矿物浮选气泡速度和尺寸分布特征提取方法与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿物浮选是涉及固体、液体、气体三相分选的复杂物理化学过程。影响分选效率的过程操作变量众多,且变量间相互耦合作用对浮选性能指标产生决定性影响,既有来自宏观层次的固体粒子传输等物理因素,同时也有来自微观层次的化学药剂因素和流体动力学因素等。浮选过程工序中可控操作变量直接影响泡沫层形成的质量,主要体现于气泡流动速度和气泡尺寸特征。气泡表观特征既能提供可控操作变量的指示符,同时亦可作为判断浮选分选效果的重要依据。浮选生产过程优化的瓶颈在于解决对泡沫表观特征如气泡速度和尺寸的准确描述、视觉特征量变化与操作参数间映射关系以及确定有效操作提高浮选指标性能等关键问题,这成为本文研究和探讨的内容和难点。
     在泡沫浮选机理分析基础上,依据气泡表观特征与工艺操作条件的关联性,提出了表层气泡流动速度和尺寸分布表观特征提取方法,开发了气泡表观特征在线提取系统,并成功应用于浮选工业现场泡沫监测和数据分析。论文主要研究工作及创新性成果如下:
     (1)针对浮选气泡体内部不透明、可视程度低等本质属性,对泡沫体内部气泡运动的轨迹进行动力学描述,建立了泡沫体内部气泡运动的拉普拉斯仿真模型。在讨论浮选泡沫体做不可压缩和无旋运动的基础上,给定流体流动区域边界上的运动参数即边界条件,建立的气泡运动拉普拉斯模型能反映泡沫体内部的动态特征,流场内流线趋势揭示相邻气泡的运动模式,气泡形状随着流线的密集而产生形变,给出泡沫体速度场分布的可视化输出。通过分析气泡运动模型的流场分布,确定表层气泡运动速度测量位置。
     (2)针对浮选表层气泡运动的连续性及工业泡沫图像的复杂性特点和速度特征提取实时性的需要,提出基于方向的快速六边形搜索宏块跟踪算法计算工业浮选表层泡沫流动速度位移。由于浮选泡沫连续帧图像在短时间内保持其形状结构的缓慢变化,适用于二维单气泡匹配的传统质心跟踪速度测量算法无法有效应用于跟踪环境错综复杂的三相工业泡沫图像的气泡质心。提出的速度算法适用于工业浮选泡沫速度特征的实时提取,对同水平位置的不同宏块进行跟踪匹配的实验结果表明该算法的准确性。在确定表层速度测量点和溢流口泡沫厚度测量点的基础上,在方形浮选实验槽进行大量实验,采用提出的速度特征计算空气回收率,发现了空气回收率的最优尖峰值。根据空气回收率和泡沫回收率的强依赖正比关系可知,将操作条件调整至空气回收率的最优尖峰值,可使浮选槽获得最优泡沫回收率。
     (3)针对采集的泡沫图像具有“无背景、全前景”的特点和传统分割算法的局限性,研究了适于矿物泡沫图像分割的改进形态学开闭重构分水岭分割算法和基于谷底边缘检测的浮选泡沫图像分割算法,克服白亮点现象带来的分割不稳定性。对泡沫图像进行分割后处理分析发现,泡沫尺寸概率密度为非高斯分布。针对现存气泡形状特征提取方法假设泡沫尺寸为正态分布,采用均值方差等不精准的单值特征,本文提出概率密度函数估计算法来准确描述气泡尺寸分布统计特性。但图像特征的统计分布数学模型是不可知的,也无法预先假设图像特征服从某种分布,采用非参数估计方法可描述不可知连续过程的气泡尺寸密度分布。根据泡沫尺寸分布曲线具有偏斜、长拖尾等特点,设计了非参数估计算子反映各种复杂关系。
     (4)针对泡沫尺寸分布特征与浮选药剂操作的关系,建立了基于非参数动态权系数的故障检测和诊断模型。对分割泡沫图像采用概率密度函数准确描述泡沫尺寸统计特性,设计非参数估计算子逼近概率分布曲线,从而将泡沫尺寸概率分布转化为动态权系数描述,建立了带时滞动态权系数模型。运用线性矩阵不等式得到合理的故障检测和诊断判据。将该模型应用于离线泡沫图像故障检测的仿真实验,验证了该模型的有效性。
     (5)以实际浮选过程为研究对象,开发了浮选泡沫图像特征分析系统,建立了基于对应气泡速度和尺寸表观特征的操作条件的品位回收率关系模型。通过实时观察操作变量在泡沫表观特征上的变化,调整浮选可控操作参数药剂用量和浮选槽充气量,在回收率品位曲线带上实现性能指标的优化,获得不同调整剂加入量和气泡运动速度条件下的浮选性能指标优化的结果,为实现浮选过程生产操作的实时优化奠定了基础。
Mineral flotation is a complex physical and chemical process involving three phases such as solid, liquid and air. It is a multivariate process influenced by many factors including physical variables like solid particles in macro level and chemical variables like reagent or dynamic fluid kinetic factors in micro level, and additional coupling effect among the variables can complicate the decisive reasons for flotation performance change. From the perspective of flotation mechanism, froth visual features can characterize the combining effect of multiple operating conditions on flotation, which is the indicator of flotation separation performance. The bottleneck of flotation optimization lies in guaranteeing accurate flotation froth features description, relation between image features and operational variables, flotation performances optimization based operation condition strategies. All these unsolved problems will be discussed and explored in this thesis.
     Based on froth flotation mechanism analysis and the relationship between froth visual features and operation conditions, surface bubble motion velocity measurement and bubble size distribution estimation algorithms are proposed. With the online feature data and operation conditions from the developed froth image feature monitoring system, relation on froth visual features, operational variables and flotation performances is established and applied on froth flotation industry. Main research work and innovative achievements are as follows:
     (1) To describe foam flow within a flotation cell which has inherent properties like opacity and invisibility, a Laplace base bubble motion model is established from kinetic analysis. With the assumption of incompressible and irrotational flow, boundary conditions are given for the established model. It can provide visual output of the bubble velocity distribution which is one of the important dynamic features in froth layer, and the trend of streamline within reveals flow pattern of adjacent bubbles which proves the bubble shape distorts with the density of streamline. The Laplace model based bubble motion velocity distribution can theoretically point out rational position in a flotation cell to measure the flow velocity of bubble in surface layer.
     (2) Considering the characteristics of complex surface bubble flow and its demand of real-time velocity feature extraction in flotation industry, a direction-oriented fast hexagon search based block matching velocity measurement algorithm is proposed. Since the traditional centroid tracking based algorithm fitting for 2D foam velocity measurement is no longer applicable in complex 3D industry froth images, the proposed algorithm suits the real-time extraction of velocity measurement with the approval of its accuracy from experimental results of two target blocks at same horizontal position but different height. Given the right position to measure the velocity and the froth depth over the lip, various experiments carried out shown that air recovery calculated from velocity feature appeared a peak with the increase of inlet gas velocity. When operating in condition of peak air recovery, the opportunity of optimal flotation performances increases consequently.
     (3) For froth images has an unpleasant property of no void background for conventional segmenting algorithms, two effective froth segmentation algorithms are explored based on the features of froth images to overcome the limitation of traditional methods such as segmenting instability of white spot effect, including improved morphological reconstruction watershed segmentation method and valley edge detection based segmentation method. The post-segmentation analysis has shown the fact that probability density distribution (PDF) of bubble size is non-Gaussian. Unlike traditional method applying singular feature such as mean or variance with the assumption that the distribution is normal, probability density distribution is suggested to accurately describe statistical feature of froth structure. The fact that the mathematical model of distribution is unknown makes nonparametric estimation method fitting to depict the unknown continuous process of froth flotation. Considering that the bubble size distribution is highly skewed with long tails, nonparametric descriptor is designed to reflect the variety of the curve.
     (4) In order to establish the relationship between bubble size distribution and reagents addition, a fault detection and diagnosis scheme using nonparametric estimation based dynamic weights model is proposed. The designed nonparametric estimation is applied so that the output PDF is formulated in terms of dynamic weights, by which a non-linear model with time delay is established. Effective fault detection and diagnosis is achieved by using linear matrix inequation method. The reagent fault is successfully detected and diagnosed on the industrial data of off-line froth images.
     (5) Taking certain alumina industry froth flotation as a research case, a froth visual feature extraction system is developed. Operational conditions with corresponding bubble velocity and size features based grade recovery model is proposed. By manipulating the cell operating condition such as chemical reagent addition or inlet air flowrate, the on-line monitoring of froth visual features can reflect the changes, and consequently the circuit performance can shift among the coordinates on the grade recovery curve to achieve optimal trade-off between grade and mineral recovery. The metallurgical results clearly indicate that changes in air rate or reagent addition result in the variation of flotation performance, which laid the foundation for implementation of real-time process optimization.
引文
[1]Gorain B K, Franzidis J P, Manalapig E V. Studies on impeller type, impeller speed and air flow rate in an industrial scale flotation cell-Part 1:Effect on bubble size distribution. Minerals Engineering,1995,8(6):615-635
    [2]Gorain B K, Napier-Munn T J, Franzidis J P, et al. Studies on impeller type, impeller speed and air flow rate in an industrial scale flotation cell-Part 5: Validation of k-Sb relationship and effect of froth depth. Minerals Engineering, 1998,11(7):615-626
    [3]Gorain B K, Harris M C, Franzidis J P, et al. The effect of froth residence time on the kinetics of flotation. Minerals Engineering,1998,11(7):627-638
    [4]Mathe Z T, Harris M C, O'Connor C T. A review of methods to model the froth phase in non-steady state flotation systems. Minerals Engineering,1999,13(2): 127-140
    [5]Ross V E. An investigation of sub-processes in equilibrium froths (Ⅱ):the effect of operating conditions. International Journal of Mineral Processing, 1991,31(1-2):51-71
    [6]Engelbrecht J A, Woodburn E T. The effects of froth height, aeration rate and gas precipitation on flotation. Journal of South African Institute of Mining and Metallurgy Special Issue,1975,76(125-132):
    [7]Vera M A, Franzidis J P, Manalapig E V. Simultaneous determination of collection zone rate constant and froth zone recovery in a mechamical flotation environment. Minerals Engineering,1999,12(10):1163-1176
    [8]Cooper M, Scott D, Dahlke R, et al. Impact of air distribution profile on banks in a Zn cleaning circuit. CIM Bulletin,2004,97(1083):1-6
    [9]Hernandez-Aguilar J R, Reddick S. Gas dispersion management in a copper/ molybdenum separation circuit. Cu2007,2007,2(173-184
    [10]Tao D, Luttrell G H, Yoon R H. A parametric study of froth stability and its effect on column flotation of fine particles. International Journal of Mineral Processing,2000,59(1):25-43
    [11]Banford A W, Aktas Z, Woodburn E T. Interpretation of the effect of froth structure on the performance of froth flotation using image analysis. Powder Technology,1998,98(1):61-73
    [12]Neethling S J, Cilliers J J. Solids motion in flowing froths. Chemical Engineering Science,2002,57(4):607-615
    [13]Neethling S J, Cilliers J J. Entrainment of gangue into flotation froths. International Journal of Mineral Processing,2002,64(2-3):123-134
    [14]Asplin R A, Sadr-Kazemi N, Cilliers J J. The effect of surfactant concentration on batch flotation mineral flux and froth structure. Minerals Engineering,1998, 11(3):257-269
    [15]Ventura-Medina E, Cilliers J J. Calculation of the specific surface area in flotation. Minerals Engineering,2000,13(3):265-275
    [16]Ventura-Medina E, Cilliers J J. A model to describe flotation performance based on physics of foam and froth image analysis. International Journal of Mineral Processing,2002,67(1-4):79-99
    [17]Barbian N, Ventura-Medina E, Cilliers J J. Dynamic froth stability in froth flotation. Minerals Engineering,2003,16(11):1111-1116
    [18]Neethling S J, Lee H T, Cilliers J J. Simple relationships for predicting the recovery of liquid from flowing foams and froths. Minerals Engineering,2003, 16(11):1123-1130
    [19]Ventura-Medina E, Barbian N, Cilliers J J. Solids loading and grade on mineral froth bubble lamellae. International Journal of Mineral Processing, 2004,74(1-4):189-200
    [20]Barbian N, Hadler K, Ventura-Medina E, et al. The froth stability column: linking froth stability and flotation performance. Minerals Engineering,2005, 18(3):317-324
    [21]Hadler K, Cilliers J J. The relationship between the peak in air recovery and flotation bank performance. Minerals Engineering,2009,22(5):451-455
    [22]Smith C, Neethling S J, Cilliers J J. Air-rate profile optimisation:From simulation to bank improvement. Minerals Engineering,2008,21(12-14): 973-981
    [23]Neethling S J, Cilliers J J. Predicting air recovery in flotation cells. Minerals Engineering,2008,21(12-14):937-943
    [24]Moys M H. Residence time distributions and mass transport in the froth phase of the flotation process. International Journal of Mineral Processing,1984, 13(2):117-142
    [25]Gorain B K. Experiences at antamina and red dog. In Centenary of Flotation Symposium, Brisbane,2005.843-851
    [26]Woodburn E T, Austin L G, Stockton J B. A froth based flotation kinetic model. Chemical Engineering Research and Design,1994,72(A2):221-226
    [27]Neethling S J, Cilliers J J. The effect of Weir angle on bubble motion in a flotation froth:Visual modelling and verification. Minerals Engineering,1998, 11(11):1035-1046
    [28]Neethling S J, Cilliers J J, Woodburn E T. Prediction of the water distribution in a flowing foam. Chemical Engineering Science,2000,55(19):4021-4028
    [29]Murphy D G, Zimmerman W, Woodburn E T. Kinematic model of Bubble Motion in a Flotation Froth. Powder Technology,1996,87(1):3-12
    [30]Aldrich C, Moolman D W, Bunkell S J, et al. Relationship between surface froth features and process conditions in the batch flotation of a sulphide ore Minerals Engineering,1997,10(11):1207-1218
    [31]Moolman D W, Eksteen J J, Aldrich C, et al. The significance of flotation froth appearance for machine vision control. International Journal of Mineral Processing,1996,48(3-4):135-158
    [32]Moolman D W, Aldrich C, Deventer J S J V. The monitoring of froth surfaces on industrial flotation plants using connectionist image processing techniques. Minerals Engineering,1995,8(1-2):23-30
    [33]Moolman D W, Aldrich C, Schmitz G P J, et al. The interrelationship between surface froth characteristics and industrial flotation performance. Minerals Engineering,1996,9(8):837-854
    [34]Moolman D W, Aldrich C, Deventer J S J V. The interpretation of flotation froth surfaces by using digital image analysis and neural networks. Chemical Engineering Science,1995,50(22):3501-3513
    [35]Kaartinen J, Hatonen J, Hyotyniemi H, et al. Machine vision based control of zinc flotation-A case study. Control Engineering Practice,2006,14(12): 1455-1466
    [36]Hyotyniemi H, Ylinen R. Modeling of visual fotation froth data. Control Engineering Practice,2000,8(3):313-318
    [37]Niemi A J, Ylinen R, Hyotyniemi H. On characterization of pulp and froth in cells of flotation plant. International Journal of Mineral Processing,1997, 51(1-4):51-65
    [38]Bartolacci G, Pelletier P, Tessier J, et al. Application of numerical image analysis to process diagnosis and physical parameter measurement in mineral processes-Part I:Flotation control based on froth textural characteristics. Minerals Engineering,2006,19(6-8):734-747
    [39]Liu J J, Macgregor J F, Duchesene C, et al. Flotation froth monitoring using multiresolutional multivariate image analysis. Minerals Engineering,2005, 18(1):65-76
    [40]Bonifazi G, Serranti S, Volpe F, et al. Characterisation of flotation froth colour and structure by machine vision. Computers & Geosciences,2001,27(9): 1111-1117
    [41]Bonifazi G, Massacci P, Meloni A. Prediction of complex sulfide flotation performances by a combined 3D fractal and colour analysis of the froths. Minerals Engineering,2000,13(7):737-746
    [42]Bonifazi G, Massacci P, Meloni A. A 3D froth surface rendering and analysis technique to characterize flotation processes. International Journal of Mineral Processing,2002,64(2-3):153-161
    [43]Citir C, Aktas Z, Berber R. Off-line image analysis for froth flotation of coal. Computers & Chemical Engineering,2004,28(5):625-632
    [44]Hargrave J M, Miles N J, Hall S T. The use of grey level measurement in predicting coal flotation performance. Minerals Engineering,1996,9(6): 667-674
    [45]Hargrave J M, Hall S T. Diagnosis of concentrate grade and mass flowrate in tin flotation from colour and surface texture analysis. Minerals Engineering, 1997,10(6):613-621
    [46]Wang W, Bergholm F, Yang B. Froth delineation based on image classification. Minerals Engineering,2003,16(3):1183-1192
    [47]Cipriano A, Guarini M, Vidal R, et al. A real time visual sensor for supervision of flotation cells. Minerals Engineering,1998,11(6):489-499
    [48]陈子鸣,茹青.使用多媒体技术研究浮选泡沫现象的初步探索.矿冶工程,1997,17(3):247~248
    [49]刘文礼,路迈西,王凡,et al.煤泥浮选泡沫图像纹理特征的提取及泡沫状态的识别.化工学报,2003,54(6):830~835
    [50]刘文礼,陈子彤,路迈西.煤泥浮选泡沫的数字图像处理.燃料化学学报,2002,30(3):198~203
    [51]刘文礼,路迈西,王勇,et al.煤泥浮选泡沫数字图像处理研究(之一).中国矿业大学学报,2002,31(2):120~123
    [52]曾荣,沃国经.图像处理技术在镍选矿厂中的应用.矿冶,2002,11(1):37~41
    [53]曾荣,沃国经.图像处理技术在浮选过程中的应用.有色金属,2001,53(4):70~72
    [54]阳春华,杨尽英,牟学民.基于聚类预分割和高低精度距离重构的彩色浮选泡沫图像分割.电子与信息学报,2008,30(6):1286~1290
    [55]Yang C, Xu C, Gui W, et al. Application of highlight removal and multivariate image analysis to color measurement of flotation bubble images. International Journal of Imaging Systems and Technology,2009,19(4):316-322
    [56]Yang C, Xu C, Mu X, et al. Bubble size estimation using interfacial morphological information for mineral flotation process monitoring. Transactions of Nonferrous Metals Society of China,2009,19(3):694-699
    [57]Yang C, Xu C, Gui W, et al. Nonparametric Density Estimation of Bubble Size Distribution for Monitoring Mineral Flotation Process. In 48th IEEE Conference on Decision and Control, Shanghai,2009.2941-2945
    [58]Zhou K, Yang C, Gui W, et al. Clustering-driven watershed adaptive segmentation of bubble image. Journal of Central South University of Technology,2010,17(5):1049-1057
    [59]程翠兰,阳春华,周开军,et al.基于非线性模糊纹理谱的浮选泡沫图像纹理特征提取.矿业工程研究,2009,24(4):62~66
    [60]Neethling S J. Simple approximations for estimating froth recovery. International Journal of Mineral Processing,2008,89(1-4):44-52
    [61]Brown N, Bourke P, Ronkainen S, et al. Improving flotation plant performance at Cadia by controlling and optimizing the rate of froth recovery using Outokumpu FrothMasterTM. In 33 rd Annual Meeting of the Canadian Mineral Processors, Ottawa,2001.25-36
    [62]Kaartinen J, Koivo H. Machine vision based measurement and control of zinc flotation circuit. Studies in Informatics and Control,2002,11(1):97-105
    [63]Monnereau C, Vignes-Adler M. Dynamics of 3D Real Foam Coarsening. Physical Review Letters,1998,80(23):5228-5231
    [64]Sadr-Kazemi N, Cilliers J J. An image processing algorithm for measurement of flotation froth bubble size and shape distributions. Minerals Engineering, 1997,10(10):1075-1083
    [65]Barbian N, Cilliers J J, Morar S H, et al. Froth imaging, air recovery and bubble loading to describe flotation bank performance. International Journal of Mineral Processing,2007,84(1-4):81-88
    [66]Holtham P N, Nguyen K K. On-line analysis of froth surface in coal and mineral flotation using JKFrothCam. International Journal of Mineral Processing,2002,64(2-3):163-180
    [67]Liu J J, MacGregor J F. Froth-based modeling and control of flotation processes. Minerals Engineering,2008,21(9):642-651
    [68]Bezuidenhout M, Deventer J S J V, Moolman D W. The identification of perturbations in a base metal flotation plant using computer vision of the froth surface. Minerals Engineering,1997,10(10):1057-1073
    [69]Wills B A. Mineral processing technology. Great Britain: Butterworth Heinemann,1997
    [70]Kelly E G, Spottiswood D J. Introduction to mineral processing. New York: John Wiley and Sons,1982
    [71]Neethling S J, Cilliers J J. Predicting and correcting grade-recovery curves: Theoretical aspects. International Journal of Mineral Processing,2008,89(1-4): 17-22
    [72]Weaire D, Hutzler S. The physics of foams. Great Britain: Oxford University Press,1999
    [73]Morris G, Pursell M R, Neethling S J, et al. The effect of particle hydrophobicity, separation distance and packing patterns on the stability of a thin film. Journal of Colloid and Interface Science,2008,327(1):138-144
    [74]Morris G, Neethling S J, Cilliers J J. The effects of hydrophobicity and orientation of cubic particles on the stability of thin films. Minerals Engineering,2010,23(11-13):979-984
    [75]Morris G, Neethling S J, Cilliers J J. A model for investigating the behaviour of non-spherical particles at interfaces. Journal of Colloid and Interface Science,2010,354(1):380-385
    [76]Glazier J A, Stavans J. Nonideal effects in the two-dimensional soap froth. Physical Review A,1989,40(12):7398-7401
    [77]Neethling S J, Cilliers J J. A visual kinematic model of flowing foams incorporating coalescence. Powder Technology,1999,101(3):249-256
    [78]Aldrich C, Feng D. The effect of frothers on bubble size distributions in flotation pulp phases and surface froths. Minerals Engineering,2000, 13(10-11):1049-1057
    [79]Cho Y S, Laskowski J S. Effect of flotation frothers on bubble size and foam stability. International Journal of Mineral Processing,2002,64(2-3):69-80
    [80]Grau R A, Laskowski J S, Heiskanen K. Effect of frothers on bubble size. International Journal of Mineral Processing,2005,76(4):225-233
    [81]Mathe Z T, Harris M C, O'Connor C T. Review of froth modelling in steady state flotation systems. Minerals Engineering,1998,11(5):397-421
    [82]Mathe Z T, Harris M C, O'Connor C T. A review of methods to model the froth phase in non-steady state flotation systems. Minerals Engineering,2000,13(2): 127-140
    [83]Neethling S J, Hadler K, Cilliers J J, et al. The use of FrothSim to optimise the water addition to a column flotation cell Minerals Engineering,2006,19(6-8): 816-823
    [84]Neethling S J. Simple approximations for estimating froth recovery. International Journal of Mineral Processing,2008,89(1):44-52
    [85]Zheng X, Franzidis J P, Johnson N W. An evaluation of different models of water recovery in flotation. Minerals Engineering,2006,19(9):871-882
    [86]Zheng X, Johnson N W, Franzidis J P. Modelling of entrainment in industrial flotation cells:Water recovery and degree of entrainment. Minerals Engineering,2006,19(11):1191-1203
    [87]Young D M. On the accelerated SSOR method for solving large linear systems. Advances in Mathematics,1997,23(3):215-271
    [88]Lin B, Recke B, Knudsen J K H, et al. Bubble size estimation for flotation processes Minerals Engineering,2008,21(7):539-548
    [89]Hadler K. Down the bank froth stability and flotation performance.:[PhD thesis]. Manchester:UMIST, Department of Chemical Engineering,2006
    [90]McCarthy C, Barnes N. Performance of optical flow techniques for indoor navigation with a mobile robot. In IEEE International Conference on Robotics and Automation, New Orleans,2004.5093-5098
    [91]Xu J B, Po L M, Cheng C K. Adaptive motion tracking block matching algorithms for Video Coding. IEEE Transactions On Circuits and Systems for Video Technology,1999,10(9):1025-1029
    [92]Zitova B, Flusser J. Image registration methods:a survey. Image and Vision Computing,2003,21(11):977-1000
    [93]Markandy V, Reid A, Wang S. Motion estimation for moving target detection. IEEE Transactions On Aerospace and Electron System,1996,32(3):866-874
    [94]Lipton A J, Fujiyoshi H, Patil R S. Moving target classification and tracking from real-time video. In IEEE Workshop on Applications of Computer Vision, Princeton,1998.8-14
    [95]Valera M, Velastin S A. Intelligent distributed surveillance systems. IEE Proceedings Vision Image and Signal Process,2005,152(2):192-204
    [96]Chen Q S, Defrise M, Deconinck F. Symmetric phase-only matched filtering of Fourier-Mellin transforms for image registration and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16(12): 1156-1168
    [97]Horn B K P, Schunck B G. Determining optical flow. Artificial Intelligence 1981,17(1-3):185-203
    [98]唐朝晖,刘金平,桂卫华, et al.基于数字图像处理的浮选泡沫速度特征提取及分析.中南大学学报,2009,40(6):1616~1622
    [99]Koga T, Iinuma K, Hirano A, et al. Motion compensated interframe coding for video conferencing. In National Telecommunications Conference, New Orleans,1981. G531-G535
    [100]Li R, Zeng B, Liou M L. A new three-step search algorithm for block motion estimation. IEEE Transactions on Circuits and Systems for Video Technology, 1994,4(4):438-442
    [101]Zhu S, Ma K K. A new diamond search algorithm for fast block matching motion estimation. IEEE Transactions on Image Processing,2000,9(2): 287-290
    [102]Zhu C, Lin X, Chau L P. Hexagon-based search pattern for fast block motion estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2002,12(5):349-355
    [103]Zhu C, Lin X, Chau L P, et al. Enhanced hexagonal search for fast block motion estimation. IEEE Transactions on Circuits and Systems for Video Technology,2004,14(10):1210-1214
    [104]Po L M, Ting C W, Wong K M, et al. Novel Point-Oriented Inner Searches For Fast Block Motion Estimation. IEEE Transactions on Multimedia,2007,9(1): 9-15
    [105]Zou B J, Shi C, Xu C H, et al. Enhanced Hexagonal-Based Search Using Direction-Oriented Inner Search for Motion Estimation. IEEE Transactions on Circuits and Systems for Video Technology,2010,20(1):156-160
    [106]周开军.矿物浮选泡沫图像形态特征提取方法与应用:[博士学位论文].长沙:中南大学,信息科学与工程学院,2010
    [107]Lin B, Reche B, Knudsen J K H, et al. Bubble size estimation for flotation processes. Minerals Engineering,2008,21(7):539-548
    [108]Yang X, Aldrich C. Relationship between solids flux and froth features in batch flotation of sulphide ore. Transactions of Nonferrous Metals Society of China,2005,15(6):1373-1379
    [109]Yang X, Aldrich C. Effects of impeller speed and aeration rate on flotation performance of sulphide ore. Transactions of Nonferrous Metals Society of China,2006,16(1):185-190
    [110]Vincent L, Soilie P. Watersheds in digital spaces:an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,13(6):583-598
    [111]Wang W, Wang L. Froth image segmentation algorithms and their validation. In International Conference on Signal Processing Beijing,2000.2042-2045
    [112]O'Connor C T, Randall E W, Goodall C M. Measurement of the effects of physical and chemical variables on bubble size. International Journal of Mineral Processing,1990,28(1-2):139-149
    [113]Scott D W. On optimal and data-based histograms. Biometrika,1979,66(3): 605-610
    [114]Jones M C, Samiuddin M, Al-Harbey A H, et al. The edge frequency polygon. Biometrika,1998,85(1):235-239
    [115]Scott D W. Frequency polygons:theory and application. Journal of the American Statistical Association,1985,80(390):348-354
    [116]Scott D W. Averaged shifted histogram. Wiley Interdisciplinary Reviews: Computational Statistics,2010,2(2):160-164
    [117]Herrick D R M, Nason G P, Silverman B W. Some new methods for wavelet density estimation. Technical report, Bristol University,2000
    [118]Donoho D L, Johnstone I M, Kerkyacharian G, et al. Density estimation by wavelet thresholding. The Annals of Statistics,1996,24(2):508-539
    [119]Daubechies I. Ten Lectures on Wavelets. Philadelphia: Society for Industrial and Applied Mathematics,1992
    [120]Zhang Y M, Guo L, Wang H. Filter-based fault detection and diagnosis using output PDFs for stochastic systems with time delays. Control Signal Process, 2006,20(1):175-194

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700