悬臂桩三维土拱效应及嵌固段地基反力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
悬臂桩作为一种深层抗滑支挡结构,因其具有抗滑能力强、节约建筑用地、施工便捷等优点,被广泛应用于加固岩土体切方及填方工程等领域。尽管悬臂桩的设计理论、施工技术正不断得到发展,但当前设计理论大多都基于平面假定,实际工程中常常遇到一些因设计理论简化而导致的变形破坏现象。论文依托国家杰出青年科学基金(NO.50625824)、国家自然科学基金(NO.50878218)、“十一五”国家科技支撑计划课题子题(NO.2008BAJ06B04)和国务院三峡办移民安置规划司项目(NO.2008SXG02-2),通过对悬臂桩施工进行现场调研,对悬臂桩桩间三维土拱效应及嵌固段桩身的地基反力分布展开研究,主要工作及研究结论如下:
     (1)在现场调查的基础上,提出采用沿法向或推力方向土压力的突变程度及突变范围替代传统的桩土承载比来衡量悬臂桩土拱效应的发挥程度及作用范围更趋合理。据此设计了悬臂桩室内推桩模型试验,重点对悬臂桩桩周土内部的应力分布特征及桩周三维土拱效应的作用程度及作用范围进行研究,深入分析了桩周摩擦土拱效应与直接土拱效应之间的联系,指出直接土拱承担了绝大部分推力作用,并对桩周土的整体稳定性起决定性作用。
     (2)通过对埋入式模型桩进行室内推桩试验,对比分析了上述两种结构形式桩周土的应力分布及变形破坏模式。通过调整悬臂桩间距和改变滑体材料等方式,对比分析了桩间距及滑体材料特性对桩周起拱效应的影响。在上述试验研究的基础上,进而分析了桩周土拱效应形成、发展与消散的全过程。
     (3)设计了柔性板桩板墙加固斜坡填方地基的室外大型试验,分别采用桩前、桩后布置柔性挡土板的方式,对比研究了柔性板桩板墙背侧的三维成拱效应及挡土板土压力的分布模式。通过摘取挡土板的手段,模拟了桩间土的卸荷过程,采用自制的简易静力贯入设备对拱脚剪切线附近的原状土进行测试,继而研究了直接土拱拱脚处的极限剪切作用厚度。将监测得到的挡土板土压力与拟化简仓法及卸荷拱法的理论计算结果进行对比,探讨了柔性板桩板墙设计时土压力的合理取值方法。
     (4)依据现场调查及试验结果,将拱脚确定为最不利位置,运用弹性理论对坡体切方前、后的应力状态作了分析,结合岩土强度准则建立了考虑三维土拱效应及切方卸荷效应的悬臂桩桩间土稳定性分析模型,进而探讨了土拱作用范围与桩间土局部稳定性之间的关系。在对桩间土拱整体稳定性进行分析的基础上,提出考虑桩周土自重及滑坡推力共同作用时桩间土整体稳定性与最大桩间距的分析方法。
     (5)引入三角级数法,通过叠加原理建立了考虑空间效应悬臂桩嵌固段地基反力计算方法。通过对桩身嵌固段的桩-岩接触压应力进行监测,分析了摩擦效应对桩-地基相互作用的影响,指出当桩嵌入较完整的岩质地基时,将桩底约束条件视为自由约束更为合理。为了检验模型计算结果的合理性,将理论计算结果与试验监测结果及普通K法计算结果进行对比。
     (6)论文最后分析了悬臂桩桩间土及嵌固段软弱地基的加固措施,并针对锚杆加固桩间土及钢管桩加固桩前嵌固段地基的有限差分模型进行计算。据此,对锚杆加固桩间土的立面布置方式及锚杆设计钻进深度进行分析,探讨了钢管桩与嵌固段地基之间的相互作用模式,分析了钢管桩的工作原理,并就上述两种加固措施的方案优化进行探讨。
Cantilever pile is widely used in reinforcement to excavation and fill geotechnical engineering as a support structure with resistance to deep sliding because of its characteristics, such as strong resistance, reduction of land use, convenience and short-time spend about construction and so on. The design theory and construction technology of cantilever piles have been developed in many years, however, most of current methods are based on plane strain assumption. Therefore, there are some failure and deformation phenomena which occur in actual construction and application stages. This research work is being supported by grants from National Science Fund for Distinguished Young Scholars of China (NO.50625824), National Natural Science Foundation of China (NO.50878218), National Science and a subject which belong to Technique Foundation during the 11th Five-Year Plan Period of China (NO.2008BAJ06B04) and Transmigrant Allocation and Programming Department of State Council Three Gorges Project Construction Committee (NO.2008SXG02-2). The study which mainly relates to three dimensional arching effect of cantilever piles and ground resisting force acted on their build-in zone is made by survey in field engineering. The main work and research conclusions are as follow:
     (1) In order to more rationally account the level and range of soil arching effect, it is suggested that the mutations of earth pressure along the normal or thrust force direction should be considered to substitute for the ratio of loads on the pile and soil after investigation work has finished on site. A indoor trust-pile test is designed based on viewpoints above, and the major test is directed distribution characteristics of stress in soil and three-dimensional soil arching effects. The relationship between friction and direct soil arching effects is studied according to tesr results. It is proved that direct soil arching structure bears the most earth pressure load, and is more critical to impact on stability of soil mass between adjacent cantilever piles.
     (2) A indoor trust-pile test about buried piles is also design in order to comparision with the cantilever piles. The distribution of earth pressure and failure pattern of soil near the piles is analysed according to the test results. The contrast and analysis on the test results of soil arching effect are made by changing the spacings of cantilever piles and the property of soil. In addition, the formation, development and fade processes of soil arching effect are discussed.
     (3) A outdoor test about flexiboard sheet-pile walls used in reinforced fill foundation on inclined ramp is designed. The purpose of test is primarily to compair and analyse results of three-dimensional soil arching effect and distribution of earth pressure, when flexiboard is installed on frontal or dorsal surface of piles. In the interest of simulating the unloading process of soil between piles, the boards are taken out in test process. Subsequently, a simple static penetration device is made for evaluating solidity of undisturbed soil on shear failure line of arch spring, and ultimate shear-thicknesses of direct arch are analyzed. In addition, test analysis is made about the comparison testing results with calculation value of the simplified granary method and the unloading arch method to discuss the design method of earth pressure which acts on the board.
     (4) The soil near the arch springing is worst-case position, which is based on survey and analysis of cantilever piles in incised slope and testing results. The stress fields of slope in both initial and incised condition are obtained by mechanics of elasticity. Three-dimensional soil arching effect and cutting-unloading stability analysis model of soil between adjacent piles is established on the basis of geotechnical strength theory. It is discussed that there is a relation between range of arching effect and partial stability of soil between piles. Based on the analysis about integral soil stability near piles, the analysis method of maximal spacing is estabilished by considering self-weight stress and sliding thrust.
     (5) A calculation method which is considered space effect in cantilever’build-in zone is established by superposition principle, and this process refers to reference the trigonometric series method. Based testing results of compression stress which acts on the contact surface between pile and ground, friction effect of contact surface is analysed. It is suggested that constraint condition at bottom of pile is deem to be free, when the ground near the pile is composed of perfect rock. In order to verify the rationality of calculation model, the comparison between test results and calculation results which contain the trigonometric series and K method is made.
     (6) Finally, the strengthening facilities are discussed about soil mass between cantilever piles and ground near their build-in zone. The finite difference methods are established ahout soil between piles reinforced by anchors and ground in front of piles strengthed by steel-pipe piles. The elevation election and drilling length of anchors are analysed, and the interacting between steel-pipe piles and ground and their operating principle are also studied. On the basis of conclusions above, the optimum designs about two facilities are discussed.
引文
[1]李海光.新型支挡结构设计与工程实例[M].北京:人民交通出版社, 2004.
    [2]铁道部第二勘测设计院.抗滑桩设计与计算[M].北京:中国铁道出版社,1983.
    [3]赵明阶,何光春,王多垠.边坡工程处治技术[M].北京:人民交通出版社, 2003.
    [4]郑颖人,陈祖煜,王恭先,等.边坡与滑坡工程治理[M].北京:人民交通出版社, 2007.
    [5]章勇武,马惠民.山区高速公路滑坡与高边坡病害防治技术实践[M].北京:人民交通出版社, 2007.
    [6] Robert W.Day,Fellow. Design and repair for surficial slope failures[J]. Practice Periodical on Structural Design and Construction,1996,1(3):83-87.
    [7] Yong Tan,Samuel G.Paikowsky.Performance of sheet pile wall in peat[J]. Journal of Geotechnical and Geoenvironmental Engineering,2008,134(4):445-458.
    [8]杨光华.深基坑支护结构的实用计算方法及其应用[M].北京:地质出版社, 2004.
    [9]黄求顺,张四平,胡岱文.边坡工程[M].重庆:重庆大学出版社, 2003.
    [10] D.Matthew Stuart.Project-specific steel sheet piling applications[J]. Practice Periodical on Structural Design and Construction,2004,9(4):194-201.
    [11] Thomas L.Brandon,Steohen G.Wright,J.Michael Duncan.Analysis of the stability of l-walls with gaps between the 1-wall and the levee fill[J].Journal of Geotechnical and Geoenvironmental Engineering,2008,134(5):692-700.
    [12]中国建筑科学研究院. JGJ120-99建筑基坑支护技术规程[S].北京:中国建筑工业出版社,1999.
    [13]重庆市地方标准编写组. DB50/5029–2004地质灾害防治工程设计规范[S].重庆:[s.n.],2004.
    [14]中华人民共和国国家发展和改革委员会. DL/T5353- 2006水电水利工程边坡设计规范[S].北京:中国电力出版社, 2006.
    [15]铁道第二勘察设计院. TB10025-2006铁路路基支挡结构设计规范[S].北京:中国铁道出版社, 2006.
    [16]《滑坡文集》编委会.滑坡文集(第十八集) [M].北京:中国铁道出版社, 2006.
    [17] Hassiotis,S., Chameau,J.,Gunaratne,M.. Design method for stabilization of slopes with piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997,123(4):314-323.
    [18]邹广电,陈生水.抗滑桩工程的整体设计方法及其优化数值模型[J].岩土工程学报,2003, 25(1):11-17.
    [19]肖武权,阮波.滑坡整治中抗滑桩的优化设计方法[J].中国铁道科学,2006,27(6):8-11.
    [20]刘春茂,董捷,边成鑫.悬臂式抗滑桩设计参数对其工作性能的影响分析[J].重庆建筑大学学报,2008, 30(2):66-70.
    [21] Terzaghi K. Stress distribution in dry and in saturated sand above a yielding trap-door[C]. Proceedings of 1st Conference of Soil Mechanics and Foundation Engineering, Boston, 1936,1:307-316.
    [22] Terzaghi K. Theoretical soil mechanics[M]. New York:John Wiley & Son, 1943.
    [23] Handy R L. The Arch in Soil Arching[J].Journal of Geotechnical Engineering,ASCE, 1985, 3(3):302-318.
    [24] Low B K,Tang S K,Choa V. Arching in piled embankments[J].Journal of Geotechnical Engineering, 1994,120(11):1917-1937.
    [25]杨雪强,何世秀,庄心善.土木工程中的成拱效应[J].湖北工学院学报,1994,9(1):1-7.
    [26]吴子树,张利民,胡定.土拱的形成机理及存在条件的探讨[J].成都科技大学学报, 1995,(2):15-19.
    [27]加瑞,朱伟,钟小春.砂土拱效应的室内模型试验研究[C].第二届全国岩土与工程学术大会论文集(下),北京:科学出版社,2006.
    [28] Rchard L H. The arch in soil arching[J]. Journal of Geotechnical Engineering, 1985,111(3):302-318.
    [29]蒋波,应宏伟,谢康和.基于土拱效应的粮仓土压力研究[J].科技通报,2005,21(5): 624-627.
    [30]钟小春.基坑支护桩间土体拱效应理论及有限元分析[J].岩土工程学报,Nov.,2006,28(Supp.): 1501-1504.
    [31]贾海莉,王成华,李江洪.关于土拱效应的几个问题[J].西南交通大学学报,2003, 38(4): 398–402.
    [32] Bosscher J,Gray H. Soil arching in sandy slopes[J].Journal of Geotechnical Engineering,1986, 112(6):626-645.
    [33] Lawrence. The mechanism of load transfer in granular materials utilizing tactile pressure sensor[D]. University of Massachusetts Lowell,2002.
    [34]吴汉辉.埋入式抗滑桩模型试验及其工作机理研究[D].重庆大学硕士学位论文, 2004.
    [35]杨明,姚令侃,王广军.抗滑桩宽度与桩间距对桩间土拱效应的影响研究[J].岩土工程学报,2007, 29(10): 1477–1482.
    [36]朱碧堂,刘一亮.基坑开挖和支护中的土拱效应[J].岩土工程师,2001,13(1):1-4.
    [37]胡敏云.深基坑桩排式支护桩侧土压力及设计方法研究[D].西南交通大学博士学位论文,1998.
    [38]胡敏云.深基坑护壁桩桩间距确定方法探讨[J].中国公路学报,2000,14(2):27-29.
    [39]叶晓明.柱板结构挡土墙板上的土压力计算方法[J].地下空间,1999,19(2):142-146.
    [40]叶晓明,孟凡涛,许年春.土层水平卸荷拱的形成条件[J].岩石力学与工程学报, 2002,21(5): 745-748.
    [41]沈珠江.桩的抗滑阻力和抗滑桩的极限设计[J].岩土工程学报,1992,14(1):51-56.
    [42]常保平.抗滑桩的桩间土拱和临界间距问题探讨[A].见:滑坡文集(第十三集)[C].北京:中国铁道出版社,1998.73-78.
    [43]王成华,陈永波,林立相.抗滑桩间土拱力学特性与最大间距分析[J].山地学报,2001, 19(6):556-559.
    [44]冯君,吕和林,王成华.普氏理论在确定抗滑桩间距中的应用[J].中国铁道科学, 2003,24(6):79-81.
    [45]周德培,肖世国,夏雄.边坡工程中抗滑桩合理间距的探讨[J].岩土工程学报,2004,26(1):132-135.
    [46]周应华,周德培,冯君.推力桩桩间土拱几何力学特性及桩间距的确定[J].岩土力学, 2006,27(3):455–457.
    [47]贾海莉,王成华,李江洪.基于土拱效应的抗滑桩与护壁桩的桩间距分析[J].工程地质学报,2004,12(1):98-103.
    [48]王乾坤.抗滑桩的桩间土拱和临界间距的探讨[J].武汉理工大学学报,2005,27(8): 64–67.
    [49]蒋良潍,黄润秋,蒋忠信.黏性土桩间土拱效应计算与桩间距分析[J].岩土力学, 2006, 27(3): 445–450.
    [50] Tomio Ito.Tamossu M. Methods to estimate lateral force acting on stabilizing piles[J].Soils and Foundation, 1975,15(4):43-59.
    [51] Tomio Ito.Extended design method for multi-row stabilizing piles against landslide[J].Soils and Foundation, 1982,22(1):1-13.
    [52]李仁平,陈仁朋,陈云敏.阻滑桩加固土坡的极限设计方法[J].浙江大学学报(工学版), 2001,35(6):618-622.
    [53]邹广电,陈永平.抗滑桩的极限阻力及其整体设计[J].水利学报,2003,(6):22-29.
    [54] C.-Y. Chen, G.R. Martin. Soil–structure interaction for landslide stabilizing piles[J]. Computers and Geotechnics, 2002, 29(3): 363 -386.
    [55]张建勋,陈福全,简洪钰.被动桩中土拱效应问题的数值分析[J].岩土力学, 2004,25(2):174–178.
    [56]韩爱民,肖军华,梅国雄.被动桩中土拱效应特征与影响参数研究[J].工程地质学报, 2006,14(1):111-116.
    [57]琚晓冬,冯文娟,朱金明.桩后土拱作用范围研究[J].三峡大学学报,2006, 28(3):197-200.
    [58]郑学鑫.抗滑桩桩间土拱效应及其有限元模拟研究[D].河海大学硕士学位论文,2007.
    [59]吕涛,齐美苗,彭良泉.抗滑桩的土拱效应及数值模拟[J].人民长江,2007,38(1): 42-45.
    [60]李忠诚,杨敏.被动受荷桩成拱效应及三维数值分析[J].土木工程学报, 2006,39(3): 114–117.
    [61]李忠诚,杨敏,张慧.侧移土体被动桩成拱效应及主动侧土压力计算[J].力学季刊,2006,27(3):505- 510.
    [62]李忠诚,洪昌地.侧移土体被动桩成拱效应分析[J].岩土力学, 2008, 29(6): 1711-1715.
    [63]聂如松,冷伍明,邓宗威,等.被动方桩土拱效应三维有限元分析[J].工业建筑, 2007, 37(7): 47–52.
    [64]陈福全,侯永峰,刘毓氚.考虑桩土侧移的被动桩中土拱效应数值分析[J].岩土力学, 2007,28(7): 1333–1337.
    [65]杨明,姚令侃,王广军.桩间土拱效应离心模型试验及数值模拟研究[J].岩土力学,2008,29(3):817- 822.
    [66] Shubhra Goel,N. R. Patra. Effect of Arching on Active Earth Pressure for Rigid Retaining Walls Considering Translation Mode[J].International Journal of Geomechanics, 2008,8(2):123-133.
    [67] Bransby,P.L., Milligan,G.W.E..Soil deformations near cantilever sheet pile walls[J]. Geotechnique, 1975, 25(2):175-195.
    [68] A. Shelke,N. R. Patra. Effect of Arching on Uplift Capacity of Pile Groups in Sand[J]. International Journal of Geomechanics, 2008,8(6):347-354.
    [69]代军,胡岱文,吴曙光.桩锚支挡结构体系挡板土压力试验研究[J].重庆建筑大学学报, 2001, 23(4): 48–54.
    [70]蒋忠信,蒋良潍.南昆铁路支挡结构主动土压力分布图式[J].岩石力学与工程学报,2005, 24(6):1035-1040.
    [71]王广军.桩板墙工程土拱效应及合理桩间距研究[D].成都:西南交通大学硕士学位论文,2006.
    [72]蒋楚生.路堤(肩)式预应力锚索桩板墙结构设计理论及工程应用研究[博士学位论文D].成都:西南交通大学,2006.
    [73]甘建国,李志勇,邓宗伟.预应力锚索桩板墙受力现场测试与计算研究[J].2007,32(5):105-109.
    [74]董捷,张永兴,吴汉辉.考虑滑体法向应力突变的阻滑桩成拱效应研究[J].地质与勘探,2008,44(6): 97-102.
    [75] Hetenyi,M..Beams on elastic foundations[M].Michigan:University of Michigan Press,1946.
    [76] Bowles,J.E.. Foundation design and analysis[M].New York:McGraw-Hill,1988.
    [77] Broms,B.B.. Lateral resistance of piles in cohesive soils[J].Journal of Soil Mechanics andFoundation Engineering,1964,90(2):122-155.
    [78] Lianyang Zhang,Francisco Silva,Ralph Grismala.Ultimate lateral resistance to piles in cohesionless soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005,131(1):78-83.
    [79] Assaf Klar,Sam Frydman. Three-dimensional analysis of lateral pile response using two-dimensional explicit numerical scheme[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002,128(9):775-784.
    [80] W.Y.Shen, C.I.Teh. Analysis of laterally loaded piles in soil with stiffness increasing with depth[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(8):878-882.
    [81] Phillip S.K. Ooi, Brian K.F. Chang, Shuohang Wang. Simplified lateral load analyses of fixed-head piles and pile groups[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004,130(11):1140-1151.
    [82] San-Shyan Lin,Jen-Cheng Liao. Lateral response evaluation of single piles using inclinometer data[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(12):1566-1573.
    [83] M. Ashour, G. Norris. Modeling lateral soil-pile response based on soil-pile interaction[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(5):420-428.
    [84] M. Ashour, P. Pilling, G. Norris. Lateral Behavior of Pile Groups in Layered Soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(6):580-592.
    [85]李忠诚,杨敏.被动桩土压力计算的被动拱-主动楔模型[J].岩石力学与工程学报,2006, 25(Supp.2): 4241-4246.
    [86] S.Kü?ükarslan, P.K.Banerjee. Inelastic analysis of pile-soil interaction[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(11):1152-1157.
    [87] Hsiung,Y.M.,Chen,Y.L..Simplified method for analyzing laterally loaded single piles in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(11):1018-1029.
    [88] Hsiung,Y.M.. Theoretical elastic-plastic solution for laterally loaded piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(6):475-480.
    [89] Hsiung,Y.M., Chen,S.S., Chou,Y.C.. Analytical solution for piles supporting combined lateral loads[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(10):1315-1324.
    [90] S.L.Chen, L.Z.Chen. Note on the interaction factor for two laterally loaded piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008,134(11):1685-1690.
    [91] Adachi T.,Kimura M.,Tada S.Analysis on the preventive mechanism of landslide stabilizing piles[J].Numerical Models in Geomechanics,1989, 15(3):691-698.
    [92] J.L.Pan,A.T.C.Goh,K.S.Wong, et al.Ultimate soil pressures for piles subjected to lateral soil movements[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002,128(6):530-535.
    [93] Tara C.Hutchinson, Y.H.Chai, Ross W.Boulanger. Simulation of full-scale cyclic lateral load tests on piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005,131(9):1172-1175.
    [94] Nina H.Levy, Itai Einav, Mark F.Randolph.Effect of recent load history on laterally loaded piles in normally consolidated clay[J]. International Journal of Geomechanics, 2007, 7(4):277-286.
    [95] David J.White, Mark J. Thompson, Muhannad T.Suleiman, et al. Behavior of slender piles subject to free-field lateral soil movement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(4):428-436.
    [96] Mostafa EI Sawwaf. Strip footing behavior on pile and sheet pile-stabilized sand slope[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(6):705-715.
    [97] Mostafa EI Sawwaf. Lateral resistance of single pile located near geosynthetic reinforced slope[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(10):1336-1345.
    [98] Mostafa EI Sawwaf. Lateral behavior of vertical pile group embedded in stabilized earth slope[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(7):1015-1020.
    [99] Lenart Gonzalez, Tarek Abdoun, Ricardo Dobry. Effect of soil permeability on centrifuge modeling of pile response to lateral spreading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(1):62-73.
    [100] Rollins,K.M., Peterson,K.T., Weaver,T.J..Lateral load behavior of full-scale pile group in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering,1998,124(6):468-478.
    [101] Rollins,K.M., Sparks,A.. Lateral resistance of full-scale pile cap with gravel backfill[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(9):711-723.
    [102] Rollins,K.M., Lane,J.D., Gerber,T.M..Measured and computed lateral response of a pile group in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005,131(1):103-114.
    [103] Rollins,K.M., Gerber,T.M., Lane,J.D., et al. Lateral resistance of a full-scale pile group in liquefied sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005,131(1):115-125.
    [104] Rollins,K.M., Olsen,R.J., Egbert,J.J., et al. Pile spacing effects on lateral pile group behavior load tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006,132(10):1262-1271.
    [105] Rollins,K.M., Olsen,K.G., Jensen,D.H., et al. Pile spacing effects on lateral pile group behavior: analysis[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006,132(10):1272-1283.
    [106] K.S.Chae, K.Ugai, A.Wakai. Lateral resistance of short single piles and pile groups located near slopes[J]. International Journal of Geomechanics, 2004,4(2):93-103.
    [107] Kjell Karisrud,Lars Andresen. Loads on braced excavations in soft clay[J]. International Journal of Geomechanics,2005,5(2):107-113.
    [108] Zhaohui Yang, Boris Jeremi?. Study of soil layering effects on lateral loading behavior of piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005,131(6):762-770.
    [109] Ke Yang,Robert Liang. Numerical solution for laterally loaded piles in a two-layer soil profile[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(11):1436-1443.
    [110] S.Karthigeyan,V.V.G.S.T.Ramakrishna,K.Rajagopal. Numerical investigation of the effect of vertical load on the lateral response of piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007,133(5):512-521.
    [111] Wyllie D C. Foundation on Rock[M].London: Chapman and Hall,1992.
    [112] Bica,A.V.D.,Clayton,C.R.I.. An experimental study of the behaviour of embedded lengths of cantilever walls[J].Geotechnique,1998,48(6):731-745.
    [113] S.P.Gopal Madabhushi,V.S.Chandrasekaran. Rotation of cantilever sheet pile walls[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(2):202-212.
    [114]吴恒立.推力桩计算方法的研究[J].土木工程学报,1995,28(2):20-28.
    [115]吴恒立.计算推力桩的综合刚度原理和双参数法[M].北京:人民交通出版社,2000.
    [116]杨佑发.弹性抗滑桩内力计算的有限差分“m-k”法[J].重庆建筑大学学报,2002,24(1):13-18.
    [117]杨佑发,许绍乾.锚索抗滑桩内力计算的有限差分“k-k”法[J].岩土力学,2003,24(1):61-64.
    [118]戴自航.抗滑桩滑坡推力和桩前滑体抗力分布规律的研究[J].岩石力学与工程学报,2002,21(4): 517-521.
    [119]戴自航,彭振斌.基于抗滑桩内力计算“m”法的有限差分法[J].中南工业大学学报,2001,32(5):461-464.
    [120]戴自航,彭振斌.地基系数法在岩体抗滑桩内力计算中的应用[J].湖南大学学报,2002,29(1):98-118.
    [121]戴自航,沈蒲生.抗滑桩内力计算悬臂桩法的改进[J].湖南大学学报,2003,30(3):81-85.
    [122]戴自航,沈蒲生,彭振斌.弹性抗滑桩内力计算新模式及其有限差分法[J].土木工程学报,2003,36(4): 99-104.
    [123]张强勇.弹性地基梁杆系有限元法在深大基坑工程支护设计中的应用[J].建筑结构学报,2005, 26(3):114-121.
    [124]张文居,赵其华,刘晶晶.抗滑桩锚固深度的可靠性设计[J].岩土工程学报,2006,28(12): 2153-2155.
    [125]周春梅.三峡库区万州区滑坡抗滑桩设计研究[D].中国地质大学博士学位论文,2007.
    [126]周春梅,殷坤龙.三峡库区滑坡治理中抗滑桩锚固深度的研究[J].武汉理工大学学报,2006, 28(2):38-41.
    [127]胡晓军,王建国.基于强度折减的刚性抗滑桩锚固深度确定[J].土木工程学报,2007,40(1): 65-68.
    [128]年廷凯,栾茂田,郑德凤,等.基于极限分析下限方法的抗滑桩锚固深度验算[J].武汉理工大学学报,2007,29(8):82-86.
    [129]杨旌,胡岱文,张永涛.桩土共同作用机理的初步试验研究[J].地下空间,2004,24(3):346-349.
    [130]李维树,黄志鹏,丁秀丽,等.基于抗滑桩计算宽度的水平推力试验研究[J].长江科学院院报, 2005,22(5): 40-43.
    [131]杨维加.弹性地基梁的三角级数解法[M].北京:中国水利水电出版社, 2005.
    [132]王腾.孙宝江.软粘土中水平荷载模型桩的试验研究[J].中国石油大学学报(自然科学版),2007, 31(1):76-79.
    [133] Brwon D.A., Morr I.C., Reese L.C. Lateral load behavior of p ile group in sand[J].Journal of Geotechnical Engineering, ASCE, 1988,114(11):1261-1276.
    [134] Dunnavant T.W., Oneill M.W. Experimental p-y model for submerged, stiff clay [J]. Journal of Geotechnical Engineering, ASCE, 1989, 115 (1):95-114.
    [135]蒋忠信.边坡临界高度卡尔曼公式之工程应用[J].岩土工程技术, 2007, 21(5): 217–220.
    [136]王凯,郑颖人,王其洪,等.捆绑式抗滑桩优越性初步探讨[J].地下空间与工程学报,2008, 4(3):533-538.
    [137]中国建筑科学研究院. GB50010-2002混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [138]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.
    [139]彭文斌.FLAC3D实用教程[M].北京:机械工业出版社,2009.
    [140]陈育民,徐鼎平. FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2009.
    [141]《工程地质手册(第四版)》编委会.《工程地质手册(第四版)》[M].北京:中国建筑工业出版社,2007.
    [142]重庆市建设委员会. GB50330-2002建筑边坡工程技术规范[S].北京:中国建筑工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700