红层边坡浅层破坏机理及生态防护技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红层是一种具有特殊地质力学性质的岩体,强度低、易变形,抗风化能力差、遇水易崩解、软化等。在红层地区开挖边坡,若不采取坡面防护措施,极易造成边坡水土流失及风化剥落、崩塌、落石、浅层滑坡等各种浅层地质灾害。而红层在我国的分布相当广泛,随着基础设施建设进程的加快,大量高等级公路、铁路通过红层地区,因此开展红层边坡浅层破坏机理及防护措施的研究十分必要。鉴于上述原因,本文通过参与西部交通建设科技项目“红层软岩地区公路修建技术研究”,采用野外调研、现场试验、室内试验、理论分析多种手段和方法,对红层软岩边坡浅层破坏类型、浅层破坏机理、可植被性相关参数、可植被性评价方法、生态防护方法及防护效果等方面进行了系统研究与分析。
     论文主要内容及结论如下:
     1.总结红层边坡浅层破坏类型,并对影响浅层破坏的因素进行探讨,为红层边坡浅层破坏机理的研究提供依据。
     在广泛的资料调研和野外调查的基础上,总结提出红层边坡浅层破坏类型主要有风化剥落、落石、崩塌、溜坍、滑塌、浅层滑坡六大类和十四个亚类,并对各种破坏形式发生的条件及特点进行分析。研究结果表明,红层边坡浅层破坏与红层自身的结构及其独特的物理力学性质有关,尤其是红层的水理性和易风化性是造成红层边坡浅层破坏的主要因素,为红层边坡浅层破坏机理的研究提供依据。
     2.针对红层边坡浅层破坏的主要因素风化进行原位监测研究,揭示了红层边坡浅层破坏机理。
     通过红层边坡风化剥落的原位监测,研究温度和水分变化对红层岩体快速风化的影响。监测结果表明,单纯温度或水环境的改变不能引起红层软岩的快速风化崩解,高温下强降雨是导致红层软岩快速风化的重要原因。
     3.采用数学物理方程和mathematica软件,对红层裸露边坡浅层风化破坏机理进行深入的理论研究。
     采用数学物理方程建立红层边坡处于高温时突遇强降雨,急剧降温的热传导方程,利用mathematica软件,求解红层裸露边坡处于高温状态时降雨的急剧降温过程和日常缓慢温度变化过程的温度场,对比分析两种情况下温度场的分布特征,进一步印证了红层边坡风化原位监测的结论,红层表层处于高温状态时降雨是导致其快速风化剥落的重要原因,并通过温差的变化值确定红层边坡快速风化范围。
     4.采用现场模拟降雨试验,研究裸露红层坡面的冲刷性质。
     降雨对红层边坡风化起重要作用,它不仅使岩石快速降温,而且使表层已风化崩解的红层碎屑在雨水的作用下冲刷,暴露出下面的新鲜岩石,使风化加深。
     5.在对红层边坡生态防护相关参数进行研究的基础上,建立红层边坡表土和客土可植被性模糊综合评价方法,为红层边坡生态防护设计提供指导。
     通过红层地区生态防护的调研,总结红层边坡生态防护存在的问题,提出红层边坡浅层岩土样及客土的可植被性评价指标,并对红层生态防护相关的参数进行试验和隶属度研究,建立红层边坡表上及客土可植被性模糊综合评价方法,这些参数及模糊评价结果可为植被护坡设计中土质改良、植物选型等提供参考,结合边坡的稳定状态可指导边坡生态防护设计
     6.通过生态防护对红层边坡浅层稳定的防护效果的系统研究,证明了生态防护能有效阻止红层坡面的风化和冲刷,提高红层边坡浅层稳定性。
     通过红层边坡生态防护前后的降雨冲蚀试验、边坡浅层温度场和水分场的长期监测,以及红层有无植物根系的力学试验,系统研究生态防护对红层边坡浅层稳定的影响。生态防护通过消除表层风化碎屑的冲蚀、改变红层坡体浅层的温度场和水分场极大地减缓红层边坡的风化进程,基本消除因高温、降雨共同作用引发的浅层快速风化崩解,并通过植物根系的力学效应提高了根系范围内浅层坡体(包括客土层)的抗剪强度,从而提高了浅层坡体的稳定性。
Red bed has special geomechanics properties, which strength is low, deformation is easy, weathering resistance is poor, and which is easy to be softened and disintegrated after absorbing water, and so on. Therefore, the excavated slope without slope protection in red bed often occur soil erosion and geological hazards of shallow layer, such as weathering spalling, collapse, rockfall, and shallow landslide etc. Red bed is widely distributed in China. A lot of high-grade highway and railway have been built or will be built in the red bed with infrastructure construction. So it is very essential to study failure mechanism and protection measures of shallow layer of red bed slope. In view of this, combined with the west region communication construction technology project, 'Technology Study on Highway Construction in Red-Bed Soft Rock Area", by the methods of field investigation, field test, laboratory test and theoretical analysis, etc, the contents, such as failure types and failure mechanism of shallow layer, parameters and evaluation method correlated to difficult degree of planting, ecological protection and its effects, are studied and analyzed systematically on red-bed soft rock slope.
     The main contents and conclusions of the article are summarized as follows.
     1. The failure types of shallow layer of red bed slope are summarized and the influence factors leading to shallow layer failure are analyzed to provide a basis for failure mechanism study.
     Based on the widely literature and field investigation, the failure types of shallow layer of red bed slope are divided into six categories, including weathering, spalling, rockfall, collapse, topsoil slip, slump, shallow landslide, and 14 sub-categories. By analyzing the occurrence condition and characteristics of various failure types, the conclusion is drawn that the structure and the special physical and mechanical properties of red bed, especially the properties related to water and weathering are the main factors leading to the shallow layer instability of red bed slope. It provides a basis for failure mechanism study.
     2. Through in-situ monitoring of weathering, a main factor causing slope instability, instability mechanism and fast weathering range of shallow layer of red bed slope are revealed.
     The influences of temperature and moisture content change on red bed fast weathering are studied by in-situ monitoring the weathering of red bed slope, the monitoring results show that only the change of water environment or temperature can not causes rapid weathering and collapse, the condition that red bed suddenly meets strong rainfall when it is in high temperature is a main cause of red bed fast weathering.
     3. Theoretical study on shallow layer instability mechanism and the range of fast weathering of shallow layer of red bed slope are carried on deeply with "Mathematical Physics Equation" and the software MATHEMATICA.
     Heat conduction equation of red bed slope with high temperature exposed to strong rainfall are presented by "Mathematical Physics Equation", further, the temperature field of rapid decreasing temperature when the red bed slope with high temperature are exposed to strong rainfall suddenly and the slow daily temperature change are solved by the software MATHEMATICA, A comparative analysis of the two kinds of temperature field further proved the conclusion of the weathering in-situ monitoring of red bed slope, the former condition is the main external cause leading to red bed fast weathering.
     4. The erosion properties of bare red bed slope are studied by rainfall simulation experiment.
     Rainfall is import to weathering of red bed slope, it not only slow down the temperature of rock significantly, but also erosion the weathered material of red bed therefore, the unaltered rocks are exposed to further weathering.
     5. On the basis of the parameters study correlated to ecological protection for red bed slope, the method of fuzzy comprehensive evaluation on topsoil and foreign soil correlated to difficult degree of planting are put forward, which provide guidance for slope ecological protection design in red bed.
     By investigating ecological protection for red bed slope, analyzing and summarying the problems existed in it, evaluation indexes of top soil and foreign soil correlated to difficult degree of planting are proposed. Furthermore, the indexes are tested and their membership grades are studied. Based on the results, the method of fuzzy comprehensive evaluation on topsoil and foreign soil correlated to difficult degree of planting are put forward. These indexes and fuzzy comprehensive evaluation results provide reference for soil improvement and plant choice; moreover, combined with stability state of slope, they provide guidance for slope vegetation protections design in red bed.
     6. By the systematic study on ecological protection effect to shallow layer stability of red bed slope, it is proved that ecological protection can effectively keep red bed slope from weathering and erosion and can improving stability of red bed slope.
     The influence of ecological protection to shallow layer stability of red bed slope are systematically studied by the field rainfall tests with the ecological protection and without it, the long-term monitoring tests on the temperature field and the moisture content of the shallow layer of red bed slope and the mechanics experiments on red bed with and without plant roots. It is concluded that the ecological protection can not only slow down significantly the weathering process of red bed slope and basically eliminate the fast weathering of the shallow layer caused by high temperature and rainfall together by eliminating the weathering material erosion and changing the temperature field and the moisture content of the shallow layer of red bed slope, but also increase the shear strength of shallow layer (including guest soil) in the range of plant root. So, the shallow layer stability of slope is improved.
引文
[1]曾祥勇,黄志鹏,邓安福,等.红层软岩强度特征的研究[A].第八次全国岩石力学与工程学术大会论文集[c].北京:科学出版社,2004.198-201
    [2]徐瑞春.红层与大坝[J].大坝与安全,1991,(4):34-41
    [3]李廷勇,王建力.中国的红层及发育的地貌类型[J].四川师范大学学报(自然科学版),2002,vo1.25,No.4:427-431
    [4]王磊,李萼雄.红层边坡风化过程的化学分析[J].成都科技大学学报,1996,(6): 61-66
    [5]韦大仕.“红层”软岩地基承载力确定方法的研究[D].中南大学硕士学位论文,2005
    [6]王珊.边坡工程设计施工新技术与质量检测验收实务全书[M].北京北影录音录像公司,2005
    [7]周德培,张俊云.植被护坡工程技术[M].人民交通出版社,2003
    [8]张忠平.万梁高速公路近水平层状岩石高边坡变形模式探讨[J].路基工程,2005(1):10-12
    [9]吉随旺.张倬元.王凌云.刘汉超近水平软硬互层斜坡变形破坏机制[J].中国地质灾害与防治学报,2000(3)
    [10]朱宝龙.胡厚田.陈强红层M形路堑边坡特征及病害的初步研究[J].工程地质学报2003(4):411-415
    [11]王启胜,杨旭升.大保公路路堑边坡病害成因及整治措施[J].铁道标准设计,2002(05):34-35
    [12]刘汝明,孙英勋,鲁志强,宗家烈.滇西红层的工程地质特征及工程对策[J].云南交通科技,2001,17(06):1-10
    [13]云南地质工程第二勘察院.大保高速公路“滇西红层”地区边坡与桥墩变形破坏原因浅析[J].云南交通科技,2002,18(05)
    [14]李传宝,程谦恭,徐彩风.滇西红层地区边坡变形破坏模式研究[J].路基工程,2007(05)
    [15]成都铁路局.抹灰防止粘土岩边坡风化剥落的探讨[J].1963年铁路科学技术论文报告会文集第11辑(工程地质及路基工程).北京:人民铁道出版社,1965:46
    [16]成昆铁路技术总结委员会编.成昆铁路第二册(线路、工程地质及路基).北京:人民铁道出版社,1980.99-115
    [17]陈成宗,齐贺年.砂页岩铁路路堑边坡的典型类型及其稳定性[J].1963年铁路科学技术论文报告会文集第11辑(工程地质及路基工程).北京: 人民铁道出版社,1965
    [18]曾廉.崩塌与防治[M].成都:西南交通大学出版社,1990:317-321
    [19]左许泉,罗缵锦.路基边坡风化与防护[J].中南公路工程,1998,23(1):11-16
    [20]庄华泽,杨淑碧.温差应力场对高热地区斜坡变形破坏影响的数值模拟.鲁慎吾主编,四川省岩石力学与工程学会首届学术会议论文集.成都:西南交通大学出版社,1994.27-135
    [21]梁玉才.浅谈路基边坡病害及其防护办法[J].中国新技术新产品,2009(18): 62-62
    [22]陆玉珑.试论岩层风化带滑坡.滑坡文集编委会主编,滑坡文集(第十二集).北京:中国铁道出版社,1997:65-71
    [23]张俊云,周德培,李绍才. 岩石边坡生态护坡研究简介[J].水土保持通报,2000,20(4):36-38
    [24]周跃.土壤植被系统及其坡面生态工程意义[J].山地学报,1999,17(3):224-229
    [25]周立荣,向波,周德培.红层软岩边坡生态防护技术探讨[J].地质灾害与环境保护,1996,17(4):105108
    [26]程强,寇小兵,黄绍槟,周永江.中国红层的分布及地质环境特征[J].工程地质学报.2004(1):34-40
    [27]彭华,吴志才.关于红层特点及分布规律的初步探讨[J].中山大学学报(自然科学版)2003(5):
    [28]郭永春,谢强,文江泉.我国红层分布特征及主要工程地质问题[J].水文地质工程地质.2007(6):67-71
    [29]张忠胤.俄罗斯地台东部上二叠纪红层的成因及该地层粘土质岩石的工程地质性质.1958
    [30]Joel S.Watkins. Regional stratigraphy of the deepwater gulf of mexico.31st Annual Offshore Technology Conference Volume 1:Geology, Earth Sciences,and Environmental Factors 3-6 May 1999 Astrodome U.S.A. Houston, Texas:431-438
    [31]Christian A.Hecht. Geomechanical and petrophysical properties of fracture systems in permocarboniferous "red-beds".38th U.S. Rock Mechanics Symposium, DC Rocks 2001, Jul 7-10,2001, WashingtonD.C./USA:
    [32]郑家坚,丘占祥.华南白垩纪--早第三纪陆相地层的特征及有关问题的讨论.1979
    [33]中国科学院南京地质古生物研究所,云南省地质局,云南省冶金局地质勘 探公司.云南中生代红层.1975
    [34]何满潮,景海河,孙晓明.软岩工程力学.2002
    [35]吉随旺,宋光润.川中红色砂泥岩岩石力学特征研究.2000(01)
    [36]吉随旺,程强,刘兴德.川中地区岩土工程地质特性浅析.2000
    [37]李奎.四川盆地侏罗纪恐龙骨骼及红层的微量元素组合特征.1999
    [38]刘汝明,孙英勋,鲁志强,宗家烈.滇西红层的工程地质特征及工程对策[J].云南交通科技.2001(6)
    [39]柏树田,周晓光,晁华怡.软岩堆石料的物理力学性质[J].水力发电学报.2002(4)
    [40]杨恒仁,王震,李曼英.华南中生代晚期至早第三纪生物群及地层的划分和对比1979
    [41]何满潮.软岩巷道工程概论.1993
    [42]彭柏兴.红层软岩工程特性及其大直径嵌岩桩若干问题研究[D].中南大学硕士学位论文,2009
    [43]郑佩莹,曾祥勇,杨淋.川渝红层软岩水平互层对桥梁扩大基础承载力影响有限元分析[J].重庆建筑,2009(5)
    [44]魏安辉.川中红层工程地质特性与路用性研究.西南交通大学硕士论文,2006
    [45]西南交通大学地质工程系,广州铁路集团公司工务总公司.铁路沿线红层边坡病害及其预测研究科研报告.1997
    [46]胡厚田.焦柳线红层边坡病害规律性的研究[J].四川建筑,1996,16(2):55-57
    [47]骆银辉,朱春林,李俊东.云南红层边坡变形破坏机制及其危害防治研究[J].岩土力学2003(5)
    [48]和昆,蒋楚生.云南元磨高速公路路堑高边坡及滑坡整治工程[J].路基工程2004(1):49-51
    [49]张永安.安楚公路红层边坡稳定性研究[D].昆明理工大学硕士论文,2006
    [50]周应华.红层路堑边坡失稳机理及加固防护技术研究[D].西南交通大学博士论文,2006
    [51]吴海平.赣南红层滑坡的滑动机理及防治对策[D].华东交通大学硕士论文,2007
    [52]李传宝,程谦恭,徐彩风,滇中红层地区边坡变形破坏模式研究 [J]2007年第05期
    [53]胡新红.湘西朱雀洞大滑坡机理分析与处治措施研究[D].中南大学硕士论文,2008
    [54]刘世雄.第三系红层高边坡失稳机理研究[D].西南交通大学硕士论文2009
    [55]赵金举,马德青,胡惠华。湘西朱雀洞滑坡成因机制分析:河北工程大学学报(自然科学版)2010年第01期
    [56]谢强.铁路岩石边坡研究[D].西南交通大学博士论文,1991
    [57]李萼雄.边坡风化的化学热力学分析和数值模拟的研究——论广大线红层边坡风化剥蚀机理[D].西南交通大学硕士论文,1994
    [58]王贤能,黄润秋,黄国明.边坡岩体浅层破坏的热应力效应研究.工程地质学报,1997,5(3):262-268
    [59]黄润秋,王贤能,唐胜传.热应力的交变作用对边坡危岩体形成的影响.自然科学进展,1999,9(8):716-722
    [60]钱惠国.广大线红层路堑边坡风化带的最优分割.西南交通大学学报,1996,31(5):506-509
    [61]刘汝明,孔英勋,鲁志强,等.滇西红层的工程地质特征及工程对策.云南交通科技,2001,17(6):1-10
    [62]余宏明,胡艳欣,张纯根.三峡库区巴东地区紫红色泥岩的崩解特性研究.地质科技情报,2002,21(4):77-80
    [63]杨淑碧,徐进,董孝璧.红层地区砂泥岩互层状斜坡岩体流变特性研究.地质灾害与环境保护,1996,7(2):12-24
    [64]汪益敏,王秉纲.公路土质路基边坡坡面冲刷稳定性的模糊综合性评价[J].中国公路学报,2005,18(1):24-29
    [65]罗斌.南方花岗岩残积层路堑坡面冲刷与路堤渗透稳定性研究[D].西南交通大学博士学位论文,1999,10
    [66]罗斌,胡厚田,吕小平.南方花岗岩残积层路堑边坡坡面冲蚀研究[J].铁道工程学报,1999(03):82-85
    [67]罗斌,胡厚田,卢才金,黄少强.清连公路沿线坡面冲刷研究[J].中国地质灾害与防治学报,2000,11(01):66-69
    [68]罗斌,王秉纲,王先仓.路基边坡坡面冲刷基本理论[J].公路交通科技,2002(8):27-30
    [69]李志刚,王春辉.公路边坡冲刷机理初探[J].解放军理工大学学报,2003(6):43-47
    [70]靳长兴.论坡面侵蚀的临界坡度[J].地理学报,1995,50(03):234-238
    [71]罗斌,陈强,黄少强.南方花岗岩地区坡面侵蚀临界坡度探讨[J].土壤侵蚀与水土保持学报,1999,5(6):67-70
    [72]郭梅,姜仁安.坡面冲刷的临界坡度的计算分析[J].中国地质灾害与防 治学报,2000,11(01):
    [73]石文辉,徐明.公路土质边坡冲刷临界坡度的分析[J].黑龙江交通科技,2008(10):
    [74]王伟,肖盛燮,王子健.路基边坡坡面冲刷稳定性的模糊综合评判方法[J].西部交通科技,2009(12):111-116
    [75]郝建新,林雄斌,姜言松.基于神经网络的边坡冲刷稳定性综合评价[J].水运工程,2007(02):11-13
    [76]张春海,魏玉峰,郝建新.基于神经网络的边坡冲刷稳定性综合评价[J].科技信息,2007(03):74-75
    [77]Ministry of works and transport(Nepa1). Use of bio~engineering in the road sector (Geo~environmental unit).1999
    [78]Donat, M. Bioengineering techniques for streambank restoration—A review of Central European practices. Watershed Restoration Project Report No.2,1995:1-2
    [79]Lee, Ivan W. Y. A review of vegetative slope stabilization. Hong Kong Engineering.1985,13 (7):9-21
    [80]川端勇作.绿化工技術 の步み.绿化工技衍.1979,6(2):7
    [81]野口阳一.治山技術の兄直しと展望.山林.1980,(1159):4-19
    [82]陈向波.高速公路边坡生态防护技术及应用研究.武汉理工大学,硕士学位论文,2005年3月
    [83]Robert, C. S. Plastic matting for erosion control and revegetation. EP0259166,1988-03-09
    [84]Tsuguo Kobayashi. Slope protection method for planting. US4304069, 1981,12,08
    [87]仓田益二郎.绿化工程技术.顾宝衡译.成都:成都科技大学出版社.1983,20-23
    [88]安保昭.周庆桐译.坡面绿化施工法.北京:人民交通出版社.1988,46-57,134-142,106-109
    [89]邹威波.郑西客运专线黄土边坡植被选型与配置研究.西南交通大学,硕士学位论文,2009年5月
    [90]邹战国.水力喷草技术在防治水土流失中的应用.水土保持通报.1993, 13(4):51-55
    [91]杨维西,罗晶,魏天兴等.黄土高原坡面喷涂绿化技术试验研究.水上保持科学研究与发展.北京:中国林业出版社.1993:231-236
    [92]李燕君,陈明德.土工网植草护坡在边坡防护工程中的应用.铁道勘测与设计.1998,(4):49-51
    [93]王连新.新型护坡方法一土工网复合植被护坡.水利水电快报.1998,19(15):30-32
    [94]陈人豪,李济群,王利群,等.固土网垫应用研究一铁路边坡铺网垫植草被防护试验.天津纺织工学院学报.1999,18(2):21-24
    [95]包承纲.堤防工程土工合成材料应用技术.北京:中国水利水电出版社.1999:137-140
    [96]阮道红.三维植被网垫在边坡防护工程中的应用.交通科技,2000,(2):14-15
    [97]陈析.新台高速公路加筋草皮护坡技术研究.公路交通科技,2001,18(2):97-100
    [98]张俊云,周德培,李绍才.厚层基材喷射护坡试验研究.水土保持通报.2001,21(4):44-46
    [99]张俊云,周德培.厚层基材喷射植被护坡的抗侵蚀实验研究.西南交通大学学报,2002,37(6):628-631
    [100]Zhang Junyun, Zhou Depei, Li Shaocai. Vegetation method of cut hard rock slope. International Conference Of Construction. HongKong.2001: 416-420
    [101]章梦涛,付奇峰,吴长文.岩质坡面喷混快速绿化新技术浅析.水土保持研究.2000,7(3):65-66
    [102]周颖,曹映泓,廖晓瑾,等.喷混植生技术在高速公路岩石边坡防护和绿化中的应用.岩土力学,2001,22(3):353-356
    [103]许文年,王铁桥,叶建军.岩石边坡护坡绿化技术应用研究.水利水电技术,2002,33(7):35-37
    [104]Endo, T., Tsuruta, T. The effect of tree roots upon the shearing strength of soil. Annual report of the Hokkaido Branch, Tokyo Forest Experiment Station, Tokyo, Japan.1969, (18):168-179
    [105]Wu, T. H., Beal, P. E., Lan, C. In-situ test of soil-root systems. J. of Geotech. Engrg., ASCE.1988,114(12):1376-1394
    [106]Gray, D. H., Ohashi, H. Mechanics of fiber reinforcements in sand. J. Geotech. Engrg..1983,109 (3):335-353
    [107]Barker, D. H. Enhancement of slope stability by vegetation. Ground Engineering.1986,19 (3):11-15
    [108]李绍才,孙海龙,杨志荣,等.坡面岩体一基质一根系互作的力学特性[J].岩石力学与工程学报.2005,24(12):2074-2081
    [109]Waldron, L. J. The shear resistance of root~permeated homogeneous and stratified soil. J. Soil Science Soc. Amer..1977:41,843-849
    [110]Waldron, L. J., Dakessian, S. Soil reinforcement by roots, calculation of increased soil shear resistance from root properties. Soil Science.1981: 132,427-435
    [111]Wu, T. H., McKinnel III, W. P., Swanston, D. N. Strength of tree roots and landslides on Prince of Wales Island, Alaska. Can. Geotech. J..1979: 16,19-33
    [112]周跃,徐强,络华松,等.乔木侧根对土体的斜向牵引效应一原理和数学模型.山地学报.1999,17(1):4-9
    [113]周跃,骆华松,徐强,等.乔木的斜向支撑效能及其坡面稳定意义.山地学报.2000,18(4):306-312
    [114]张俊云.厚层基材喷射植被护坡技术研究.博士学位论文.成都:西南交通大学,2001
    [115]解明曙.林木根系固坡土力学机制研究.水土保持学报.1990,4(3):7-14
    [116]席嘉宾,张惠霞.几种混播绿化组合对高等级公路边坡防护效益的研究[J].草业科学.2000(8):57-60
    [117]刘建宁,高洪文,等.山西太旧高速公路边坡绿化种草技术研究[J].中国草地.1999(6):53-54
    [118]江玉林.公路生物环境工程技术研究进展[J].中国园林.2001(3):13-15
    [119]季蒙.呼包高速公路路基边坡灌木防护效果试验[J].林业科技开发.2004,18(4):29-31
    [120]王柳英,马玉寿,等.平西高速公路曹家堡段护坡植物筛选研究初报[J].四川草原.2005(7):12-15
    [121]吴国雄,张斌,杨应信,程强.西部红层软岩地质特性及其对路基结构稳定性的影响[J].重庆交通学院学报,2004,23(6):53-58
    [122]Barton D C.. Notes the disintegration of granite in Egypt. J. Geol..1916, 24:382-393
    [123]杨航宇,颜志平,朱赞凌,罗志聪.公路边坡防护与治理[M].北京: 人民交通出版社,2002,10第一版
    [124]谷德振,王思敬.论工程地质力学的基本问题:1979 1994
    [125]胡厚田,赵晓彦.中国红层边坡岩体结构类型的研究.岩土工程学报.2006,28(6)689-694
    [126]吉随旺,张倬元,邓荣贵,宋光润,王凌云,陈强.川中红色砂泥岩岩石力学特性研究.地质灾害与环境保护.2000,11(1)72-74
    [127]西部交通建设科技项目“红层软岩地区公路修建技术研究”子课题5“红层软岩边坡岩体结构特征研究”子课题研究报告。
    [128]湖南省水利水电勘测设计院.边坡工程地质.北京:水利水电出版社,1983年4月,P21
    [129]潘懋,李铁锋编著.灾害地质学.北京大学出版社.2002年4月。
    [130]程强.红层软岩开挖边坡致灾机理及防治技术研究[D].西南交通大学博士论文,2008
    [131]李保雄,苗天德.红层软岩滑坡运移机制.兰州大学学报(自然科学版).2004,40(3):95-98
    [132]罗元华,张梁,张业成等.地质灾害风险评估方法.北京:地质出版社。1998年8月。
    [133]许建聪,尚岳全,郑束宁,张天宝.强降雨作用下浅层滑坡尖点突变模型研究.浙江大学学报.2005,39(11):1675-1679
    [134][日]山田刚二,渡正亮,小桥澄治.滑坡和斜坡崩塌及其防治[M].北京:科学出版社.1980年3月
    [135]王恭先著.滑坡灾害及其防治技术[M].2002年10月
    [136]陈才生主编,李刚,周继东,王文初编.数学物理方程[M].北京:科学出版社,2008
    [137]Nikolai Chernov... [et al.]. Recent advances in differential equations and mathematical physics:UAB International Conference on Differential Equations and Mathematical Physics, March 29-April 2,2005, University of Alabama at Birmingham. American Mathematical Society,2006
    [138]Kristine Ey and reas Ruffing and Sergei Suslov. Method of separation of the variables for basic analogs of equations of mathematical physics. The Ramanujan Journal.2007,vol13(1-3):407-447
    [139]王贤能,黄润秋,黄国明.边坡岩体浅层破坏的热应力效应研究[J].工程地质学报,vol 5 No.31997年9月
    [140]黄润秋,王贤能,唐胜传.热应力的交变作用对边坡危岩体形成的影响[J].自然科学进展,vol 9 No.8,1999年8月
    [141]黄润秋,许强,陶连金,林峰.地质灾害过程模拟和过程控制研究[J].北京:科学出版社,2002
    [142]张隽,沈守枫,潘祖梁.数学物理方程与Mathematica软件应用[M](第一版).北京:机械工业出版社,2008
    [143]Henkelman, Graeme. Mathematica 6.0. Journal of the American Chemical Society.2008, Vol.130(2):775
    [144]F. L. DUBEIBE. Solving the time-dependent schrodinger equation with absorbing boundary conditions and source terms in mathematica 6.0. International Journal of Modern Physics. C.2010, vol.21(11): 1391-1406
    [145]陈文亮,王占礼.国内外人工模拟降雨装置综述[J].水土保持学报,1990,vo1.4,No.1:61-66
    [146]C,A Custad,J.K.Radke and R.A.Young;An outdoor portable rainfall erosion laboratory,Erosion and Sediment Tansport Measurement Symposium (Proceedings of the Florence Symosium, June,1981), IAHS Pub.No.133.
    [147]Lumb,, P,B.Effects of rain storms on slope stability[A]. In:Proc. Of sym. On Hong Kong Soils [C].Hong Kong:[s.n].1962
    [148]周立荣,周德培,程强.红层软岩坡面植被防护的相关参数研究[J].岩石力学与工程学报,2005,24(8):1407-1410.
    [149]郭银涛.路面使用性能综合指标[D].重庆交通大学硕士学位论文,2009
    [150]南京农学院.土壤农化分析[M].北京:农业出版社,1980
    [151]中国科学院南京上壤研究所.土壤理化分析[M].上海:上海科技出版社,1978.
    [152]李笃仁,黄昭愿.实用上壤肥料手册[M].北京:中国农业科技出版社,1989
    [153]黄必志,曹文波,陈佐忠.草坪营养与施肥[M].北京:中国林业出版社,1999
    [154]中华人民共和国国家标准.土工试验方法标准(GB/T 50123-1999)[S].北京:中国计划出版社,1999.
    [155]刘光菘.土壤理化分析与剖面描述[M].北京:中国标准出版社,1996
    [156]汪益敏.路基边坡坡面冲刷特性与加固材料性能研究[D].湖南理工大学博士学位论文,2003
    [157]Kelvin C.P. Wang; Qiang Li. Pavement Smoothness Prediction Based on Fuzzy and Gray Theories. Computer-Aided Civil and Infrastructure Engineering.2011, Vol.26(1):69-76
    [158]Guang Zhang; Tingjie Li; Shiwei Bai. Fuzzy Mathematical Method for Evaluation of Rock Mechanical indexes.Key Engineering Materials.2000, Vol.183-187Part1:433-438
    [159]Mitra B, Scott HD, DiXon JC, McKimmey JM. Applications of fuzzy logic to the prediction of soil erosion in a large watershed. GEODERMA. NOV 1998,86 (3-4):183-209
    [160]Ahamed TRN, Rao KG, Murthy JSR.Fuzzy class membership approach to soil erosion modeling. Agricultural Systems. FEB 2000,63 (2):97-110
    [161]Tran LT, Ridgley MA, Duckstein L, Sutherland R. Application of fuzzy logic-based modeling to improve the performance of the Revised Universal Soil Loss Equation. CATENA.2002,47 (3):203-226
    [162]Harrison,John; Hudson,John. Ncorporating Parameter Variability in Rock Mechanics Analyses:Fuzzy Mathematics Applied to Underground Rock Spalling. Rock Mechanics and Rock Engineering.2010, Vol.43(2):219-224
    [163]李玉和.城市土壤密实度对园林植物生长的影响及利用措施[J].中国园林.1995(3)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700