土水特征曲线及其在非饱和土力学中应用的基本问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:土水特征曲线(Soil-Water Characteristic Curve,简称SWCC)是非饱和土力学中描述土的非饱和状态对其水力、力学特性影响的一个重要工具,它在“含水量-吸力”空间中的位置和形状能够反映土中孔隙结构的特点(孔隙的大小和分布规律)以及土的持水能力;非饱和土力学中的许多研究领域,如强度理论、渗流理论、固结理论、本构理论都涉及到SWCC的应用;由于SWCC的量测成本高、周期长、难度大,且试验数据处理和分析也远比饱和土更加复杂,这在一定程度上导致了非饱和土力学的实践和应用还远远地落后于理论研究。为了使非饱和土力学理论能够方便地应用于工程实践,本文围绕SWCC在工程应用中存在的问题,开展了一系列的研究,主要包括以下几方面的工作:
     (1)根据SWCC试验散点,拟合得到能够正确地反映土中孔隙结构特点和持水能力的函数,是SWCC应用的基础和前提。本文在分析了SWCC应用的基本步骤、SWCC形状特点的基础上,结合现有SWCC模型的函数形式的特点,分析了拟合SWCC试验散点时可能出现的问题,而后在统计了21种土的SWCC拟合结果的基础上,首次提出了一种使用不完整SWCC(测量未到达残余状态)的试验点,拟合得到能够正确地反映土中孔隙结构特点和持水能力的函数的计算方法,使用这种方法,可以解决在试验条件有限,无法测得完整SWCC时,难以根据试验结果准确地确定一些非饱和土力学模型中的相关参数的取值问题。
     (2)以概率论为基础,利用SWCC和孔隙(水)分布函数之间的关系,提出了平均孔隙半径的概念,而后以此为基础得到了一个能够模拟变形对SWCC影响规律的计算模型;由于该模型考虑了土中的初始孔隙结构对SWCC随变形的变化规律的影响,所以它能够给出比较理想的计算结果;该模型可为建立分析非饱和土的水力、力学特性相互影响的计算模型奠定基础。
     (3)以概率论为基础,提出了一个能够考虑土中孔隙结构影响的饱和土渗透系数计算模型,而后结合本文提出的模拟SWCC随变形的变化规律的计算模型,以及Mualem(1976)相对渗透系数模型,建立了一个能够模拟变形对非饱和土渗透系数影响的计算模型,该模型不仅能够考虑孔隙大小的变化对渗透系数的影响,更能够考虑孔隙结构变化的影响,这使得预测结果能够更加接近于实际情况。
     (4)以传统域模型的基本原理为出发点,提出了一个能够方便地模拟多次浸润(吸湿)、干燥(脱湿)过程,以及在含水量(吸力)变化历史未知的情况下模拟含水量随吸力变化规律的SWCC滞后模型;而后以该模型为基础,得到了一个利用边界干燥曲线以及一条一阶浸润扫描线预测边界浸润曲线的计算方法,使用该方法,可以减少SWCC滞后模型计算时所需实测的数据,从而使现有的一些SWCC滞后模型能够方便地应用于实际工程中。
Soil-Water Characteristic Curve(short for SWCC) is an effective tool for describing the influence of unsaturated state on the hydraulic & mechanical behavior in unsaturated soil mechanics; the pore size distribution characteristic, as well as the water retention capacity of a soil sample, can be estimated through the position and shape of a SWCC in the 'water content-suction' space; in unsaturated soil mechanics, many research fields, such as the strength theory, seepage theory, consolidation theory and constitutive theory, use SWCC to reflect the influence of water content on the mechanical and hydraulic behavior of soil; Measruing SWCC is costly and time consuming, and the way of how to analyze and interpret the experimental data are far more difficult than that in saturated soil mechanics, which may become one of the reasons that prevent the unsaturated soil mechanics theory to be implemented in the engineering practice, to solve this problem, the following research work on SWCC has been carried out in this dissertation.
     (1) SWCC is usually used for estimating the parameters needed in the numerical calculation in unsaturated soil mechanics, by analyzing the characteristic of the existing SWCC models as well as the shape of SWCC, the aspects that need to be taken into account when determining the related parameters by using measured SWCC data have been discussed, after that, on the basis of the statistical results of 21 kinds of soils, a method that is able to estimate the parameters needed in the numerical calculation in the case that the measured SWCC data has not reached the residual state, has been proposed in this dissertation, with the help of this method, the use of SWCC in the engineering practice can become more convenient to some extent.
     (2) Based on the theory of probability, together with the relationship between SWCC and the pore water distribution function, a variable called the average pore size radius, which can characterize the pore size of a soil sample, is defined in this paper, and on the basis of this concept, a method for modeling the variation law of SWCC with soil deformation is then proposed. in this method, two measured SWCCs with known porosity is needed for calibrating the parameters, besides, the influence of the initial structure of a soil sample on the variation law of SWCC with deformation could also be taken into account in this method.
     (3) Based on the theory of probability, a saturated permeability function, which could take the influence of soil structure into account, has been proposed in this paper; combined with the Mualem(1976) relative permeability function model, together with the variation law of the structural parameters during deformation proposed in this dissertation, the influence of deformation on unsaturated permeability function was modeled, which can ensure the calculation results become more close to the practical situation.
     (4) Taking the fundamental theory of traditional domain model as the starting point, a simple model, which is able to simulate the hysteretic characteristic of a SWCC under arbitary drying and wetting paths, as well as predict the scanning curves in the case when the water content(or suction) variation history is unknown, is proposed in this dissertation; then, based on the proposed model, a method that is capable to predict the boundary wetting curve with the help of a measured boundary drying curve together with a first-order wetting scanning curve is presented, by using this method, the amount of the experiment data nessceary for calibrating the parameters in the hysteresis models could be reduced, which can make the hysteresis models more conveniently used in the engineering practice.
引文
[1]Terzaghi, K.Theoretical Soil Mechanics. New York:Wiley,1943.
    [2]Croney, D., Coleman, Bridge, P.M. The suction of moisture held in soils and other porous materials. Tech.Paper, Road Research Board, no.24, H.M.S.O., London,1952.
    [3]Bishop, A. W. The principal of effective stress. Norwegian Geotechnical Institute, 1960(32):1-5.
    [4]Aitchison, G.D. Relationship of moisture and effective function in unsaturated soils. in Pore Pressure and Suction in soils Conf., organized by British Bat. Soc. of Int. Soc. Soil Mech. Found. Eng. at inst. Civil Eng. London, England:Butterworths,1961:47-52.
    [5]Aitchison, G.D. The quantative description of the stress deformation behavior of expansive soils- preface to set of papaers. In Proc.3rd Int. Conf. Expansive Soils (Haifa, Israel),1973, 2:83-88.
    [6]Jenings, J.E., Burland, J.B. Limitation to the use of effective stress in partly saturated soils. Ge otechnique,1962,12(2):125-144.
    [7]Richards, B.G. The significance of moisture flow and equilibria in unsaturated soils in relation to the design of engineering structures built on shallow foundations in Austrilia. Presented at the Symp. On permeability and Capillary, Amer. Soc. Testing Materials, Atlantic City, NJ, 1966.
    [8]Coleman, J.D. Stress/strain relations for partly saturated soils. Geotechnique.1962,12(4):348-350.
    [9]Bishop, A.W., Blight, G.E. Some aspects of effective stress in saturated and unsaturated soils. Geotechnique.1963,13(3):177-197.
    [10]Blight, G.E. Effective stress evaluation for unsaturated soils. Journal of the Soil Mechanics and Foundations Division,1967,93(2):125-148.
    [11]Fredlund, D.G., Morgenstern, N.R. Stress state variables for unsaturated soils. Journal of the Geotechnical Engineering Division,1977,103(GT5):437-446.
    [12]Fredlund D.G., Rahardjo H. Soil mechanics for unsaturated soils. New York:John Wiley & Sons,1993.
    [13]高凌霞,栾茂田,杨庆,汪东林.非饱和重塑粘土渗透性试验研究.岩土力学,2008,29(8):2267-2270.
    [14]Mualem Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research,1976,12(3):513-522.
    [15]Vanapalli, S. K., Fredlund, D. G, Pufahl, D. E. The influence of soil structure and stress history on the soil-water characteristics of a compacted till. Geotechnique,1999,49(2):143-159.
    [16]Black, W. P. M. A method of estimating the California bearing ratio of cohesive soils from plasticity data. Geotechnique,1962,12(4):271-282.
    [17]Mitchell, P. W., Avalle, D. L. A technique to predict expansive soil movements. Proc.,5th Int. Conf. on Expansive Soils, Adelaide,1984:124-130.
    [18]Fleureau, J. M., Taibi, S., Soemitro, R., Indarto. Prise en compte de la pression interstitielle negative du sol dans l'estimation du gonflement. Colloque Internationale "Foundations Specials", Tlencem, Mars,1990.
    [19]Huang, S. Y. Evaluation and laboratory measurement of the coefficient of permeability in deformable, unsaturated soils[Dissertation]. Saskatoon, Sask, Canada:University of Saskatchewan.1994.
    [20]Vanapalli, S. K. Simple test procedures and their interpretation in evaluating the shear strength of an unsaturated soil [Dissertation]. Saskatoon, Sask, Canada:University of Saskatchewan, 1994
    [21]Fredlund, D. G. Comparison of soil suction and one-dimensional consolidation characteristics of a highly plastic clay.[Dissertation].Univ. of. Alberta, Edmonton Alta., Canada.1964.
    [22]龚壁卫,吴宏伟,王斌.2004.应力状态对膨胀土SWCC的影响研究.岩土力学.25(12):1915-1918.
    [23]李志清,胡瑞林,王立朝,等.非饱和膨胀土SWCC研究.岩土力学.2006,27(5):730-734.
    [24]Miao, L.C, Jing, F., Houston, S. L. Soil-water Characteristic Curve of Remolded Expansive Soils. In preceedings of unsaturated soil, ASCE,2006:997-1004.
    [25]张文杰.城市生活垃圾填埋场中水分运移规律研究[学位论文].杭州:浙江大学,2007.
    [26]李永乐,张红芬,佘小光等.原状非饱和黄土的三轴试验研究.岩土力学,2008,29(10):2859-2863.
    [27]Laliberte, G. E., Corey, A. T., Brooks, R. H. Properties of unsaturated porous media. Hydrology Paper No.17. Colorado:Colorado State University, Fort Collins,1966.
    [28]Assouline, S., Tavares-Filho, J., Tessier, D. Effect of compaction on soil physical and hydraulic properties:Experimental results and modeling. Soil Science Society of America Journal,1997, 61(2):390-398.
    [29]Brooks, R.H., Corey, A.T. Hydraulic properties of porous medium. Hydrology paper,1964, No. 3, Civ. Engrg. Dept., Colorado State Univ., Fort Collins,1964.
    [30]Delage, P., Lefebvre, G Study of the structure of sensitive Champlain clay and of its evolution during consolidation. Can. Geotech.1983,21:21-35.
    [31]Huang, S. Y., Barbour, S. L., Fredlund, D. G Development and verification of a coefficient of permeability function for a deformable unsaturated soil. Canadian Geotechnical journal,1998, 35(3):411-425.
    [32]王铁行,卢靖,岳彩坤.考虑温度和密度影响的非饱和黄土土-水特征曲线研究.岩土力学,2008,29(1):1-5.
    [33]Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal,1980,44:892-898.
    [34]方祥位,陈正汉,申春妮,孙树国.剪切对非饱和土土水特征曲线影响的探讨.岩土力学,2004,25(9):1451-1454
    [35]Gallipoli, D., Wheeler, S. J., Karstunen, M. Modeling the variation of saturation in a deformable unsaturated soil. Geotechnique,2003,53(1):105-112.
    [36]韦昌富,李幻,王吉利.考虑弹塑性变形和毛细循环滞回的非饱和土本构模型.第一届全国岩土本构理论研讨会论文集.北京:北京航空航天大学,2008:259-266.
    [37]Feng,M., Fredlund, D.G Hysteretic influence associated with thermal conductivity sensor Mea- surements.In Proceedings from Theory to the Practice of Unsaturated Soil Mechanics in Association with the 52nd Canadian Geotechnical Conference and the Unsaturated Soil Group, Regina, Sask,23-24 October,1999,14(2):14-20.
    [38]Wheeler, S.J., Sharma,R.S., Buisson, M.S.R. Coupling of hydraulic hysteresis and stress-strain behaviour in unsaturated soils. Geotechnique,2003,53(1):43-54.
    [39]Sun, D.A., Cui, H.B., Matsuoka, H., et al. A three-dimensional elastoplastic model for unsaturated compacted soils with hydraulic hysteresis. Soils and Foundations,2007, 7(2):253-264.
    [40]Assouline, S. Modeling the relationship between soil bulk density and the water retention curve. Vadose Zone Journal,2006,5:554-563.
    [41]Fredlund, D.G., Xing, A. Equations for the soil-water characteristic curve. Canadian Geote-chnical Journal,1994 (31):521-532.
    [42]Leong, E.C., Rahardjo, H. Review of soil-water characteristic curve equations. Geotechnical and Geoenvironmental Engineering,1997,12:1106-1117.
    [43]Sillers, W.S., Fredlund, D.G, Zakerzadeh, N. Mathematical attributes of some soil-water characteristic curve models. Geotechnical and Geological Engineering,2001,19:243-283.
    [44]Gardner, W.R. Some steady state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil science,1958,85(4):228-232.
    [45]McKee, C.R., Bumb, A.C. The importance of unsaturated flow parameters in designing a monitoring system for hazardous wastes and environmental emergencies. Proceedings, Hazardous Materials Control Research Insititute National Conference, Huston, TX, 1984:50-58.
    [46]McKee, C.R., Bumb, A.C. Flow-testing coalbed methane production wells in the presence of water and gas. In SPE Formation Evaluation,1987,2(4):599-608.
    [47]Assouline, S., Tessier, D., Bruand, A. A conceptual model of the soil water retention curve. Water Resources Research,1998,34(2):223-231.
    [48]Williams, P.J. The surface of the Earth, an introduction to geotechnical science. New York: Longman Inc.,1982.
    [49]龚避卫,周小文,周武华.干-湿循环过程中吸力与强度的关系研究.岩土工程学报,2006,28(2):207-209.
    [50]Klausner, Y.F. Fundamentals of continuum mechanics of soils. New York:Springer-Verlag, 1991.
    [51]Fredlund, D.G The 1999 R.M. Hardy Lecture:The implementation of unsaturated soil mechanics into geotechnical engineering. Canadian Geotechnical Journal,2000, 37(5):963-986.
    [52]Kawai, K., Karube, D., Kato, S. The model of water retention curve considering effects of void ratio.In Proceedings of Asian Conference on Unsaturated Soils, Singapore. Edited by H. Rahardjo, D.G. Toll, and E.C Leong. A. A.Balkema, Rotterdam, The Netherlands, 2000:329-334.
    [53]Scott, P.S., Farquhar, G.J., Kouwen, N. Hysteretic effects on net infiltration.In Advances in infiltration. American Society of Agricultural Engineers Publication 11-83, St. Joseph, Mich,1983:163-170.
    [54]Karube, D., Kawai, K. The role of pore water in the mechanical behaviour of unsaturated soils. Geotechnical and Geological Engineering,2001,19(3/4):211-241.
    [55]Philip, J.R. Similarity hypothesis for capillary hysteresis in porous materials. Journal of Geophysical Research,1964,69:1533-1562.
    [56]Mualem, Y. Modified approach to capillary hysteresis based on a similarity hypothesis.Water Resources Research,1973,9(5):1324-1331.
    [57]Mualem, Y. A concept model of hysteresis. Water Resources Research,1974,10(3):514-520.
    [58]Mualem, Y. Extension of he similarity hypothesis used for modeling the soil water characterist-ics. Water Resources Research,1977,13(4):773-780.
    [59]Topp, G.C. Soil-water hysteresis:The domain theory extended to poreinteraction conditions.Soil Science Society of America Journal,1971a,35:219-225.
    [60]Parlange, J.Y. Capillary hysteresis and the relationship between drying and wetting curves.Water Resources Research,1976,12(2):224-228.
    [61]Parlange, J.Y. Water transport in soils. Annual Revision of Fluid Mechanics,1980,12:77-102.
    [62]Hogarth, W.L., Hopmans, J., Parlange, J.Y., et.al. Application of a simple soil-water hysteresis model. Journal of Hydrology,1988,98(1/2):21-29.
    [63]Liu, Y., Parlange, J.Y, Steenhuis, T.S., et.al. A soil water hysteresis model for fingered flow data. Water Resources Research,1995,31(9):2263-2266.
    [64]Dafalias, Y.F., Herrmann, L.R. Bounding surface plasticity Ⅱ:application to isotropic cohesive-soils. Journal of the Engineering Mechanics Division,1986,112:1263-1291.
    [65]Li, X.S. Modeling of hysteresis response for arbitrary wetting/drying paths. Computers and Geotechnics,2004,32(2):133-137.
    [66]Wei, C.F, Dewoolkar, M.M. Formulation of capillary hysteresis with internal state variables. Water Resources Research,2006,42(7):W07405.1-W07405.16
    [67]Mualem, Y. Prediction of the soil boundary wetting curve. Journal of Soil Science,1984, 137:379-390.
    [68]Pham, H.Q., Fredlund, D.G, Lee, B. A study of hysteresis models for soil-water characteristic curves. Canadian Geotechnical Journal,2005,42(6):1548-1568.
    [69]Childs, E.C., Collis-George, N. The permeability of porous materials. Proceedings of the Royal Society of London, Series A,1948,201:392-405.
    [70]Haines, W. B. A note on the cohesion developed by capillary forces in an ideal soil. Journal of Agricultural Science,1925,15:529-535.
    [71]Fredlund, D.G. The stability of slopes with negative pore-water pressures. The Ian Boyd Donald Symposium on Modern Geomechanics. Clayton, Victoria 3168, Australia:Monash University,1995:99-116.
    [72]Vanapalli, S.K., Fredlund, D. G, Pufahl, D.E., et.al. Model for the prediction of shear strength with respect to soil suction. Canadian Geotechnical Journal,1996,33(3):379-392.
    [73]Lamborn, M.J. A micromechanical approach to modeling partly saturated soils [Dissertation]. Texas:TexasA & M University College Station,1986.
    [74]Oberg, A., Sallfours, G. Determination of shear strength parameters of unsaturated silts and sands based on the water retention curve. Geotechnical Testing Journal,1997,20(1):40-48.
    [75]Khalili, N., Khabbaz, M.H. A unique relationship for χ for the determination of the shear strength of unsaturated soils. Geotechnique,1998,48(5):681-687.
    [76]Burdine, N. T., Gournay, L. S., Reichertz, P. P. Pore-size distribution of petroleum reservoir rocks. Petroleum Transctions, AIME,1950,189:195-204.
    [77]Burdine, N. T. Relative permeability calculation from pore-size distribution data. Society of Petroleum Engineers,1953,198:71-78.
    [78]Mualem, Y., Dagan, G Hydraulic conductivity of soils:unified approach to the statistical models. Soil Science Society of America Journal,1978,42:392-395.
    [79]Mualem, Y. Hydraulic properties of unsaturated porous media:a critical review and new models of hysteresis and prediction of the hydraulic conductivity. Israel Institute of Technology Haifa. Technion, Project No.38/74,1974
    [80]Fredlund, D.G., Xing, A., Huang, S.Y. Prediction the permeability function for unsaturated soil using the soil-water characteristic curve. Canadian Geotehnical journal,1994,31(3):533-546.
    [81]Marshall, T.J. A relation between permeability and size distribution of pores. Journal of Soil Science,1958,9(1):1-8.
    [82]Millington, R.J., Quirk, J.P. Permeability of porous solids. Transactions of the Faraday Society, 1961,57:1200-1207.
    [83]Kunze, R.J., Vehara, G., Graham, K. Factors important in the calculation of hydraulic conductivity, Soil Science Society of America Journal,1968,32:760-765.
    [84]Gonzalez, P.A., Adams, B.J. Mine Tailings Disposal:I. Laboratory Characterization of Tailings [Disseration]. Toronto, Ontario, Canada:University of Toronto,1980:1-14.
    [85]Porter, L.K., Kemper, W.D., Jackson, R.D., et.al. Chloride diffusion in soils as influenced by moisture content. Soil Science Society of America Proceedings,1960,24:460-463.
    [86]Kemper, W.D., van Schaik, J.C. Diffusion of salts in clay-water system. Soil Science of Society of America Proceeding,1966,30:534-540.
    [87]Lim, P.C. Characterization and prediction for the coefficients diffusion and adsorption for inorganic chemicals in unsaturated soils [Disseration]. Saskatoon, Sask, Canada:University of Saskatchewan.,1995.
    [88]Lim, P.C., Barbour, S.L., Fredlund, D.G. The influence of the degree of saturation on the coefficient of aqueous diffusion. Canadian Geotechnical Journal,1998,35:811-827.
    [89]Barraclough, P. B., Tinker, P. B. The determination of ionic diffusion coefficients in field soils: I. Diffusion coefficients in sieved soils in relation to water content and bulk density. Journal of Soil Science,1981,32:225-236.
    [90]Kemper, W.D., Maasland, D.E. L., Porter, L.K. Mobility of water adjacent to mineral surfaces. Soil Science Society of America Proceedings,1964,28:164-167.
    [91]Anderson, D.M., Brown, R.L., Boul, S.W. Diffusion of the dyes, eosin, yellowish, bromophenol blue, and napthol green bluish in water adsorbed by montmorillonite. Soil Science,1967,103:281-287.
    [92]Rowel, D.L., Martin, M.W., Nye, P.H. The measurement and mechanism of ion diffusion in soils:Ⅲ. The effect of moisture content and soil solution concentration on the self diffusion of ions in soils. Journal of Soil Science,1967,18:204-222.
    [93]Brown, D.A. Cation exchange in soils through the moisture range, saturation to the wilting percentage. Soil Science Society of America,1953,17:92-96.
    [94]Croney, D. The movement and distribution of water in soils. Geotechnique.1952,3:1-16.
    [95]Richards, B.G. (1965) Measurement of the free energy of soil moisture by the psychrometric technique using thermistors. In Moisture Equilibria and Moisture Changes in Soils Beneath Covered Areas, A Symposium in Print, Butterworths,Australia:39-46.
    [96]Agus, S.S., Arifin, Y.F., Schanz, T. Hydro-mechanical characteristics of a polymer-enhanced bentonite-sand mixture for landfill applications. In Proceedings of HPM Landfills Symposium, Grenoble, France,2005.
    [97]Fleureau, J.M., Kheirbek-Saoud, S., Soemitro, R., Taibi, S., Behaviour of clayey soils on drying-wetting paths. Canadian Geotechnical Journal,1993,30(2):287-296.
    [98]Aubertin, M., Ricard, J. F.,& Chapuis, R. P. A predictive model for the water retention curve: application to tailings from hard-rock mines. Canadian Geotechnical Journal,1998, 35(1):55-69. [Erratum,36:401 (1999)].
    [99]Bruch, P. G. A laboratory study of evaporative fluxes in homogeneous and layered soils [Disseration]. Saskatoon, Saskatchewan:University of Saskatchewan,1993.
    [100]Reddi, L.N., Poduri, R. Use of liquid limit state to generalize water retention properties of fine-grained soils. Geotechnique,1997,47(5):1043-1049.
    [101]Tinjum, J. M., Benson, C.H., Blotz, L.R. Soil-water characteristic curves for compacted clays.Journal of Geotechnical and Geoenvironmental Engineering.1997,123(11):1060-1069.
    [102]周小菊.非饱和土的土水特征曲线试验研究及应用[学位论文].北京:北京工业大学,2009:33-40.
    [103]Mbonimpa, M., Aubertin, M., Maqsoud, A. Bussiere, B. A-predictive model for the water retention curve of deformable clayey soils. Journal of geotechnical and geoenvironmental engineering.2006, 132 (9):1121-1132.
    [104]Kayadelen, C. The consolidation characteristic of an unsaturated compacted soil.Environmental Geology.2008,54(2):325-334.
    [105]Vanapalli, S.K., Sillers, W.S., Fredlund, M.D. The meaning and relevance of residual water content to unsaturated soils. Proceedings of the 51st Canadian Geotechnical Conference, Edmonton, 1998:101-108.
    [106]Fredlund, M. D. Soilvision 2.0. Version 2.0 [computer program]. A knowledge-based database system for unsaturated-saturated soil properties. Soilvision Systems Ltd., Saskatoon, Sask. 1999.
    [107]Escario, V., Juca, J Shear strength and deformation of partly saturated soils. Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering, Rio de Janerio,1989, 2:43-46.
    [108]Nam, S., Gutierrez, M., Diplsa, P., Petrie, J., Wayllace, A. Lu, N., Munoz, J.J. Comparison of testing techniques and models for establishing the SWCC of riverbank soils. Engineering Geology,2010,110(1/2):1-10.
    [109]Cunningham, M.R., Ridley, A.M., Dineen, K., Burland, J.B.The mechanical behaviour of a reconstituted unsaturated silty clay. Geotechnique,2003,53(2):183-194.
    [110]叶为民,白云,金麒,陈宝,崔玉军.上海软土土水特征的室内试验研究.岩土工程学报,2006,28(2):260-263.
    [111]Pineda, J.A., Colmenares, J.E.Stress-strain-suction behavior of two clayey materials under uncon- fined conditions.In Proceedings of the Fourth International Conference on Unsaturated Soils. Reston, VA:ASCE,2006:1109-1120.
    [112]Assouline, S. On the relationship between the pore size distribution index and characteristics of the soil hydraulic functions. Water Resources Research,2005,45(7):W07019.1-W07019.8
    [113]Lenhard, R.J., Parker, J.C., Mishra, S. On the correspondence between Brooks-Corey and van Genuchten models. Journal of Irrigation and Drainage Engineering,1989,115(4):744-751.
    [114]Charles, W. W. N., PANG, Y. W. Influence of stress state on soil water characteristic curve. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2000,126(2):157-166.
    [115]Richards, L.A. Capillary conduction of liquid through porous medium. Journal of Physics, 1931,1:318-333.
    [116]Wind, G.P. Field experiment concerning capillary rise of moisture in heavy clay soil. Nether-lands Journal of Agricultural Science,1955,3:60-69.
    [117]Ahuja, L.R., Green, R.E., Chong, S.K. A simplified functions approach for determining soil hydraulic conductivities and water characteristics in situ. Water Resources Research,1980, 16(5):947-953.
    [118]Ahuja, L.R., Ross, J.D., Bruce, R.R., Cassel, D.K. Determining unsaturated hydraulic conduc-tivity from tensiometric data alone. Soil Science of America Journal,1988,52:27-34.
    [119]Campbell, G.S., Gaylon, S. A simple model for determining unsaturated hydraulic conductivity from moisture retention data. Soil Science.1974,117(6):311-314.
    [120]Vereecken, H., Maes, J., Feyen, J.,& Darius, P. Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content. Soil Science,1989,148(6): 389-403.
    [121]Gregson, K., Hector, D.J., McGowan, M.A. One-parameter model for the soil-water character-istic. European Journal of Soil Science.1987,38(3):483-486.
    [122]Rawls, W.J., Gish, T.J. Brakensiel, D.L. Estimating soil water retention from soil physical properties and characteristics. Adavances in Soil Science.1991,16:213-234.
    [123]Wosten, J.H.M. Pedotransfer functions to evaluate soil quality. In Soil Quality for Crop Production and Ecosystem Health. Amsterdam:Elsevier,1997:221-245.
    [124]Wosten, J.H.M., Lily, A., Nemes, A. Le Bas, C. Development and use of a database of hydraulic properties of European soils. Geoderma,1999,90(3/4):169-185.
    [125]Mitchell, J.K., Hooper, D.R., Campanella, R.G Permeability of compacted clay. Soil Mech-anics and Foundations Division, ASCE,1965,91(SM4):41-65.
    [126]Lloret, A., and Alonso, E.E. Consolidation of unsaturated soils including swelling and collapse behavior. Geotechnique,1980.30(4):449-477.
    [127]Chang, C.S., Duncan, J.M. Consolidation analysis for partly saturated clay by using an elastic-plastic effective stress-strain model. International Journal for Numerical and Analytical Methods Geomechanics,1983,7(1):39-55.
    [128]Reicovsky, D.C., Voorhees, W.B., Radke, J.K. Unsaturated water flow through a simulated wheel track. Soil Science Society of America Journal,1981,45:3-8.
    [129]Kozeny, J. Ueber kapillare leitung des wassers im boden Zizungsber. Akademie der Wissenschaften Wien,1927,136:271-306.
    [130]Taylor, D. W. Fundamentals of soil mechanics. New York, John Wiley & Sons, Inc.,1948.
    [131]Everett, D. H., Whitton, W.I. A general approach to hysteresis. Transactions of the Faraday Society,1952,48:749-757.
    [132]Topp, G. C. Soil water hysteresis in silt loam and clay loam soils. Water Resources Research,1971,7(4),914-920.
    [133]Poulovassilis, A. Hysteresis of pore water in granular porousbodies. Soil Science,1970,109(1), 5-12.
    [134]Topp, G C. Soil-water hysteresis measured in a sandy loam and compared with the hysteretic domain model. Soil Science Society of America Journal,1969,33:645-651.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700