干砂和饱和砂性土中盾构开挖面稳定数值和离心试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为有效解决城市交通拥堵问题,越来越多的城市开始大规模兴建轨道交通。城市轨道交通的区间隧道大多采用盾构法施工,由于施工中时常遇到工程地质和水文地质状况多变、建(构)筑物及地下管线分布密集等诸多复杂条件,盾构开挖面稳定性问题日益突出。基于实际工程需求,本文对干砂地层、稳态渗流下饱和砂性土地层(如饱和砂质粉土)这两种典型复杂条件下盾构开挖面稳定性问题进行了系统深入地研究。主要工作和研究成果如下:
     (1)采用离散元法较为深入研究了干砂地层盾构开挖面稳定性问题。发现失稳过程中开挖面支护力随位移增大存在“先减小至极限值而后逐渐增大并趋于残余值”的现象;获得了当隧道埋深比C/D>1时极限支护力受埋深比影响较小的重要结论;揭示了典型埋深下(即C/D=2)开挖面渐进失稳模式;发现了极限状态时,盾构拱顶以上失稳区内存在显著的“土拱”效应,失稳区内土体出现“松动”现象。
     (2)研制了适用于模拟单相土层(如干砂)开挖面失稳的离心模型试验装置,基于该装置开展了密实干砂地层开挖面失稳离心模型试验。离心试验证实了离散元研究获得的开挖面支护力—位移变化关系的可靠性,发现了极限支护力随埋深比增大先增加而后基本保持不变的规律,借助PIV技术揭示了极限状态时开挖面前方呈现“楔形体—棱柱体”的失稳模式,获得了失稳“棱柱体”高度与隧道埋深有关的重要结论。
     (3)研制了国内外首套适用于模拟稳态渗流下盾构开挖面失稳的离心模型试验装置,基于该装置开展了国内外首个稳态渗流下饱和砂质粉土地层盾构开挖面失稳离心模型试验。研究发现:稳态渗流下,开挖面失稳过程中有效支护力随位移增大存在“先减小至极限值而后线性增大”的现象;稳态渗流下开挖面极限有效支护力随密封舱与远场水头差增大而线性增大;极限状态时,开挖面前方呈现“楔形体—棱柱体”失稳模式,此时失稳“棱柱体”已经发展到地表,其高度不受隧道埋深比的影响;孔压沿开挖面向远场逐渐增大,当距开挖面水平距离大于0.75D后,孔压几乎保持不变。
     (4)在本文离散元数值研究及离心模型试验的相关成果基础上,围绕失稳模式和“土拱”效应两方面对经典“楔形体—棱柱体”极限平衡模型(Anagnostou&Kovari1996)进行了修正,建立了适用于计算单相无粘性土层(如干砂)、单相粘性-摩擦型土层、稳态渗流时两相粘性-摩擦型土层等复杂条件下开挖面极限支护力(或极限有效支护力)的修正“楔形体—棱柱体”极限平衡模型。本文修正“楔形体—棱柱体”理论模型的准确性得到了笔者开展的离心模型试验的验证,成功应用于杭州地铁1号线九堡东站—下沙西站区间盾构工程。
     本文研究有助于提升行业内对复杂条件下开挖面稳定问题的认识,为实际工程中控制盾构开挖面稳定性提供参考。
In order to solve the problem of the heavy traffic in the cities, more and more cities begin to construct the urban rail transits. Nowadays, most interval tunnels of the urban rail transits are constructed by the shield machines, due to the complicated constructional conditions such as the severely variable engineering geology and hydrologic geology, the densely distribution of the buildings and underground pipelines, the problem of face stability of the shield tunnel has become increasingly important. Based on the engineering requirement, two typical tunnel face stability problems under complicated constructional conditions were mainly investigated in this thesis, one is for tunneling in the dry sandy stratum, the other is for tunneling in the saturated sandy soils (e.g. the sandy silt stratum) with the steady state seepage.
     The major works and results of this dissertation are as follows:
     (1) Relatively in-depth DEM studies on the problem of tunnel face stability in the dry sandy ground was performed. According to the DEM investigations, it is found that during the tunnel face failure, with the increase of the face displacement, the support pressure firstly decreases to the limit support pressure and then increases gradually to a stable value (i.e., the residual support pressure). It is also obtained that when the cover-to-depth ratio C/D is no less than1.0, the limit support pressure is almost not influenced by the C/D value. For one typical buried tunnel (i.e., C/D=2), the failure patterns of the limit state and the residual stated were investigated. In the limit state, it is found that significant soil arching occurs in the upper part of the failure zone (which is above the tunnel crown), meanwhile, the soil becomes loosened in the failure zone.
     (2) An onboard centrifuge apparatus for investing the problem of tunnel face stability in the single phase soils (e.g. the dry sand) was developed. Based on this apparatus, a series of centrifugal model tests on tunnel face stability in dense sand were performed. The relationships between the support pressure and face displacement revealed by the DEM analysis are confirmed, it is obtained that the limit support pressure increases with the increase of relative depth CID and then remains almost the same. By using the PIV technology, it is found that in the limit state, a "wedge-prism" failure pattern occurs in front of the tunnel face, and it is also found that the relative depth has effects on the height of the failure "prism" in the limit state.
     (3) A world-first onboard centrifuge apparatus for investing the problem of tunnel face stability under the steady state seepage was developed. Based on this apparatus, a series of world-first centrifugal model tests on tunnel face stability in the saturated sandy silts stratum under the steady state seepage were conducted. During the tunnel face failure, with the increase of face displacement, it is found that the support pressure firstly decreases to the limit effective support pressure and then increases linearly and gradually. The limit effective support pressure increases linearly with the increase of the water head difference in the shield's chamber and the far ground. In the limit state, a "wedge-prism" failure pattern occurs in front of the tunnel face, while the height of the failure "prism" is not affected by the relative depth of the tunnel (i.e., C/D). It is also found that the pore pressure increases with the horizontal distance to the runnel face, and when the horizontal distance to the tunnel face is no less than0.75D, the pore pressure seems to keep invariant.
     (4) Based on the investigations via DEM simulations and centrifugal model tests, some modifications on the classical "wedge-prism" limit equilibrium model (Anagnostou&Kovari1996) from the perspectives of the failure pattern and soil arching were conducted to build the improved "wedge-prism" model, which is more suitable for calculating the limit support pressure (or limit effective support pressure) on the conditions of the dry cohesionless soils (e.g., the dry sand), dry cohesive-frictional soils, and two phases cohesive-frictional soils (e.g., the saturated sandy silts) in steady state seepage. The accuracy of the improved wedge-prism model were verified by the results of the centrifugal model tests, and it was successfully applied in the interval tunnels of the line No.1of the Hangzhou metro.
     This research will obviously improve the engineers'cognitions on the problems of the tunnel face stability under complicated constructional conditions, and also will help to guarantee the face stability of the shield tunnels in the practical engineering.
引文
Ahmed M, Iskander M. Evaluation of tunnel face stability by transparent soil models [J]. Tunneling and Underground Space Technology,2012,27(1):101-110.
    Anagnostou G, Kovari K. Face stability condition with earth pressure balanced shields [J]. Tunneling and Underground Space Technology,1996,11 (2):165-173.
    Anagnostou G. The contribution of horizontal arching to tunnel face stability [J].Geotechnik,2012, 35 (Heft 1),34-44.
    Aubertin M, Li L, Arnoldi S, Belem T, Bussiere B, Benzaazoua M, Simon R. Interaction between backfill and rock mass in narrow stopes. Soil and Rock, America,2003,1157-1164.
    Barton RR. A study of the angle of interparlicle friction of sands with respect to its influence on the mass strength [D]. The Victoria University of Manchester,1972.
    Bolton M. The Role of Micro-Mechanics in Soil Mechanics [C]. International Workshop on Soil Crushability, Yamaguchi University, Japan,1999.
    Broere W. Tunnel face stability & new CPT application [D]. PhD thesis, Delft University Press, Netherlands,2001.
    Buhan PD, Culvillier L, Dormieux L, Maghous S. Face stability of shallow circular tunnels driven under the water table:A numerical analysis [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1999,23:79-95.
    Cavarretta Ⅰ, Coop M, O'Sullivan C. The influence of particle characteristics on the behaviour of coarse grained soils [J]. Geotechnique,2010,60(6):413-423.
    Chambon P, Corte JF. Sallow tunnels in cohesionless soil:stability of tunnel face [J]. Journal of Geotechnical Engineering,1994,120(7):1148-1164.
    Chen RP, Zhu J, Liu W, Tang XW. Ground movement induced by parallel EPB tunnels in silty soils[J]. Tunnelling and Underground Space Technology,2011,26:163-171.
    Chen RP, Li J, Kong LG, Tang LJ. Experimental study on face instability of shield tunnel in sand [J]. Tunnelling and Underground Space Technology,2013,33:12-21.
    Cundall PA, Strack, OD. A discrete numerical model for granular assemblies [J]. Geotechnique, 1979,29(1):47-65.
    Fugslang LD, Ovesen NK. The Application of the Theory of Modeling to Centrifuge studies [C]. Centrifuges in Soil Mechanics,1988, PP.119-137.
    Handy LR. The Arch in Soil Arching. ASCE Journal of Geotechnical Engineering, 1995,111 (3):302-318.
    Horn N. Horizontal earth pressure on the vertical surfaces of the tunnel tubes [C]. National Conference of the Hungarian Civil Engineering Industry, Budapest, November 1961, p.7-16. (In German)Idinger G, Aklik P, Wu W, Borja RI. Centrifuge model test on the face stability of shallow tunnel [J]. Acta Geotechnica,2011,6(2):105-117.
    Itasca. Particle flow code in 3 dimensions (PFC3D), user's guide [M]. Itasca consulting group, Minneapolis,2008.
    Jaky J. The coefficient of earth pressure at rest. Journal of the society of Hungarian architects and engineers, Budapest,1944, pp.355-358.
    Jancsecz S, Steiner W. Face support for a large mix-shield in heterogeneous ground conditions [C]. In:Proceeding of the 7th International Symposium on Tunneling, Taylor and Francis, London, 1994, pp.531-550.
    Jia GW, Zhan TLT, Chen YM, Fredlund DG. Performance of a large-scale slope model subjected to rising and lowering water levels [J]. Engineering Geology,2009,106(1-2):92-103.
    Kim SH, Tonon F. Face stability and required support pressure for TBM driven tunnels with ideal face membrane-Drained case [J]. Tunnelling and underground space technology,2010,25: 526-542.
    Karim AM. Three dimensional discrete element modeling of tunneling in sand [D]. PhD thesis, Alberta University, Canada,2007.
    Kirsch A, Kolymbas D.Theoretische Untersuchung zur Ortsbruststabilitat[J].In:Bautechnik 2005, 82/7,449-456.
    Kirsch A. Experimental investigation of the face stability of shallow tunnels in sand [J]. Acta Geotechnica,2010,5:43-62.
    Krause T. Schildvortrieb mit flussigkeits-und erdgestutzter ortsbrust [D]. PhD thesis, Technical University Carolo-Wilhelmina, Brunswick,1987.
    Krynine DP. Discussion of Stability and Stiffness of Cellular Cofferdams by Karl Terzaghi. Transactions, ASCE,1945,110:1175-1178.
    Leca E, Dormieux L. Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material [J]. Geotechnique,1990,40(4):581-606.
    Lee IM, Lee JS, Nam SW. Effect of seepage force on tunnel face stability reinforced with multi-step pipe grouting [J]. Tunnelling and underground space technology,2004,19: 551-565.
    Lee IM, Nam SW. The study of seepage force acting on the tunnel lining and tunnel face in shallow tunnels [J]. Tunnelling and underground space technology,2001,16:31-40.
    Lee IM, Nam SW, Ahn JH. Effect of seepage force on tunnel face stability [J]. Canadian Geotechnical Journal,2003,40:342-350.
    Marston A. The theory of external loads on closed conduits in the light of latest experiments. Iowa Engineering Experiment Station, Ames Iowa,1930.
    Melis-Maynar MJ, Medina-Rodriguez LE. Discrete numerical model for analysis of earth pressure balance tunnel excavation [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005,131(10):1234-1242.
    Messerli J, Pimentel E, Anagnostou G. Experimental study into tunnel face collapse in sand [C]. Physical Modelling in Geotechnics, edited by Springman, Laue & Seward, Zurich,2010, Vol. 1, pp.575-580.
    Mindlin R. Compliance of elastic bodies in contact [J]. Jounml of applied mechanics,1949,71(3): 258-269.
    Mollon G, Dias D, Soubra AH. Probabilistic Analysis and Design of Circular Tunnels against Face Stability [J]. International Journal of Geomechanics,2009,9(6):237-249.
    Mollon G, Dias D, Soubra AH. Face stability analysis of circular tunnels driven by a pressurized shield [J]. Journal of Geotechnical and Geoenvironmental Engineering,2010,136(1): 215-229.
    Mollon G, Phoon KK, Dias D, Soubra AH. Validation of a new 2D failure mechanism for the stability analysis of a pressurized tunnel face in a spatially varying sand [J]. Journal of Engineering Mechanics,2011,137(1):8-21.
    Murayama S, Endo M, Hashiba T, Yamamoto K, Sasaki H (eds). Geotechnical aspects for the excavating performance of the shield machines [C]. The 21st annual lecture in meeting of Japan Society of Civil Engineers,1966.
    Oblozinsky P, Kuwano J. Centrifuge experiments on stability of tunnel face [J]. Slovak journal of civil engineering,2004,3:23-29.
    O'Sullivan C, Bray JD, Riemer MF. Examination of the Response of Regularly Packed Specimens of Spherical Particles Using Physical Tests and Discrete Element Simulations [J]. Journal of Engineering Mechanics,2004,130(10):1140-1150.
    Ovesen NK. The Use of Physical Models in Design:The Scaling Law Relationships [C]. Proceeding of 7th European Conference on Soil Mechanics and Foundation Engineering, Brighton,1979,4:318-323.
    Renzo AD, Maio FPD. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes [J]. Chemical Engineering Science,2004,59(3):525-541.
    Schofield AN. Cambridge geotechnical centrifuge operations [J]. Geotechnique,1980,30(3): 227-268.
    Skinner AE. A note on the influence of interparticle friction on the shearing strength of a random assembly of spherical particles [J]. Geotechnique,1969,19:150-157.
    Sterpi D, Cividini A. A Physical and Numerical Investigation on the Stability of Shallow Tunnels in Strain Softening Media [J]. Rock Mechanics and Rock Engineering,2004,37(4):277-298.
    Strohle PM, Vermeer PA. Tunnel face stability with groundwater flow [C]. Numerical Methods in Geotechnical Engineering, edited by Benz & Nordal, Proceedings of the 7th European Conference on Numerical Methods in Geotechnical Engineering, Trondheim, CRC Press (Taylor&Francis),2010, pp.813-818.
    Takano D, Otani J, Nagatani H, Mukunoki T. Application of X-ray CT boundary value problems in geotechnical engineering-Research on tunnel face failure[C]. Proc., Geocongress, ASCE, Reston, Va,2006.
    Taylor RN (eds.). Geotechnical centrifuge technology [M]. Taylor & Francis,2005.
    Terzaghi K. Theoretical soil mechanics [M]. John Wiley & Sons, New York,1943.
    Thorpe JP. Ground movements during tunneling in sand [M]. Master thesis, Queen's university, Kingston, Ontario, Canada,2007.
    Thomas PA. Discontinuous deformation analysis of particulate media [D]. University of California at Berkeley,1997.
    Vermeer PA, Ruse NM, Marcher T. Tunnel heading stability in drained ground [J]. Felsbau 2002, 20(6):8-18.
    White DJ, Take WA, Bolton MD. Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry [J]. Geotechnique,2003,53(7):619-631.
    Zhang ZX, Hu XY, Scott KD. A discrete numerical approach for modeling face stability in slurry shield tunnelling in soft soils [J]. Computers and Geotechnics,2011,38(1):94-104.
    Zhu B, Kong DQ, Chen RP, Kong LG, Chen YM. Installation and lateral loading tests of suction caissons in silt [J]. Canadian Geotechnical Journal,2011,48:1070-1084.
    陈馈,洪开荣,吴学松.盾构施工技术[M].北京:人民交通出版社,2009.
    杜延龄,韩连兵.土工离心模型试验技术[M].北京:中国水利水电出版社,2010.
    高健,张义同,乔金丽.渗透力对隧道开挖面稳定性影响分析[J].岩土工程学报,2009,31(10):1547-1553.
    黄戡,刘宝琛,彭建国,赵丹,丁国华,胡惠华.坡度因素对雪峰山隧道开挖面最小支护力的影响研究[J].公路工程,2010,35(1):9-12,27.
    黄正荣,朱伟,梁精华,秦建设.浅埋砂土中盾构法隧道开挖面极限支护压力及稳定研究[J].岩土工程学报,2006a,28(11):2005-2009.
    黄正荣,朱伟,梁精华,秦建设.盾构法隧道开挖面极限支护压力研究[J].土木工程学报,2006b,39(10):112-116.
    胡雯婷,吕玺琳,黄茂松.盾构隧道开挖面极限支护压力三维极限平衡解[J].地下空间与工程学报,2011,7(5):853-856,862.
    雷明锋,彭立敏,施成华,赵丹.迎坡条件下盾构隧道开挖面极限支护力计算与分析[J].岩土工程学报,2010,32(3):488-492.
    李志华,华渊,周太全,孙秀丽.盾构隧道开挖面稳定的可靠度研究[J].岩土力学,2008,29(增):315-319.
    黎春林,缪林昌.盾构施工渗流场有限元模拟及其对临近土层的影响分析[J].东南大学学报(自然科学版),2010,40(5):1066.1072.
    刘维,张翔杰,唐晓武,朱季,陈仁朋.饱和沙土中土压盾构开挖面极限支护力[J].浙江大学学报(工学版),2012,46(4):664.704.
    吕玺琳,王浩然,黄茂松.盾构隧道开挖面稳定极限理论研究[J].岩土工程学报,2011,33(1):57-62.
    南京水利科学研究院土工研究所.土工试验技术手册[M].北京:人民交通出版社,2003.
    乔金丽,张义同,许春彦.考虑渗流的盾构隧道开挖面稳定性分析[J].水文地质工程地质,2009,第1期,80-85.
    乔金丽,张义同,高健,李艳艳.强度折减法在盾构隧道开挖面稳定分析中的应用[J].天津大学学报,2010a,43(1):14-20.
    乔金丽,张义同,高健.考虑渗流的多层土盾构隧道开挖面稳定性分析[J].岩土力学,2010b,31(5):1497-1502.
    王泳嘉,邢纪波.离散单元法及其在岩土力学中的应用[M].沈阳:东北工学院出版社,1991.
    王浩然,黄茂松,吕玺琳,周维祥.考虑渗流影响的盾构隧道开挖面稳定上限分析[J].岩土工程学报,2013,35(9):1696.1704.
    魏纲,贺峰.砂性土中顶管开挖面最小支护压力的计算[J].地下空间与工程学报,2007,3(5):903.908.
    武力,屈福政,孙伟,李守巨,刘畅.基于离散元的土压平衡盾构密封舱压力分析[J].岩土工程学报,2010,32(1):18-23.
    吴巧玲.盾构构造及应用[M].北京:人民交通出版社,2011.
    邢纪波,俞良群,张瑞丰,等.离散单元法的计算参数和求解方法选择[J].计算力学学报,1999,16(1):47-51.
    徐光明,章为民.离心模型中的粒径效应和边界效应研究[J].岩土工程学报,1996,18(3):80-86.
    徐小敏.砂土液化及其判别的微观机理研究[D].浙江大学博士学位论文,2012.
    杨春宝,朱斌,孔令刚,等.水位变化诱发砂质粉土边坡失稳离心模型试验[J].岩土工程学报,2013,35(7):1261.1271.
    杨峰,阳军生,赵炼恒.浅埋隧道工作面破坏模式与支护反力研究[J].岩土工程学报,2010,32(2):279-284.
    岩土离心模拟技术的原理和工程应用编委会.岩土离心模拟技术的原理和工程应用[M].武汉:长江出版社,2011.
    朱伟,秦建设,卢廷浩.砂土中盾构开挖面变形与破坏数值模拟研究[J].岩土工程学报,2005,27(8):897-902.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700