巨型塑料大棚边际效应初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代化设施农业的发展,设施大型化是发展的必然趋势。本实验对新型园艺设施巨型塑料大棚的环境因子尤其是边际区域环境因子进行定期观测,并同步观测边际和中部作物的生长状况,分析秋冬和早春季节巨型塑料大棚边际环境因子的变化状况及对作物产生的影响;通过对东侧不同区域土温、气温、照度、风速等数据的分析,找出了边际土温界点和各环境因子的变化特点,为更好的研究巨型塑料大棚边际效应和真正提高土地利用率与性价比提供理论依据。具体结果如下:
     1.边际土温的研究结果
     东侧边际土温界点在不同时期不同,2008年11月中旬,东侧南部土温界点距东底脚705cm,边际效应已存在。12月中、下旬,土温低温变温界点处于测点3,距东侧295cm。到最冷的2009年2月中旬,边际效应区域与2008年11月中旬相似。2009年3月下旬,此界点距东底脚295cm,处于作物的第二种植行,边际效应影响范围在缩减。南部土温界点在一天内不同时段也不同:最远土温界点出现在08:00-10:00,最近界点出现在16:00-18:00,这与土壤温度最大值和最小值的出现时间十分吻合。一天中最远界点与最近界点相距545cm,南部土壤温度昼夜温差大。
     东侧中部土温界点在不同时期不同:2008年11月中旬到12月上旬,土温界点徘徊在测点6至7,边际效应已经存在;12月下旬,界点位于第2测点,距东侧160cm,随后又远离东侧2009年2月上旬,界点为测点7,距东底脚705cm。到3月中、下旬,此区土温界点距东底脚100cm,尚未到达种植区,边际效应的影响已不存在。中部土温界点在一天内不同时段也不同:最远土温界点出现在02:00-0 6:00,是第7个测点,距东底脚705cm,最近界点是第1个测点,距棚东侧100cm,出现时间达6个小时。从18:00起,界点又开始向内延伸。要重视东侧中部边际土温在夜间对大棚环境及作物的影响。
     东侧北部土温界点在不同时期变化不同,08年11月中旬到12月上旬,界点为第7个测点,距离东侧705cm,作物的边六行都已在低温区内。随着外界气候的改变而出现不同的低温变温界点,整体上低温变温界点距东侧较远,距东底脚705cm(第7个观测点),北部边际种植的作物很长一段时期处于土温低温的影响范围之内。
     东侧各部土温界点在不同时期变化趋势基本相同;到2009年3月下旬东侧的南、中、北部土温低温变温界点基本位于测点3附近,中部和北部日变化呈相同趋势,南部界点出现的最大值和最小值均比中部和北部滞后一个时段。
     2.边际气温的变化
     东侧边际区域气温的日变化趋势与室外同高度气温的变化趋势一致。正午前后气温高,早晚气温低。阴天变化趋势较缓且稳定,表现为中部﹥南部﹥北部;晴天,14:00时棚外与棚内北部的温度达到最高值,而中、南部气温最高值则出现在12:00。早晨06:00气温均达最低值,此后东侧气温整体开始上升.观测日的傍晚至次日08:00,中部的气温都略高于南、北部的,从08:00—16:00则情况正好相反。
     由于受辐射等因素影响较大,气温随测点的变化情况比较复杂,没有确定出明确的界点
     3.巨型塑料大棚边际光照度的变化
     巨型大棚内东侧不同部位边际冠层光照度日变化均呈单峰曲线,峰值均出现在12:00左右。棚内外光照度变化一致,随太阳高度的升高而增大、太阳高度的降低而减弱,棚内光照度的变化较棚外平缓。各部位边际冠层光照度的日变化随时间的变化而不同。
     4.巨型塑料大棚边际效应对作物的影响
     从株高、茎粗、LAI等方面进行观测,东侧南部的作物较中部和北部的高,并且各部相应的中间对照值相对较高。东侧北部的茎粗总体而言均较中部和南部小,中部的增长率相对较高,植株较粗壮。
     5.巨型塑料大棚内风速的变化
     在不通风的情况下,棚内风速变化很小。总体趋势:上午11:00前后风速较大,早晚风速较小。其水平分布,以中心部位较小,边缘相对较大。棚内垂直方向上风速受棚内上下温差造成的热压作用的影响而不同。
     大棚中风速在南北方向的水平分布规律为:大棚内南部和中部的风速差异不大,北部风速明显大于南部和中部;在东西方向的水平分布规律为:中间测量点的风速小于东、西部测点的风速,东部风速较大。大棚内的风速在水平方向的分布规律为南北方向变化不大,东西方向呈半V字型分布。
With the development of modern facility agriculture, the large-sized facility is an imperative trend. The wide-span plastic covered tunnel greenhouse is becoming the new favorite of gardening facility. This study observed environmental factors especially marginal environmental factors, and the Conditions for growing of crops which in the marginal and center area grows; analyzed the change of marginal environmental factors and the effects to the crops in autumn-winter and early-spring. By analyzing the data of soil temperature, air temperature, illumination, air speed in the east, we found out the boundary point of marginal soil temperature and characteristics of the various environmental factors, provided basic theory for the studying of wide-span plastic covered tunnel greenhouse marginal effect and improving land utilization rate and Performance-to-price ratio in deed. The concrete results are as follows:
     1. Results of marginal soil temperature:
     The soil temperature boundary points of east side were various at different observing period, the distance from soil temperature boundary point of southeast side to east in the wide-span plastic covered tunnel greenhouse was 705cm in the middle ten-day of November 2008,the marginal effect had been existed.The number of soil temperature boundary point was 3,the distance to east was 295cm in the middle ten-day and the last ten-day of December,2008.the soil temperature boundary point of southeast side to east base of the plastic covered tunnel greenhouse was 295cm in the middle ten days of February, 2009, there were the same border area with the middle ten-day of November, 2008. And the point existed in the second cultivation line in the last ten-days of March, 2009, the marginal effect reduced. The soil temperature boundary points of southeast side were various at different times in a day: the farthest soil temperature boundary point appeared in 08:00-10:00, the nearest boundary point appeared in 16:00-18:00, which keeps the same steps with the maximum and minimum values of soil temperature. The distance between farthest soil temperature boundary point and the nearest boundary point was 545cm, which shows that the temperature between day and night was high in soil temperature.
     The soil temperature boundary point of center in the east were various at different observing period: The marginal effect had been existed from the middle ten-day of November to the first ten- day of December, 2008, the soil temperature boundary point was the number of 6 or 7. The soil temperature boundary point was 2 ,the distance to east was 160cm in the last ten-day of December,2008.Later the soil temperature boundary point began to depart the east. The soil temperature boundary point was 7,the distance to east was 705cm in the first ten-day of February,2009.The middle ten-day or the last ten-day of March, 2009, the soil temperature boundary point was 100cm to east, the marginal effect did not exist. The soil temperature boundary points in center of the east were various at different period of a day: the farthest soil temperature boundary point appeared in 02:00-06:00 and the distance was 507cm to the east, the nearest boundary point appeared in 12:00-18:00 and the distance was 100cm to east, which in this period marginal effect did not exist. The temperature boundary point away from the east. So attention should be paid to the effects of marginal soil temperature to crops.
     The changes of soil temperature boundary point of northeast was: the boundary point was 7, it was 705cm to the east in the middle of ten-day of November to the first ten-day of December, 2008, and there were six lines of crops growed in the low area. As long as the change of climate, the soil boundary point changed. All in all, the crops which growed in the area would be affected by marginal effect in a long time.
     The change of soil temperature boundary points in east side were similar. It had levelled at around 3 by the last ten days of March, 2009; scenarios in the centre and north were the same; maximum and minimum values appeared in the south were lagged one period compared with the centre and north.
     2. Results of marginal air temperature
     The daily change trend of marginal air temperature in the east side was similar with the same height outside. The air temperature was high at noon, and it was lower in morning and night.The change trend was muted and stable in cloudy,it was middle part﹥south part﹥north part;In sunny,outside and the northeast of plastic shelter was the highest level, and the highest appeared at 12:00,whith the center and north of the east side.In 06:00,the air temperature attained the lowest,and later the air temperature began to rise.From nightfall to 08:00 of next day, the air temperature of center in the east was higher than the north and south,and the situation was opposite from 08:00 to 16:00.
     The change of air temperature with the measuring point was relatively complex affected by radiation, so it’s very difficult to determine the boundary point.
     3. Results of illumination
     The daily change of marginal illumination was a single peak curve in east side of the wide-span plastic covered tunnel greenhouse, and the maximum value appeared at about 12:00. There were similar trends in and out of wide-span plastic covered tunnel greenhouse. When the solar height is big, the illumination enhanced, when the solar height is small, the illumination reduced, and the change of illumination in the plastic covered tunnel greenhouse was flat.
     Then, the daily change of marginal illumination of east at the wide-span plastic covered tunnel greenhouse was affected by the times of a day .
     4. Results of marginal crop
     The growth vigor of the middle cucumber was better than marginal, this can be found from plant height, stem diameter and LAI, which indicated that the influence of marginal effect to crop was quite distinct.
     the cucumber’s vigor was better than the south and north, which grow in middle of the east side. The stem was thinner than the south and center of the north, and the growth rate was bigger ,so the crops was more hairchested which growed in the center of the east.
     5. Result of air speed research
     The change of air speed was very small when had no wind. The overall tendency assumes: in 11:00 around air speed was bigger than in the morning and night. In level distribution, it was small in the central spot and edge is relatively bigger. In the vertical direction, air speed overall change tendency was that the air speed increased along with the temperature difference caused by heights.
     The distributing rule of air speed in the north and south direction: the air speed was similar in the south and the middle, and it was bigger in the north than in the south and middle. The distributing rule of air speed in the east and west direction: the air speed in the middle was smaller than in the east and west, the east air speed was bigger. The distributing rule of air speed in horizontal direction level: there was little change in north-south direction, east-west direction was half V-shaped distribution.
引文
1.安国民,徐世艳,赵化春.国外设施农业现状与发展趋势[J].现代化农业,2004,12:35-36
    2.车忠仕,佟国红,王铁良,等.典型天气下大跨度日光温室内的微气候特点[J].沈阳农业大学学报,2005,36(4):462-465
    3.杜心田,王同朝.作物群体边际效应规律及其应用[J].应用生态报,1998,9(5):475-480
    4.常禹,布仁仓.地理信息系统与基于个体的空间直观景观模型[J].生态学杂志,2001,20(2):61-65
    5.初江,徐丽波,姜丽娟,等.设施农业的发展分析[J].农业机械学报,2004(3):191-192
    6.陈杰,杨祥龙,周胜军,等.中国设施园艺研究现状与发展趋势[J].中国农学通报,2005, 21(1):236-238
    7.储长树,朱军.塑料大棚内空气温、湿度变化规律及通风效应[J].中国农业气象,1992,13(3):32-35
    8.储长树,朱军.塑料大棚内辐射分量的日变化特点[J].中国农业气象,1992,13(4):29-32
    9.储长树,朱军.塑料大棚棚面太阳短波辐射参数的变化规律--塑料大棚微气象条件研究之二[J].南京气象学院学报,1991
    10.陈丹,范万新,梁萍,等.夏季不同结构塑料大棚的小气候特征[J].西北农林科技大学学报(自然科学版),2008,36(11):183-190
    11.马世骏.边际效应与边际生态学[J].现代生态学透视.北京:科学出版社,1990,43-45
    12.樊景胜.玉米的边际效应指数及其在选育耐密品种上的应用[J].玉米科学,1994,(2):9-11
    13.顾寄南,毛罕平.国内外设施栽培综合环境控制技术及其发展[J].农业现代化研究, 1999,(3):184-186
    14.葛晓光.对我国北方蔬菜温室生产发展中几个问题的思考[J].中国蔬菜,1998,(4):1-5
    15.郭炳辉,李进京.温室智能测控系统模糊控制器设计[J].山东农机,2003,(10):lO-l1
    16.吉中礼,崔鸿文.塑料大棚小气候变化规律分析[J].西北农业学报,l997,6(1):61-64
    17.龚建华.拱圆形塑料大棚小气候变化规律研究[J].长江蔬菜,1999,7:35-37
    18.孔祥丽,周新仁.玉米品种试验的小区边际效应研究[J].种子,2002,6 :41-42.
    19.李式军.设施园艺学[M].北京:中国农业出版社,2002
    20.李化龙,陈端生,尚小宁.农业设施环境中光、热、湿、CO2浓度等要素调控及应用技术研究进展[J].温室园艺,2005,6:9-11
    21.廉振民,于广志.边缘效应与生物多样性[J].生物多样性,2000,8(1): 120~125
    22.李亚敏,商庆芳,田丰存,等.我国设施农业的现状及发展趋势[J].北方园艺,2008(3):90-92
    23.李天来.我国日光温室产业发展现状与前景[J].沈阳农业大学学报,2005,3(2):131-138
    24.李天来,何莉莉,印东生.日光温室和大棚蔬菜栽培[M].北京:中国农业出版社,1997
    25.李树海,马承伟,张俊芳,等.多层覆盖连栋温室热环境模型构建[J].农业工程学报,2004,20(3):217-221
    26.李树海.华北型连栋温室热环境模型[D].北京:中国农业大学,2003
    27.罗中岭,国外设施温度环境研究动态[J].中国农业气象,1994,15(2):52-54
    28罗中岭,徐师华.国外温室小气候环境及控制模式[J].中国农业气象,1993,14(5):48-50
    29.刘步洲,陈端生.发展中的中国设施园艺[J].农业工程学报,1989,5(3):38-40
    30.刘安国.作物叶面积指数和叶倾角分布函数的一种推算方法[J].中国农业气象,1994,15(6):11-15
    31.刘宇锋,萧浪涛,童建华.非直线双曲线模型在光合光响应曲线数据分析中的应用[J].农业基础科学,2005,21(8):76-79
    32.潘强.华北型(双层充气)连栋塑料温室光环境数值模型研究[D].北京:中国农业大学博士论文,2000
    33.王金龙,陈存来.大豆边际效应研究的初报[J].大豆科学,1995,(5):10-11
    34.王耀林.国内外设施农业现状及发展趋势[J].中国农业科学,2001,34增刊:96-100
    35.王焕然.我国目前设施农业状况[J].农业装备术,2006,32(5):21-23
    36.卫丽,高亮,杜心田,等.生物系统边缘效应定律及其在农业生产中的应用[J].中国农学通报,2003,19(5):99-102
    37.任志雨,王秀峰,魏珉,等.不同根区温度对黄瓜幼苗矿质元素含量及根区吸收功能的影响[J].山东农业大学学报(自然科学版),2003,34(1):64-67
    38.任志雨,乔晓军.春季日光温室的湿度分布及其变化规律[J].蔬菜,1999,(8):18-19
    39.沈明卫,苗香雯,崔绍荣.华东型连栋塑料温室室内光环境的研究[J].浙江大学学报(农业与生命科学版),25(5):533-535,200
    40.宋凤娟,徐启雨,刘群,等.大豆品种边际效应的初步分析[J].大豆科学,1997,16(2): 181-184
    41.宋明军,赵鹏.西北-型大跨度日光温室设计建造及实践[J].农业工程技术:温室园艺,2006,(7):16-18
    42.佟国红,李天来,王铁良,等.大跨度日光温室内微气候环境测试分析[J].华中农业大学学报,增刊2005,35:67-73
    43.吴德祥.棉花边际效应及其应用研究[J].江西棉花,1997(1): 6-7
    44.王谦,陈景玲,孙治强. Li-cot仪器太阳辐射测量单位定量变换的应用研究[J].农业工程学报,2005.21(4):140-144
    45.王谦,陈景玲,孙治强.用LI一2000冠层分析仪确定作物群体外活动面高度[J].农业工程学报, 2005.21(8):70-73
    46.王如松,马世骏.边缘效应及其在经济生态学中的应用[J].生态学杂志,1985,16(2):38-42
    47.王景峰,王纯.中国加入世贸组织对黑龙江省蔬菜业影响分析[J].北方园艺,2000(6):16-17
    48.范文丽,刘铁刚,等.设施园艺发展趋势浅见[J].辽宁农业科学,2001 (4) :29-30
    49.王如松,马世骏.边缘效应及其在经济生态学中的应用[J].生态学杂志,1982,2:38-42
    50.王子平,何登骥.水稻试验小区边际效应的估算[J].作物学报,1999,(1):1O5-108
    51.王文成,张胜景,杜卫军.水稻边际优势利用栽培增产的生态原因分析[J],中国农学通报,2005,21(2):122-125
    52.王永健,姜义巍,吴国胜,等.黄瓜光补偿的与低温弱光耐受性关系初探[J].园艺学报,1998,25(2):199-200
    53.史为民,陈青云.日光温室黄瓜冠层结构与冠层光合作用模型的构建[J].华中农业大学学报增刊,2004,12:134-139
    54.盛绍学,马晓群,徐和平.塑料大棚光热效应及增温模型的建立(上)[J].长江蔬菜,1994, 6:35-37
    55.师惠芬,张志勇.现代化蔬菜温室[M].上海:上海科学技术出版社,1986,215-223
    56.夏志,李萍萍.基于数据库的温室作物生长决策支持系统的设计与实现[J].计算机测量与控制,2003,(7):536-538
    57.余纪柱,金海军.塑料三连栋温室的温、湿度变化规律初探及相应调控措施[J].上海农业学报,2002,18(4):63-69
    58.余纪柱,金海军.塑料连栋温室的温、湿度变化规律及相应的调控措施[J].上海市设施园艺技术重的实验室年报,2001:38-43
    59杨振超,邹志荣,陈双臣,等.西北型日光温室内风速分布及其与室外风速和通风面积的关系[J].西北农林科技大学学报(自然科学版),2006,34(9):36-40
    60.周秉根.边际效应特征及其增值效应探讨[I].大自然探索,1999,(3):47-50
    61.张亚红,杜建民.日光温室内设保温幕的小气候效应及节能效果分析[J].农业机械学报,2006,27(4):296-299
    62.张福墁.设施园艺学[M].北京:中国农业大学出版社,2002
    63.张富厚,郑跃进,申林江.大豆品种田间边际效应初探[J].河南农业科学,2001,4:12-14
    64.张玉娟,余扬,张乃明,等.设施环境因子调控技术研究进展[J].农业系统科学与综合研究,2003,19(3):186-188
    65.张树光,宁毅,马伟,等.玉米各主要性状的边际效应[J].黑龙江八一农垦大学学报,1998,10(4):4-10
    66.张哂哂.边缘效应应用与高产优质高效农业的发展[J].生态农业研究,1994,1(2):12-15
    67.张树光,宁毅,马伟,等.玉米各主要性状的边际效应[J].黑龙江八一农肯大学学报,1998,10(4):4-10
    68.朱军,储长树,王华松.拱形棚面直射光反射规律及大棚取向决策[J].南京气象学院学报,1990, 13(3):417-425
    69.邹志荣,李建明,王乃彪,等.日光温室温度变化与热量状态分析[J].西北农业学报,1997,6(1):58-60
    70.赵子征,彭高军,辛本胜.夏季日光温室环境条件分析[J].北方园艺,2005,(4):20-21
    71.査丁石.三连栋塑料大棚冬春季小气候[J].上海农业学报,1998.14(4):51- 55
    72.张泽民,王双喜.大跨度无支柱日光节能温室性能的研究[J].内蒙古农业大学学报,2007,28(9):11-14
    73.周长吉.我国目前使用的主要温室类型及性能[J].农村实用工程技术,2000,(1):8-9
    74. Beecher, W J. Nesting Birds and the Vegetation Substrate [J].Chicago Or mythological Society, 1942, Chicago
    75. Chandra P et al .A time dependent analysis of greenhouse thermal environment [J]. Trans of the ASAE, 1981,24 (2):442-449
    76. Chen J Q, F J Franklin, T A Spies. Contrast in microclimates among clear-cut, edge, and interior of old grow Doug last–fir forest [J] .Agricultural and Forest Meteorology,1993, 63: 219-237
    77. Von Eisner B, Briassoulis D, Waaijenberg D, et al. Review of Structural and Functional Characteristics of Greenhouse in European Union Countries:PartⅠ,DesignRequiremengs[J]. Agricultural Engineering Research, 2000, 75(1:) 1-16
    78. Deltour J , De Halleux D, Nijskens J. Dynamic modeling of heat and mass transfer in greenhouses[J].. A cat Ho rt ic, 1985, 174: 119-126
    79. Jones P, Jones J W, Hwang Y K. Simulation for determining greenhouse temperature setlooints [J].Transactions of the ASAE,1990,34:1722- 1728
    80. Jose-Luis Machado, Peter B Reich. Evaluation of several measures of canopy openness as predictors of photosynthetic photon flux density in deeply shaded conifer-dominated forest understory[J].Canadian Journal of Forest Research. Ottawa: Sep 1999,29(9):1438
    81. LIU Shu, zhen,HE, Yong, ZHANG Yu bao. Prediction and analysis model of temperature and its application toa natural ventilation multi·-span plastic greenhouse equipped wit
    82. Michael T Ter-Mikaelian, Robert G Wagner, F Wayne Bell,et a1.Comparison of photo synthetically active radiation and cover estimation for measuring the effects of inter-specific competition on jack pine seedlings[J].Canadian Journal of Forest Research.Ottawa:1999,29(7):883
    83. S J Tachibana. Comparison of effect cucumber cultivars and fig leaf gourd root temperature on the growth and mineral nutrition [J].Japan Soc Sci, 1982, 51(3):299-308
    84. Thimijan R W, Heins R D. Photometric, radiometric, and quantum light units of measure: fl-review of procedures for inter-conversion [J].HortScience, 1983.18:818
    85. Wang Shao jin, Cui Shao rong, Deltour J, et al. Dynamic Simulation of temperatures and fluxes in greenhouse[J].J of ZAL , 1993, 19 (2) : 159- 162
    86. Van Bavel C H M ,Damagnez J,Sadler E J.The fluid roof solar greenhouse:energy budget analysis by simulation1'J].Agric Meteor,1981,23:61-76
    87. Wang Shao jin and Deltour J. Impact of the main structural parameters on the greenhouse climate [J].Trans of the CSA E, 1995, 11 (3) : 101-107
    88. Wang Shao jin,zhu Songming,Deltour J. Simulation and Measurement of Tunnel Greenhouse Climate[J].Transactions of the CASE,1997,13(4):139-144
    89. Rui Rose.Solar and thermal radiation inside a multi-span greenhouse.[J]. Agric engine Res.1988,(40)285-289

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700