝欣. Biolog-ECO解析有机氯农药污染场地土壤微生物群落功能多样性特征[J].应用与环境生物学报,2013,19(5):759-765.
    [56]仲维科,孙梅心.我国食品的农药污染问题[J].农药,2000,39(7):1-4.
    [57]周博如,王志英,王会研,田艳丽.阿特拉津对土壤微生物类群及土壤呼吸强度的影响[J].东北林业大学学报,2009,(7):82-83.
    [58]朱鲁生,林爱军,王军,程翠花.二甲戊乐灵降解细菌的分离及降解特性[J].环境科学,2005,26(1):145-149.
    [59]于峰,姚宝玉.氟磺胺草醚的毒性研究[J].农药,1997,36(7):28-9.
    [60] Allison S.D., Wallenstein M.D., Bradford M.A. Soil-carbon response to warming dependent onmicrobial physiology [J]. Nature Geoscience,2010,3:336-340.
    [61] Anderson T.H, Domsch K, Determination of ecophysiological maintenance carbon requirements ofsoil microorganisms in a dormant state [J]. Biology and Fertility of Soils,1985,1(2):81-9.
    [62] Artursson V, Finlay R D, Jansson J K. Interactions between arbuscular mycorrhizal fungi andbacteria and their potential for stimulating plant growth [J]. Environmental Microbiology,2006,8,1-10.
    [63] B th E, Díaz-Ravi a M, Frosteg rd, Campbell C.D. Effect of metal-rich sludge amendments onthe soil microbial community [J]. Applied and Environmental Microbiology,1998,64(1):238-45.
    [64] B hme L, Langer U, B hme F. Microbial biomass, enzyme activities and microbial communitystructure in two European long-term field experiments [J]. Agriculture, Ecosystems&Environment,2005,109(1):141-52.
    [65] Bardgett R.D, Hobbs P.J, Frosteg RD. Changes in soil fungal: bacterial biomass ratios followingreductions in the intensity of management of an upland grassland [J]. Biology and Fertility of Soils,1996,22(3):261-4.
    [66] Beigel C, Charnay M.P, Barriuso E. Degradation of formulated and unformulated triticonazolefungicide in soil: effect of application rate [J]. Soil Biology and Biochemistry,1999,31(4):525-34.
    [67] Bending G.D, Lincoln S.D. Inhibition of soil nitrifying bacteria communities and their activities byglucosinolate hydrolysis products [J]. Soil Biology and Biochemistry,2000,32(8):1261-9.
    [68] Bending G.D, Lincoln S.D., Edmondson R.N. Spatial variation in the degradation rate of thepesticides isoproturon, azoxystrobin and diflufenican in soil and its relationship with chemical andmicrobial properties [J]. Environmental Pollution,2006,139(2):279-87.
    [69] Bossio D, Fleck J A, Scow K M, Fujii R. Alteration of soil microbial communities and waterquality in restored wetlands J. Soil Biology and Biochemistry,2006,38,1223-1233.
    [70] Bossio D, Scow K. Impacts of carbon and flooding on soil microbial communities: phospholipidfatty acid profiles and substrate utilization patterns [J]. Microbial Ecology,1998,35(3-4):265-78.
    [71] Bossio D, Scow K, Gunapala N, Graham K. Determinants of soil microbial communities: effects ofagricultural management, season, and soil type on phospholipid fatty acid profiles [J]. MicrobialEcology,1998,36(1):1-12.
    [72] Bouquard C, Ouazzani J, Prome J, Michel-Briand Y, Plesiat P. Dechlorination of Atrazine by aRhizobium sp. Isolate [J]. Applied and Environmental Microbiology,1997,63(3):862-6.
    [73] Brock B.G. Weed control versus soil erosion control [J]. Journal of Soil and Water Conservation,1982,37(2):73-6.
    [74] Busse M.D, Ratcliff A.W, Shestak C.J, Powers R.F. Glyphosate toxicity and the effects oflong-term vegetation control on soil microbial communities [J]. Soil Biology and Biochemistry,2001,33(12):1777-89.
    [75] Caquet T, Deydier-Stephan L, Lacroix G, Rouzic B.L, Lescher-Moutou F. Effects of fomesafen,alone and in combination with an adjuvant, on plankton communities in freshwater outdoor pondmesocosms [J]. Environmental toxicology and chemistry,2005,24(5):1116-24.
    [76] Carney K.M, Hungate B.A, Drake B.G, Megonigal J.P. Altered soil microbial community atelevated CO2leads to loss of soil carbon [J]. Proceedings of the National Academy of Sciences of theSciences of the United of America,2007,104:4990-4995.
    [77] Carrasco L, Gattinger A, Flie bach A, Roldán A, Schloter M, Caravaca F. Estimation by PLFA ofmicrobial community structure associated with the rhizosphere of Lygeum spartum and Piptatherummiliaceum growing in semiarid mine Tailings [J]. Microbial ecology,2010,60:265-271.
    [78] Conrad R. The global methane cycle: recent advances in understanding the microbial processesinvolved [J]. Environmental Microbiology Reports,2009,1(5):285-92.
    [79] Cortez J, Bouché M. Decomposition of Mediterranean leaf litters by Nicodrilus meridionalis(Lumbricidae) in laboratory and field experiments [J]. Soil Biology and Biochemistry,2001,33,2023–2035
    [80] Cosentino D, Chenu C, Le Bissonnais Y. Aggregate stability and microbial community dynamicsunder drying–wetting cycles in a silt loam soil [J]. Soil Biology and Biochemistry,2006,38(8):2053-62.
    [81] Crouzet O, Batisson I, Besse-Hoggan P, Bonnemoy F, Bardot C, Poly F, Bohatier J, Mallet C.Response of soil microbial communities to the herbicide mesotrione: a dose-effect microcosm approach[J]. Soil Biology and Biochemistry,2010,42(2):193-202.
    [82] Curtis T.P, Sloan W.T, Scannell J.W. Estimating prokaryotic diversity and its limits [J]. Proceedingsof the National Academy of Sciences,2002,99(16):10494-9.
    [83] Cycon M, Piotrowska-Seget Z, Kaczynska A, Kozdr J.J. Microbiological characteristics of a sandyloam soil exposed to tebuconazole and λ-cyhalothrin under laboratory conditions [J]. Ecotoxicology,2006,15(8):639-46.
    [84] Cycon M, Wojcik M, Borymski S, Piotrowska-Seget Z. A broad-spectrum analysis of the effects ofteflubenzuron exposure on the biochemical activities and microbial community structure of soil [J].Journal of environmental management,2012,108:27-35.
    [85] Cycon M, Wojcik M, Borymski S, Piotrowska-Seget Z. Short-term effects of the herbicidenapropamide on the activity and structure of the soil microbial community assessed by themulti-approach analysis [J]. Applied Soil Ecology,2013,66:8-18.
    [86] Derk R, Karns J, Sexstone A. Detection of a methylcarbamate degradation gene in agriculturalsoils using PCR amplification of bacterial community DNA [J]. Communications in soil science andplant analysis,2003,34(3-4):393-406.
    [87] Diacono M, Montemurro F. Long-term effects of organic amendments on soil fertility [M].Springer Netherlands,2011,761-786
    [88] Dilly O, Munch J C. Ratios between estimates of microbial biomass content and microbial activityin soils [J]. Biology and Fertility of Soils,1998,27,374–379.
    [89] Dutta M, Sardar D, Pal R, Kole R.K. Effect of chlorpyrifos on microbial biomass and activities intropical clay loam soil [J]. Environmental monitoring and assessment,2010,160(1-4):385-91.
    [90] Enwall K, Philippot L, Hallin S. Activity and composition of the denitrifying bacterial communityrespond differently to long-term fertilization [J]. Applied and Environmental Microbiology,2005,71(12):8335-43.
    [91] Falkowski P.G, Fenchel T, Delong E.F. The microbial engines that drive Earth's biogeochemicalcycles [J]. Science,2008,320(5879):1034-9.
    [92] Fang H, Tang F.F, Zhou W, Cao Z.Y, Wang D.D, Liu K.L, Wu X.W, Yu Y.L. Persistence of repeatedtriadimefon application and its impact on soil microbial functional diversity [J]. Journal ofEnvironmental Science and Health, Part B,2012,47(2):104-10.
    [93] Fang H, Yu Y, Wang X, Chu X, Pan X, Yang X. Effects of repeated applications of chlorpyrifos onits persistence and soil microbial functional diversity and development of its degradation capability [J].Bulletin of environmental contamination and toxicology,2008,81(4):397-400.
    [94] Fang H, Yu Y.L, Wang X.G, Chu X.Q, Yang X.E. Persistence of the herbicide butachlor in soil afterrepeated applications and its effects on soil microbial functional diversity [J]. Journal of environmentalscience and health Part B,2009,44(2):123-9.
    [95] Fierer N, Leff J.W, Adams B.J, Nielsen U.N, Bates S.T, Lauber C.L, Owens S, Gilbert J.A, WallD.H, Caporaso J.G. Cross-biome metagenomic analyses of soil microbial communities and theirfunctional attributes [J]. Proceedings of the National Academy of Sciences,2012,109(52):21390-5.
    [96] Fitter A H, Gilligan C A, Hollingworth K, Kleczkowski A, Twyman R M, Pitchford J W.Biodiversity and ecosystem function in soil [J]. Functional Ecology,2005,19,369-377.
    [97] Fox J.E, Gulledge J, Engelhaupt E, Burow M.E, Mclachlan J.A. Pesticides reduce symbioticefficiency of nitrogen-fixing rhizobia and host plants [J]. Proceedings of the National Academy ofSciences,2007,104(24):10282-7.
    [98] Frostegard, B th E, Tunlio A. Shifts in the structure of soil microbial communities in limedforests as revealed by phospholipid fatty acid analysis [J]. Soil Biology and Biochemistry,1993,25(6):723-30.
    [99] Frosteg rd, Tunlid A, B th E. Use and misuse of PLFA measurements in soils [J]. Soil Biologyand Biochemistry,2011,43,1621-1625.
    [100] Garland J.L, Mills A.L. Classification and characterization of heterotrophic microbialcommunities on the basis of patterns of community-level sole-carbon-source utilization [J]. Applied andEnvironmental Microbiology,1991,57(8):2351-9.
    [101] Geets J, De Cooman M, Wittebolle L, Heylen K, Vanparys B, De Vos P, Verstraete W, Boon N.Real-time PCR assay for the simultaneous quantification of nitrifying and denitrifying bacteria inactivated sludge [J]. Applied microbiology and biotechnology,2007,75(1):211-21.
    [102] Gopal M, Gupta A, Arunachalam V, Magu S. Impact of azadirachtin, an insecticidalallelochemical from neem on soil microflora, enzyme and respiratory activities [J]. Bioresourcetechnology,2007,98(16):3154-8.
    [103] Govaerts B, Mezzalama M, Unno Y, Sayre K.D, Luna-Guido M, Vanherck K, Dendooven L,Deckers J. Influence of tillage, residue management, and crop rotation on soil microbial biomass andcatabolic diversity [J]. Applied Soil Ecology,2007,37(1):18-30.
    [104] Grayston S, Griffith G, Mawdsley J, Campbell C, Bardgett D. Accounting for variability in soilmicrobial communities of temperate upland grassland ecosystems [J]. Soil Biology and Biochemistry,2001,33(4):533-51.
    [105] Guckert J.B, Hood M.A, White D.C. Phospholipid ester-linked fatty acid profile changes duringnutrient deprivation of Vibrio cholerae: increases in the trans/cis ratio and proportions of cyclopropylfatty acids [J]. Applied and Environmental Microbiology,1986,52:794-801.
    [106] Guo J, Zhu G, Shi J, Sun J. Adsorption, desorption and mobility of fomesafen in Chinese soils [J].Water, Air, and Soil Pollution,2003,148(1-4):77-85.
    [107] Hammesfahr U, Heuer H, Manzke B, Smalla K, Thiele-Bruhn S. Impact of the antibioticsulfadiazine and pig manure on the microbial community structure in agricultural soils [J]. Soil Biologyand Biochemistry,2008,40(7):1583-91.
    [108] Handelsman J, Rondon M.R, Brady S.F, Clardy J, Goodman R.M. Molecular biological access tothe chemistry of unknown soil microbes: a new frontier for natural products [J]. Chemistry&biology,1998,5(10): R245-R9.
    [109] Hernandez-Allica J, Becerril J, Zarate O, Garbisu C. Assessment of the efficiency of a metalphytoextraction process with biological indicators of soil health [J]. Plant and soil,2006,281(1-2):147-58.
    [110] Huang Q, Chen W, Xu L. Adsorption of copper and cadmium by Cu-and Cd-resistant bacteria andtheir composites with soil colloids and kaolinite [J]. Geomicrobiology Journal,2005,22(5):227-36.uo
    [111] Hund-Rinke K, Simon M, Lukow T. Effects of tetracycline on the soil microflora: function,diversity, resistance [J]. Journal of Soils and Sediments,2004,4(1):11-6.
    [112] Johnsen K, Jacobsen C.S, Torsvik V, S rensen J. Pesticide effects on bacterial diversity inagricultural soils–a review [J]. Biology and Fertility of Soils,2001,33(6):443-53.
    [113] Jumel A, Coutellec M.A, Cravedi J.P, Lagadic L. Nonylphenol polyethoxylate adjuvant mitigatesthe reproductive toxicity of fomesafen on the freshwater snail Lymnaea stagnalis in outdoorexperimental ponds [J]. Environmental toxicology and chemistry,2002,21(9):1876-88.
    [114] Kennedy A, Smith K. Soil microbial diversity and the sustainability of agricultural soils [J]. Plantand soil,1995,170(1):75-86.
    [115] Khan M, Scullion J. Effect of soil on microbial responses to metal contamination [J].Environmental Pollution,2000,110(1):115-25.
    [116] Kong C, Wang P, Gu Y, Xu X, Wang M. Fate and impact on microorganisms of riceallelochemicals in paddy soil [J]. Journal of agricultural and food chemistry,2008,56(13):5043-9.
    [117] Kong W.D, Zhu Y.G, Fu B.J, Marschner P, He J.Z. The veterinary antibiotic oxytetracycline andCu influence functional diversity of the soil microbial community [J]. Environmental Pollution,2006,143(1):129-37.
    [118] Koskinen W.C, Cox L, Yen P. Changes in sorption/bioavailability of imidacloprid metabolites insoil with incubation time [J]. Biology and Fertility of Soils,2001,33(6):546-50.
    [119] Kourtev P.S, Ehrenfeld J.G, H ggblom M. Exotic plant species alter the microbial communitystructure and function in the soil [J]. Ecology,2002,83(11):3152-66.
    [120] Krogh K, Halling-S rensen B, Mogensen B, Vejrup K. Environmental properties and effects ofnonionic surfactant adjuvants in pesticides: a review [J]. Chemosphere,2003,50(7):871-901.
    [121] Kurtz M. Kenaf tolerance to acifluorfen, cyanazine, diuron, fluometuron, fomesafen, lactofen, orprometryn applied postemergence-directed [J]. Industrial crops and products,1996,5(2):119-24.
    [122] Lancaster S.H, Hollister E.B, Senseman S.A, Gentry T.J. Effects of repeated glyphosateapplications on soil microbial community composition and the mineralization of glyphosate [J]. Pestmanagement science,2010,66(1):59-64.
    [123] Lauber C.L, Strickland M.S, Bradford M.A, Fierer N. The influence of soil properties on thestructure of bacterial and fungal communities across land-use types [J]. Soil Biology and Biochemistry,2008,40(9):2407-15.
    [124] Leake J, Johnson D, Donnelly D, Muckle G, Boddy L, Read D. Networks of power and influence:the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning [J].Canadian Journal of Botany,2004,82(8):1016-45.
    [125] Lee H.J, Duke M.V, Duke S.O. Cellular localization of protoporphyrinogen-oxidizing activities ofetiolated barley (Hordeum vulgare L.) leaves (relationship to mechanism of action ofprotoporphyrinogen oxidase-inhibiting herbicides)[J]. Plant physiology,1993,102(3):881-9.
    [126] Lee S, Gan J, Kim J.S, Kabashima J.N, Crowley D.E. Microbial transformation of pyrethroidinsecticides in aqueous and sediment phases [J]. Environmental toxicology and chemistry,2004,23(1):1-6.
    [127] Li J. Issues and some strategies of sustainable development of black soil resources in black soilzone in northeast China [J]. Chinese Agricultural Science Bulletin,2005,4:32-6.
    [128] Liu Y Z, Zhou T, Crowley D, Li L Q, Liu D W, Zheng J W, Yu X Y, Pan G X, Hussain Q, Zhang XH, Zheng J F. Decline in Topsoil Microbial Quotient, Fungal Abundance and C Utilization Efficiency ofRice Paddies under Heavy Metal Pollution across South China J. PLoS one,2012,7(6): e38858.
    [129] Lupwayi N, Arshad M, Rice W, Claytonm G. Bacterial diversity in water-stable aggregates of soilsunder conventional and zero tillage management [J]. Applied Soil Ecology,2001,16(3):251-61.
    [130] Lutzoni F, Pagel M, Reeb V. Major fungal lineages are derived from lichen symbiotic ancestors[J]. Nature,2001,411,937-940.
    [131] Mao Y, Yannarell A.C, Mackie R.I. Changes in N-transforming archaea and bacteria in soil duringthe establishment of bioenergy crops [J]. PLoS One,2011,6(9): e24750.
    [132] Mills M.S, Simmons N.D. Assessing the ground-water contamination potential of agriculturalchemicals: a flexible approach to mobility and degradation studies[J]. Pesticide science,1998,54(4):418-34.
    [133] Moore-Kucer J, Dick R.P. PLFA profiling of microbial community structure and seasonal shifts insoils of a Douglas-firchronosequence [J]. Microbial Ecology,2008,55(3):500-11.
    [134] Mu oz-Leoz B, Ruiz-Romera E, Antigüedad I, Garbisu C. Tebuconazole application decreasessoil microbial biomass and activity [J]. Soil Biology and Biochemistry,2011,43(10):2176-83.
    [135] Mu oz-Leoz B, Garbisu C, Charcosset J-Y, Sánchez-Pérez J. M, Antiguedad I, Ruiz-Romera E.Non-target effects of three formulated pesticides on microbially-mediated processes in a clay-loam soil[J]. Science of the Total Environment,2013,449:345-54.
    [136] Muyzer G, De Waal E.C, Uitterlinden A.G. Profiling of complex microbial populations bydenaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes codingfor16S rRNA [J]. Applied and Environmental Microbiology,1993,59(3):695-700.
    [137] Nannipieri P, Ascher J, Ceccherini M T, Landi L, Pietramellara G, Renella G. Microbial diversityand soil functions [J]. European Journal of Soil Science,2003,54,655-670.
    [138] Nielsen U, Ayres E, Wall D, Bardgettr R. Soil biodiversity and carbon cycling: a review andsynthesis of studies examining diversity–function relationships [J]. European Journal of Soil Science,2011,62(1):105-16.
    [139] O'donnell A.G, Seasman M, Macrae A, Waite I, Davies J.T. Plants and fertilisers as drivers ofchange in microbial community structure and function in soils [J]. Plant and soil,2001,232(1-2):135-45.
    [140] Ochsenreiter T, Selezi D, Quaiser A, Bonch-Osmolovskaya L, Schleper C. Diversity andabundance of Crenarchaeota in terrestrial habitats studied by16S RNA surveys and real time PCR [J].Environmental Microbiology,2003,5(9):787-97.
    [141] Olsson S, Alstr m S. Characterisation of bacteria in soils under barley monoculture and croprotation [J]. Soil Biology and Biochemistry,2000,32(10):1443-51.
    [142] Omar S, Abdel-Sater M. Microbial populations and enzyme activities in soil treated withpesticides [J]. Water, Air, and Soil Pollution,2001,127(1-4):49-63.
    [143] Pimentel D. Amounts of pesticides reaching target pests: environmental impacts and ethics [J].Journal of Agricultural and environmental Ethics,1995,8(1):17-29.
    [144] Poly F, Monrozier L.J, Bally R. Improvement in the RFLP procedure for studying the diversity ofnifH genes in communities of nitrogen fixers in soil [J]. Research in Microbiology,2001,152(1):95-103.
    [145] Potthoff M, Steenwerth K.L, Jackson L.E, Drenovsky R.E, Scow K.M, Joergensen R.G. Soilmicrobial community composition as affected by restoration practices in California grassland [J]. SoilBiology and Biochemistry,2006,38(7):1851-60.
    [146] Powell S N, Singleton D R, Aitken M D. Effects of enrichment with salicylate on bacterialselection and PAH mineralization in a microbial community from a bioreactor treating contaminatedsoil J. Environmental Science&Technology,2008,42,4099-4105
    [147] R sch C, Mergel A, Bothe H. Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acidforest soil [J]. Applied and Environmental Microbiology,2002,68(8):3818-29.
    [148] Raich J.W, Potter C.S. Global patterns of carbon dioxide emissions from soils [J]. GlobalBiogeochemical Cycles,1995,9(1):23-36.
    [149] Rasmussen L.D, Srensen S.J. Effects of mercury contamination on the culturable heterotrophic,functional and genetic diversity of the bacterial community in soil [J]. FEMS Microbiology Ecology,2001,36(1):1-9.
    [150] Ratcliff A.W, Busse M.D, Shestak C.J. Changes in microbial community structure followingherbicide (glyphosate) additions to forest soils [J]. Applied Soil Ecology,2006,34(2):114-24.
    [151] Richard J E, Barry N, Marcus W, Trett, J, George B, Andrew J, Weightman, Philip R R, FilippelliM, Levi-Minzi R, Savioza A. The influence of metarn sodium on soil respiration [J]. Journal ofEnvironmental Science and Health, Part B,2000,35,455-465.
    [152] Russo J, Lefeuvre-Orfila L, Lagadic L. Hemocyte-specific responses to the peroxidizing herbicidefomesafen in the pond snail Lymnaea stagnalis (Gastropoda, Pulmonata)[J]. Environmental Pollution,2007,146(2):420-7.
    [153] Santos J, Jakelaitis A, Silva A, Costa M, Manabe A, Silva M. Action of two herbicides on themicrobial activity of soil cultivated with common bean (Phaseolus vulgaris) in conventional-till andno-till systems [J]. Weed research,2006,46(4):284-9.
    [154] Schauer M, Balagué V, Pedrós-Alió C, Massana R. Seasonal changes in the taxonomiccomposition of bacterioplankton in a coastal oligotrophic system [J]. Aquatic Microbial Ecology,2003,31(2):163-74.
    [155] Schloter M, Dillly O, Munch J. Indicators for evaluating soil quality [J]. Agriculture, Ecosystems&Environment,2003,98(1):255-62.
    [156] Schneider T, Gerrits B, Gassmann R, Schmid E, Gessner M.O, Richter A, Battin T, Eberl L,Riedel K. Proteome analysis of fungal and bacterial involvement in leaf litter decomposition [J].Proteomics,2010,10(9):1819-30.
    [157] Schutter M, Fuhrmann J. Soil microbial community responses to fly ash amendment as revealedby analyses of whole soils and bacterial isolates [J]. Soil Biology and Biochemistry,2001,33(14):1947-58.
    [158] Sessitsch A, Weilharter A, Gerzabek M.H, Kirchmann H, Kandeler E. Microbial populationstructures in soil particle size fractions of a long-term fertilizer field experiment [J]. Applied andEnvironmental Microbiology,2001,67(9):4215-24.
    [159] Set l H, Mclean M.A. Decomposition rate of organic substrates in relation to the speciesdiversity of soil saprophytic fungi [J]. Oecologia,2004,139(1):98-107.
    [160] Singh B, Bhat T, Kurade N, Sharma O. Metagenomics in animal gastrointestinal ecosystem: amicrobiological and biotechnological perspective [J]. Indian journal of microbiology,2008,48(2):216-27.
    [161] Smalla K, Wachtendorf U, Heuer H, Liu W.T, Forney L. Analysis of BIOLOG GN substrateutilization patterns by microbial communities [J]. Applied and Environmental Microbiology,1998,64(4):1220-5.
    [162] Staddon W, Duchesne L, Trevors J. Microbial diversity and community structure ofpostdisturbance forest soils as determined by sole-carbon-source utilization patterns [J]. MicrobialEcology,1997,34(2):125-30.
    [163] Staddon W.J, Trevors J.T, Duchesne L.C. Soil microbial diversity and community structure acrossa climatic gradient in western Canada [J]. Biodiversity&Conservation,1998,7(8):1081-92.
    [164] Stephen J.R, Chang Y.J, Macnaughton S.J, Whitaker S.L, Hicks C.L, Leung K.T, Flemming C.A,White D.C. Fate of a metal-resistant inoculum in contaminated and pristine soils assessed by denaturinggradient gel electrophoresis [J]. Environmental toxicology and chemistry,1999,18(6):1118-23.
    [165] Struger J, Grabuski J, Cagampan S, Rondeau M, Sverko E, Marvin C. Occurrence and distributionof sulfonylurea and related herbicides in central Canadian surface waters2006–2008[J]. Bulletin ofenvironmental contamination and toxicology,2011,87(4):420-5.
    [166] Torsvik V, vreas L, Thingstad T.F. Prokaryotic diversity--magnitude, dynamics, and controllingfactors [J]. Science,2002,296(5570):1064-6.
    [167] Van Der Heijden M.G, Bardgett R.D, Van Straalen M. The unseen majority: soil microbes asdrivers of plant diversity and productivity in terrestrial ecosystems [J]. Ecology letters,2008,11(3):296-310.
    [168] Waldrop M.P, Firestone M.K. Microbial community utilization of recalcitrant and simple carboncompounds: impact of oak-woodland plant communities [J]. Oecologia,2004,138(2):275-84.
    [169] Wang M.C, Gong M, Zang H.B, Hua X.M, Yao J, Pang Y.J, Yang Y.H. Effect of methamidophosand urea application on microbial communities in soils as determined by microbial biomass andcommunity level physiological profiles [J]. Journal of environmental science and health Part B,2006,41(4):399-413.
    [170] Wang M.C, Liu Y.H, Wang Q, Gong M, Hua X.M, Pang Y.J, Hu S, Yang Y.H. Impacts ofmethamidophos on the biochemical, catabolic, and genetic characteristics of soil microbial communities[J]. Soil Biology and Biochemistry,2008,40(3):778-88.
    [171] Wardle D A, Bardgett R D, Klironomos J N, Set l H, Van Der Putten W H, Wall D H. EcologicalLinkages Between Aboveground and Belowground Biota [J]. Science,2004,309,1629-1633.
    [172] Wauchope R.D, Buttler T, Hornsby A, Augustijn-Beckers P, Burt J. The SCS/ARS/CES pesticideproperties database for environmental decision-making [J].Reviews of Environmental Contaminationand Toxicology,1992,123,1-155.
    [173] Westergaard K, Müller A, Christensen S, Bloem J, S rensen S. Effects of tylosin as a disturbanceon the soil microbial community [J]. Soil Biology and Biochemistry,2001,33(15):2061-71.
    [174] Whitman W.B, Coleman D.C, Wiebe W.J. Prokaryotes: the unseen majority [J]. Proceedings of theNational Academy of Sciences,1998,95(12):6578-83.
    [175] Wu Y, Ma B, Zhou L, Wang H, Xu J, Kemmitt S, Broookes P.C. Changes in the soil microbialcommunity structure with latitude in eastern China, based on phospholipid fatty acid analysis [J].Applied Soil Ecology,2009,43(2):234-40.
    [176] Xu J, Guo L, Dong F, Liu X, Wu X, Sheng Y, Zhang Y, Zheng Y. Response of the soil microbialcommunity to imazethapyr application in a soybean field [J]. Journal of Environmental Science andHealth, Part B,2013,48(6):505-11.
    [177] Xu J, Yang M, Dai J, CAO H, Pan C, Qiu X, Xu M. Degradation of acetochlor by four microbialcommunities [J]. Bioresource technology,2008,99(16):7797-802.
    [178] Yao H, Bowman D, Shi W. Soil microbial community structure and diversity in a turfgrasschronosequence: Land-use change versus turfgrass management [J]. Applied Soil Ecology,2006,34(2):209-18.
    [179] Yao H, He Z, Wilson M, Campbell C. Microbial biomass and community structure in a sequenceof soils with increasing fertility and changing land use [J]. Microbial Ecology,2000,40(3):223-37.
    [180] Yeager C.M, Kornosky J.L, Housman D.C, Grote E.E, Belnap J, Kuske C.R. Diazotrophiccommunity structure and function in two successional stages of biological soil crusts from the ColoradoPlateau and Chihuahuan Desert [J]. Applied and Environmental Microbiology,2004,70(2):973-83.
    [181] Zak J.C, Willig M.R, Moorhead D.L, Wildman H.G. Functional diversity of microbialcommunities: a quantitative approach [J]. Soil Biology and Biochemistry,1994,26(9):1101-8.
    [182] Zhang B, Bai Z, Hoefel D, Tang L, Wang X, Li B, Li Z, Zhang G. The impacts of cypermethrinpesticide application on the non-target microbial community of the pepper plant phyllosphere [J].Science of the Total Environment,2009,407(6):1915-22.
    [183] Zhang B, Zhang H, Jin B, Tang L, Yang J, Li B, Zhuang G, Bai Z. Effect of cypermethrininsecticide on the microbial community in cucumber phyllosphere [J]. Journal of EnvironmentalSciences,2008,20(11):1356-62.
    [184] Zhang C, Xu J, Liu X, Dong F, Kong Z, Sheng Y, Zheng Y. Impact of imazethapyr on themicrobial community structure in agricultural soils [J]. Chemosphere,2010,81(6):800-6.
    [185] Zhang X, Li X, Zhang C, Li X, Zhang H. Ecological risk of long-term chlorimuron-ethylapplication to soil microbial community: an in situ investigation in a continuously cropped soybeanfield in Northeast China [J]. Environmental Science and Pollution Research,2011,18(3):407-15.
    [186] Zhao H.P, Wu Q.S, Wang L, Zhao X.T, Gao H.W. Degradation of phenanthrene by bacterial strainisolated from soil in oil refinery fields in Shanghai China [J]. Journal of hazardous materials,2009,164(2):863-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700