多菌发酵处理木薯淀粉废水生产单细胞蛋白工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着木薯加工行业的飞速发展和市场对木薯产品需求的不断增加,木薯在带动地方经济的同时,也带来了一定的环境污染。其中,木薯淀粉生产过程中的木薯淀粉废水是木薯加工行业的主要污染。由于悬浮物浓度高,有机污染物浓度高,pH低,负荷变化大(即水质和水量变化大)等特性,加上木薯淀粉废水产生的不连续性,给污水的治理带来了较大的困难。目前,国内大多数淀粉厂采用传统的生化法对木薯淀粉废水进行处理,处理效果往往不好,达不到排放标准;少数用先进工艺的厂家,有了一定的效果,但没有对废水进行资源化利用,浪费了大量资源。本文采用生物好氧法对木薯淀粉废水进行处理,利用微生物之间的协同作用,多菌发酵生产单细胞蛋白(SCP)。通过对微波快速消
     解法的校正、木薯淀粉废水的表征、高产淀粉酶和纤维素酶的菌株及SCP生产菌株的筛选、单菌发酵条件的优化、多菌发酵条件的优化及正交试验确定最佳发酵工艺的研究,一方面提高微生物对木薯淀粉中有机污染物的降解能力,达到废水净化的目的,另一方面,提高SCP菌体的产量,收集加工作为饲料蛋白,达到对废水资源化利用的目的。实验结果表明:
     (1)加样量为4mL,掩蔽剂加入量为0.10g每毫升废水,消解罐摆放在转盘的外同心圆时,微波密闭快速消解法的COD_(Cr)测定结果最接近回流重铬酸钾法测定结果。
     (2)木薯淀粉废水pH在3.80~4.30之间,蛋白质含量在1.11g/L~1.23g/L之间,还原糖的含量在0.62g/L~0.66g/L之间,固形物含量约为8.01g/L,SS量约为4.86d/L,废水的总COD_(Cr)值为12744.7mg/L,总BOD5值为7896.6mg/L。
     (3)还原糖含量的跟踪测定表明黑曲霉是最佳的产淀粉酶和纤维素酶菌株;总蛋白含量的测定表明,热带假丝酵母是最佳的生产SCP菌株。
     (4)多菌发酵的单因素确定实验可知,优化后接种量为6%、装液量为130mL、酵母菌接种时间为黑曲霉发酵后20h、发酵初始pH5、发酵温度为29℃和发酵转速为175rpm。
     (5)当条件为接种量为8%,酵母菌接种时间为黑曲霉接种后第20h,装液量为130mL,初始pH4.5,发酵温度为29℃,发酵转速为200rpm。COD_(Cr)去除率为96.2%,SCP获取量为16.16g/L。
With the increasing demand for cassava products and the rapid development of cassava processing industry, cassava processing industry stimulates the local economic development but also brings a certain degree of environmental pollution at the same time. Cassava starch wastewater comeing from cassava starch production process is the major pollution of the cassava processing industry currently. Cassava starch wastewater's treatment is very difficult, because of its characteristics of high suspended solids concentration, high organic pollutants concentration, low pH and large load changes (water quality and quantity changes), together with the discontinuity of cassava starch wastewater's producing. Currently, most starch factories are using traditional biochemical methods to process cassava starch wastewater, and the disposal results are often not good enough according to the emission standards; few facturies process wastewater with advanced technique which achieve better disposal effect, but the resource utilization is not adopted in these wastewater disposal process, which results in resources waste.
     This study applied aerobic biological method on cassava starch wastewater treatment, and single cell protein (SCP) was produced by mixed-culture fermentation through the microbial synergies at the same time. The study was carried on by correcting of microwave digestion method, characterizing of cassava starch wastewater, screening for strains with high amylase and cellulase production ability, screening for strains with high SCP production ability, optimizing conditions on single-strain fermentation, optimizing conditions on mixed-culture fermentation, and determining the optimal fermentation technique by orthogonal test. It showed that diposal method in the study could improve the microbia's degradation ability for organic pollutant in cassava starch wastewater, which help cleaning wastewater more efficiently, secondly, the method could improve production of SCP which coulld be collected and used as feeding-protein, then the aim of wastewater resources utilization was achieved. The experimental results indicated that:
     (1) The CODcr outcome of microwave airtight fast digestion method approached mostly to the method of potassium dichromate reflux under the condition of:the amounts of waste water samples was4mL, the amounts of masking agent was1g/L, and the microwave digestion cans was put around the outer circle of the template.
     (2)The pH of cassava starch wastewater3.80~4.30, it contains1.11g/L~1.23g/L protein and0.62g/L~0.66g/L reducing sugar,8.01g/L soluble solid content, the CODcr and BOD5in the waste water are12744.7mg/L and7896.6mg/L separately。
     (3) It is showed that Aspergillus niger is suitable strain for starch and cellulose degradation by tracking and analysing the reducing sugar content, and Candida tropicalis is suitable strain for SCP production by analysing the protein content.
     (4) The single factor experiments show that the optimal conditions in mix culture fermentation as follow:6%inoculating quantity,130mL medium, inoculation for20h, initial fermentation pH at5, culture temperature at29℃and rotation at175rpm。
     (5) The removal rate of CODcr is96.2%with16.16g/L SCP harvest under the condition:8%inoculating quantity,130mL medium, inoculating yeast20h after A. niger's inoculation, initial pH4.5, culture temperature at29℃, rotation at200rpm.
引文
[1]张慧坚.木薯加工业发展现状[J].世界热带农业信息,2006,12:10.
    [2]濮文辉.世界木薯业发展与研究[J].世界热带农业信息,2007,(10)[3]姚丹,梁智.木薯淀粉深加工产品概述[J].大众科技,2012,(02):114-116[4]李军.广西木薯产业发展现状与展望[EB/OL].:http://www.alcoholnet.com/Specials/Cassava/content/zhongguomushushichang/124517.htm,2010-03-17
    [5]张济峰,何志武.南宁市淀粉生产企业污染治理现状及对策研究[J].广西轻工业,2008,(10):101-104
    [6]黄志雄,游卫强.广东、广西薯类淀粉废水处理技术研究与发展[J].化学工程与装备,2008,(08):121-123
    [7]孙乾刚.木薯淀粉废水生化处理及资源化利用工艺研究[D].广西:广西大学,2009
    [8]孙红霞.三项生物流化床处理淀粉废水工艺研究[D].广西:广西大学,2007
    [9]莫凤明,黎克纯.木薯淀粉废水治理技术研究[J].硅谷,2010,(08):79,125
    [10]WangJ,HanL,QuanX,eta1.Biodegradation of quinoline by gel immobilizedBurkholderiasp[J].Chemosphere,2001,44(5):1041-1046.
    [11]Nikolavcic B,Svardal K.Biological Treatment of Potato Starch WastewaterDesign and Application of an Aerobic Selector.water science and Technology,2000,41(09):251-258
    [12]殷永泉,单文坡,纪霞等.淀粉废水处理方法综述[J].环境污染与防治,2005,27(08):625-629
    [13]Marshall K.C,Blainery B.Role of bacterial adhesion in biofilm formation and bioeorrosion.In:Flernming H.C.and Cieesey G..G.[J]Biofowling and Biocorrosion in Industrial water systems,1983,29-46
    [14]叶为标.淀粉废水处理方法研究进展[J].粮食与油脂,2008,(10):4-7
    [15]熊欢伟,郭勇,李礼等,新型颗粒生物膜生物转盘处理有机废水的研究[J].中国给水排水,2009,25(1):75-77
    [16]Satish Vitthalrao Patil,Chandrashekhar D.Patil,Bipinchandra K.Salunke.Studieson Characterization of Bioflocculant Exopolysaccharide of Azotobacter indicusand Its Potential for Wastewater Treatment[J].Appl Biochem Biotechnol,2011,163:463–472
    [17]Bayramoglu G, Denizl I A, Bekta S S, et al. Entrapment of Lentinus sajor-cajn into Ca-alginate gelbeads for removal of Cd (II) ions from aqueous solution: preparation and biosorption kinetics analysis [J]. Microchemical Journal,2002,72(1):63-76.
    [18]岑超平.木薯淀粉废水的絮凝法处理[J].上海环境科学,2001,20(01):31-32
    [19]李媚,廖安平,梁炳池等.混凝法处理木薯淀粉废水[J].广西民族学院学报(自然科学版),2001,07(02):101-103
    [20]黎铉海,谢丽娟.化学絮凝法处理木薯淀粉废水的试验研究[J].广西化工,1992,21(04):40-43
    [21]Poesponegoro, Minlino.Microbial flocculation in relationship to wastewater treatment processes isolation and screening of flo-producing microorganisms. Biotechnol[J]. Util Biol Resour Trop,1999,(13):104-114
    [22]丁忠浩.有机废水处理技术及应用[M].北京:化学工业出版社,2002
    [23]李媚,孙红霞,胡万鹏等.电催化氧化处理变形木薯淀粉生产综合废水研[J].环境工程学报,2007,01(04):53-56
    [24]李媚,廖安平,谢涛等.预混凝—三维电极降解木薯淀粉生产综合废水[J].安徽农业科学,2011,39(09):5213-5215
    [25]Moisea A.Oliveira,Edson M.Reis,Jorge Nozaki.Biokinetic parameters investigation for biological treatment of Cassava meal effluents [J]. Water, Air,and Soil Pollution,2001,126:307-319.
    [26]Rajbhandari BK, Annachhatre AP. Anaerobic ponds treatment of starch wastewater:case study in Thailand. Bioresour Technol,2004,95:135-143
    [27]Ana,C.B.,Mamey,PC.Cassava Wastewater (Manipueira) Treatment using a Two-Phase Anaerobic Bio-digester[J].Cienc.Teenol.Aliment.2000,20(02):56-60.
    [28]SujanaP,RamanujamYK. Studies on SAGO Wastewater Treatment Using Anaerobic Rotating Biological Contacto[J].Bjoprocess Engineering.1997,16:163-168
    [29]Ajit,P.A.UASB Treatment of Tapioca Starch Wastewater [J]. Environlnent Engineenng,2000,126(12):1149—1152.
    [30]Lettinga, G. Anaerobic digestion and wastewater treatment systems [J]. Antonie Van Leeuwenhoek,1995,67:3-28
    [31]Nimaradee Boonapatcharoen, Kulyanee Meepian,Pawinee Chaiprasert. Molecular Monitoring of Microbial Population Dynamics during operational periods of anaerobic hybrid reactor treating Cassava Starch Wastewater[J]. Microbial Ecology,2007,54:21-30
    [32]Hien,P.G..,Oanh,L.T.K.,Viet N.T.etal.Closed Wastewater System in The TaPioca Industry in Vietnam[J].Wat.Sei.Teeh,1999,39(5):89-96.
    [33]王汉林,刘康怀,郑玉UASB反应器处理木薯淀粉废水影响因素分析[J].贵州环保科技,2006,12(03):13-16
    [34]吴婉娥,葛红光,张克峰.废水生物处理技术[M].北京:化学工业出版社,2003
    [35]周敬红,孙蕾,兰雯等.上流式多级厌氧反应器(UMAR)处理木薯淀粉废水的研究[J].环境科学,2008,29(12):3445-3449
    [36]莫新光,韦雪梅UASB—接触氧化膜生物反应器在木薯淀粉废水处理中的应用[J].化工技术与开发,2009,38(10):49-51
    [37]邓清华.基于厌氧出水的木薯淀粉废水ICEAS处理方法的研究[D].广西,广西大学,2007
    [38]韩彪,黎洪,张萍等.厌氧—好痒—物化组合工艺处理木薯淀粉废水[J].广西科学院学报,2011,27(04):348-350,354
    [39]黎洪,黄伟,孙伟.物化—EGSB—接触氧化法三段工艺处理木薯淀粉废水[J].大众科技,2011,(07):125-126
    [40]王虹,刘宏斌,刘娟.光合细菌降解3种有机废水的试验研究[J].西北大学学报,1994,24(3):235-240
    [41]王宇新,刘春朝,钱新民,等.光合细菌处理淀粉废水的中试研究[J].环境科学,1995,16(3):39-40
    [42]王剑秋,管运涛,滕飞.光合细菌法降解淀粉废水积累菌体蛋白的研究[J].清华大学学报(自然科学版),2007,47(03):348-351
    [43]Jin B, van Leeuwen HJ, Patel B, Yu Q.Utilisation of starch processing wastewater for production of microbial biomass protein and fungal a-amylase by Aspergillusoryzae[J]. Bioresour Technol,1998,66:201-206
    [44]Huang LP, Jin B, Lant P.Direct fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopusarrhizus[J]. Bioproc Biosyst Eng,2005,27:229-238
    [45]Marostica MR Jr, Pastore GM.Production of R-(+)--terpineol by the biotrans formation of limonene from orange essential oil, using cassava wastewater as medium. Food Chem,2007,101:345-350
    [46]Nitschke M, Pastore GM.Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater.Bioresour Technol,2006,97:336- 341.
    [47]Damasceno S, Cereda MP, Pastore GM, Oliveira JG.Production of volatile compounds by Geotrichum fragans usingcassava wastewater as substrate. Process Biochem,2003,39:411-414.
    [48]Kate C. Blanco, Cristian J. B. de Lima&Rubens Monti. Bacillus lehensis—an alkali-tolerant bacterium isolated from cassava starch wastewater:optimization of parameters for cyclodextrin glycosyltransferase production [J]. Ann Microbiol,2012,62:329-337
    [49]Francisco Fabio Cavalcante Barros,Alexandre Nunes Ponezi,Glaucia Maria Pastore. Production of biosurfactant by Bacillus subtilis LB5a on a pilot scale using cassava wastewater as substrate[J]. J Ind Microbiol Biotechnol,2008,35:1071-1078
    [50]熊淑芳,张颖力.马铃薯提取淀粉后废水中蛋白质的回收利用[J].现代农业,1993,(11):17-18
    [51]买文宁.气浮提取蛋白-UASB&SBR工艺处理淀粉废水[J].工业水处理,2002,22(6):42-44
    [52]陈益民,薛惠国.玉米淀粉废水综合利用技术应用研究[J].饲料工业,1992,13(3):24-25
    [53]Fkunaca,Masami. Treatment of wastewater containing starch[P]JapanPatent: JP0509-6281A2,1993-04-20.
    [54]尹源明,何国庆,冯澜,等.小麦淀粉废水SCP发酵菌种的筛选及其发酵条件初探[J].中国粮油学报,1998,13(1):36-40
    [55]梁智.利用木薯淀粉废水生产单细胞蛋白的可行性探讨[J].饲料工业,1997,18(4):26-27
    [56]朱辉,何国庆,尹源明.金针菇和香菇在淀粉废水中的生长适性[J].浙江农业大学学报,1997,23(06):659-662
    [57]杜鹃,詹成雄,王宏勋等.产油真菌在甘薯淀粉废水中发酵的初步研究[J].生物技术,2007,17(02):72-75
    [58]王宏勋,邓张双,周帅.利用淀粉废水生产多不饱和脂肪酸初步研究[J].环境科学与技术,2007,06
    [59]陈洁,傅正生,达文燕等.土豆淀粉废水发酵普鲁兰多糖的研究[J].农业与技术,2006,26(01):112-115
    [60]卢娜,王跃强,周顺桂等.微生物转化淀粉废水制备生物灭蚊剂[J].生态环境,2008,17(03):931-935
    [61]邓国平,袁宏伟,黄俊生.利用木薯加工废水生产淡紫拟青霉的研究[J].第二届全国农业环境科学学术研讨会论文集,2007:332-334
    [62]蔡琳晖,聂麦茜,贾建慧等.以与发酵淀粉废水为碳源生产微生物絮凝剂[J].应用化工,2007,36(05):457-459,467
    [63]王岁楼,张平之,王平诸.以淀粉废水为原料的乳酸钙发酵工艺研究[J].郑州粮食学院学报,1996,17(04):20-25
    [64]张振家,王太平,张虹等UASB反应器处理淀粉废水试验研究[J].工业水处理,2002,22(01):28-30
    [65]郑平,胡宝兰,Deffu Soufo Herve Joe.UASB工艺常温处理木薯加工废水[J].太阳能学报,2002,23(06):774-777
    [66]Tipparat Hongpattarakere,Aran H-Kittikun. Optimization of single-cell-protein production from cassava starch using Schwanniomyces castellii[J]. World Journal of Microbiology and Biotechnology,1995,11:607-609
    [67]伍建青.2011年世界木薯大会:加强对泰交流拓展东盟市场[EB/OL].:http://asean.gxtv.cn/20110706/news_1136238517792.html,2011-07-06
    [68]冯献,詹玲.中国木薯及木薯制成品贸易格局分析[J].中国热带农业,2009,(03)
    [69]雅加达.全球第四大木薯生产国印尼仍进口木薯淀粉[N].印度尼西亚《商报》,2011,11(09):19
    [70]国家环保局委员会编.水和废水监测分析方法[M].北京:中国环境科学出版社,1989
    [71]任成忠,毛丽芬.加标回收试验的实施及回收率计算的研究[J].工业安全与环保,2006,32(02):9-11
    [72]顾国维.水污染治理技术研究[M].上海:同济大学出版社,1997.125-126
    [73]Nuttha Thongchul,Surapong Navankasattusas,Shang-Tian Yang. Production of lactic acid and ethanol by Rhizopus oryzae integrated with cassava pulp hydrolysis [J]. Bioprocess Biosyst Eng,2010,33:407-416
    [74]沈萍,陈向东.微生物学实验[M].北京:高等教育出版社,2007
    [75]Ming Chang,Shun-Gui Zhou,Na Lu. Starch processing wastewater as a new medium for production of Bacillus thuringiensis[J]. World J Microbiol Biotechnol,2008,24:441-447
    [76]Ejiofor AO.Production of Bacillus thuringiensis serotype H-14as bioinsecticide using a mixture of'spent'brewer's yeast and waste cassava starch as the fermentation medium[J]. Discov Innovat,1991,3:85-88
    [77]Siddhartha G. V. A. O. Costa,Fran,cois Lepine,Sylvain Milot. Cassava wastewater as a substrate for the simultaneous production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa[J] Ind Microbiol Biotechnol,2009,36:1063-1072
    [78]Marcia Nitschke,Glaucia M.Pastore. Cassava Flour Wastewater as a Substrate for Biosurfactant Production [J]. Applied Biochemistry and Biotechnology,2003,105-108:296-301
    [79]Jin B, van Leewen J. Production of fungal protein and glucoamylase by Rhizopus oligosporus from starch processing wastewater [J]. Process Biochemistry,1999,34(1):59-65
    [80]郑玉.木薯淀粉生产废水达标处理新工艺研究[D].广西,桂林工学院,2005
    [81]Jin B, van Leeuwen HJ, Yu Q, Patel B. Screening andselection of microfungi for microbial biomass protein production and water reclamation from starch processing wastewater[J].J Chem Technol Biotechnol,1999a,74:106-110
    [82]Jin B, Yan XQ, Yu Q, van Leeuwen HJ.A comprehensive pilot plant system for fungal biomass protein production and wastewater reclamation [J]. Adv Environ Res,2002,6:179-189
    [83]Yen-Hui Lin,Mu-Ling Juan,Hsin-Jung Hsien. Effects of temperature and initial pH on biohydrogen production from food-processing wastewater using anaerobic mixed cultures[J]. Biodegradation,2011,22:551-563

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700