用户名: 密码: 验证码:
独立式全空调型客车空调模糊控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空调是典型的传质换热系统,结构和内部物理过程复杂。与一般的建筑空调相比,汽车空调的工作环境恶劣,条件差,控制难度要增加很多,主要体现在以下几个方面:一是车外热负荷变化大,难以确定控制参数;二是要求空调负荷大,而且要控制空调使其降温迅速:三,不便于用电力作为动力源,必须用汽车发动机或辅助发动机来带动压缩机,当采用汽车发动机作为动力源时,由于汽车的车速变化大,发动机转速的变化可从600r/min到4000r/min,压缩机转速与发动机转速成正比,其转速变化高达7倍,给空调系统制冷剂流量控制带来困难。
     在汽车空调控制中,防止蒸发器结霜,使空调高效运行和控制车厢内的温度是控制的根本任务。我国大多数客车空调仍然采用简单的压缩机开关控制及循环离合控制系统,如:离合器—热力膨胀阀系统(CCTXV)和离合器—节流管系统(CCOT),这些控制方式的精度低,当进行恒温控制时压缩机处于频繁的开、停状态,缩短了压缩机的工作寿命。目前空调控制向自动微调智能化发展,由电脑根据人工设定的要求,自动控制压缩机的运转、热水阀的开度、风机速度、各种风门的开闭位置等等,不仅提高了乘客的舒适性,而且高效节能。
     本论文针对独立式全空调型(完全合一型)客车空调系统,设计了一个以AT89C51为核心的采用模糊控制算法的嵌入式单片机控制系统,通过控制温度门的开口角度、蒸发器风扇的转速、辅助发动机的转速来控制车厢内的温度,通过压缩机的开、停对蒸发器除霜,系统具有温度显示、用户设定的分挡多级温度控制、在线控制参数修改等功能。
     模糊控制算法采用带有积分环节的修正因子在线插值的模糊控制,控制系统的输入为车厢温度与设定值的偏差和偏差的变化率,输出为与温度门开口角度相关的占空比可调的脉冲的占空比参数,均采用正态模糊数模型。修正因子在线插值模糊控制实际上由两个模糊控制器构成,一是“IF偏差AND偏差变化率THEN修正因子”的双输入单输出模糊控制器,采用控制查询表的方式求取修正因子:二是“IF偏差AND偏差变化率THEN占空比参数”的双输入单输出模糊控制器,采用无量化模糊数模型。模糊控制算法可用下式表示:
     采用了修正因子的模糊控制器接近一个自适应的模糊控制器,实现了控制规则的在线自调整。为进一步改善控制系统的控制品质,允许用户对控制参数进行修改,K_i由用户输入,K_u则根据用户设定的调整步长和温度偏差的情况由控制系统自调整。在论文中尝试了用语言模型分析双输入单输出模糊控制系统的稳定性,并对修正因子在线插值的控制系统进行了大量的仿真,结果表明系统的上升时间短,超调量小,无稳态误差,稳定性好,控制灵活,抗干扰能力强。
     控制系统的硬件电路由以下几部分组成:一是由8155、四位LED显示、简易键盘构成的人机接口电路;二是AT89C51与串行EEPROM—AT93C66构成的存储电路;三是由三个数字式温度传感器DS1820组成的温度采样电路;四是输出电路。AT93C66是三线制Microwire串行总线的EEPROM,在控制系统中用于存储用户的各种设定值和当前的工作状态(车厢温度、比例系数K_u等)。DS1820是单总线的数字式温度传感器,三个温度传感器分别检测环境温度、蒸发器表面温度、客车车厢的温度,控制系统根据检测到的温度值判断是否要开启空调、是否需要除霜或结束除霜等。由于系统采用了串行总线器件(AT93C66和DS1820)大大简化了系统的硬件设计,在论文中详细地介绍了AT93C66和DS1820的特点、总线协议和操作指令及时序等,并给出了它们的操作和控制程序。控制系统提供模拟量和开关量两种形式的输出,模拟量输出为周期固定的占空比可调的连续的脉冲,通过功率三极管组成的直流斩波放大后驱动温度门的动作伺服机构;用开关信号控制蒸发器风机、辅助发动机的转速和压缩机的开、停。
     在控制系统的软件设计时充分发挥AT89C51的两个定时器的作用,TO的中断服务程序完成周期固定的占空比可调的连续的脉冲的输出,而T1的中断服务程序则确定采样周期。模糊计算程序采用三字节浮点数,这样既可以保证计算精度,而计算时间又不至过长。
Air-condition is a typical heat exchange system. Its construction and process of heat exchange are very complex. Compared with air-conditions in buildings,the bus air-conditions work in the bad conditions and we have much more difficulties in the control of them. First,the heat load of bus air conditions always changes and it is difficult to define the controlling parameters. Second,the drop of temperature in railway carriage must be quickly. Finally,we can not use electric power but the engine of bus or subsidiary engine to drive air compressors of bus air conditions. Because the change range of turnaround speed of engine is very wide,that brings difficulties in controlling the rate of flow of cold-producing medium.
    In the control of bus air-conditions,preventing evaporator from freezing to make the air-conditions work with high efficiency and controlling the temperature of railway carriage are the basic tasks in air-condition control. In our country,most buses still use CCTXV system and CCOT system to control air-conditions. These ways have not a higher accuracy in control. They will short down the working life of air compressor because they are always started or stopped when we want to make the railway carriage stay in a fixed temperature. Now,automatic and intelligent control systems are being applying in bus air-conditions control. In this way,computers control the work of air compressor,the turnaround speed of fan,the open degrees of wind controlled doors and so on. This controlling way can make the passengers feel much comfortable and make the bus air-conditions work with a high efficiency.
    In this thesis,a single-chip microcomputer fuzzy controlling system with MCU:AT89C51 is designed to deal with the bus whole air-condition composed with refrigerating system and heating system. Via controlling the open of temperature door,turnaround speed of evaporator fan and subsidiary engine,it can control temperature of railway carriage. Via starting and stopping air compressor,it can make the ice of evaporator melt. This controlling system can display the temperature of railway carriage,control temperature with multi-grade setting and modify controlling parameters on line.
    The algorithm of fuzzy controller is revising factor (a)consulted on line fuzzy control with integral link. The input of controlling system are temperature deviation(E) and deviation changing rate(EC). The output of system(u) is occupying parameter of adjusting pulse. All of them are transformed into fuzzy number. In fact,the control of revising factor consulted on line is composed by two fuzzy controller. One is double input and single output fuzzy system with controlling construction of IF E AND EC THEN a . The other is the double input and single output fuzzy system with controlling construction of IF E AND EC THEN occupying parameter of adjusting pulse. The fuzzy algorithm can be summered with such formula:
    The fuzzy controller with revising factor is a adapting fuzzy controller. It realize self-adjusting of controlling rules on line. To improve the controlling quality of this system,it permit user modify controlling parameters. User can input integral coefficient - Kt. Scaling coefficient can be adjusted by controlling system according
    to E and adjusting scale inputted by user. In the thesis,the stability of this double input and single output fuzzy system is analysed with language model and simulate this kinds of fuzzy controller. The result displays this fuzzy controller has better controlling quality than PID or other controlling ways.
    The circuit is composed by four parts. First is interface circuit between person and machine. It obtains 8155,LED display,simply keyboard. Second is store circuit
    
    
    composed by single-chip microcomputer-AT89C51 and EEPROM -AT93C66. The third is sample circuit composed by three digital temperature sensor-DS1820. The final is output circuit. AT93C66 is three wires micro-wire serial bus EEPROM. It is used to store setting parameters and working state,such as temperature of railway carriage,scaling
引文
1 窦振中,单片机外围器件实用手册存储器分册,北京,北京航空航天大学出版社,1998:162-186
    2 DS1820 Programmable Digital Thermostat and Thermometer. Dallas Semiconductor,1998
    3 陈孟湘,汽车空调,上海,上海交通大学出版社,2001年6月.
    4 章卫国,杨向忠著,模糊控制理论与应用,西安:西北工业大学出版社,2000.10.
    5 王福瑞等编著,单片机测控系统设计大全,北京:北京航空航天大学出版社,1999.
    6 白驹衔,雷晓平,单片计算机及其应用,成都,电子科技大学出版社,1994
    7 iButton Book of Stantards, Dallas Semiconductor, 1998:51-61
    8 李华,孙晓明等著,MCS-51系列单片机实用接口技术,北京,北京航空航天大学出版社,1997
    9 欧阳黎明编著,MATLAB控制系统设计,北京,国防工业出版社,2001
    10 楼顺天,张伟等著,基于MATLAB的系统分析与设计-模糊系统,西安,西安电子科技大学出版社,2001
    11 罗万均著,汇编语言程序设计,成都,电子科技大学出版社,1994
    12 诸静等著,模糊控制原理与应用,北京,机械工业出版社,1996
    13 孙增沂等著,智能控制理论与技术,北京,清华大学出版社,1997:67-92
    14 何克忠,李伟著,计算机控制系统,北京,清华大学出版社,1999:173-199
    15 林渭勋著,电力电子电路,杭州,浙江大学出版社,1987:71-75
    16 苏开才著,现代功率电子技术,北京,国防工业出版社,1995:207-213
    17 王丰浩,余柄丰,复合型模糊空调控制效果分析,电子技术应用,1998第5期:46-49
    18 江志斌,汽车空调制冷系统自组织模糊控制的研究,合肥工业大学学报,Vol.21,No,2,Apr.1998:45-48
    19 齐向东,一种改进模糊控制稳态性能的方法,太原重型机械学院学报,Vol.21,No,1,Apr.2000:38-41
    20 周晓兰,规则自调整模糊控制新算法及在汽温控制中的应用,电力情报,2000年3月:25-29
    21 李友善,自动控制原理,北京,国防工业出版社,1981
    22 余永权,李小青等,单片机应用系统的功率接口技术,北京,北京航空航天大学出版社,1997:118-122
    23 Mizumoto M. and Tanaka K. The Four Operation of Arithmetic on Fuzzy Number.Syst. Comput. Contr,.1986,7(5):73-81
    24 Ouattara S. Loslever P. and Guerra T M. Towards a Methodology for Selecting Cood Scaling Factor for a Fuzzy Controller, 1996,83(1):27-42
    25 白瑞林,一种带有智能积分的模糊控制器,自动化与仪表,1995,10(4):25-28
    26 付明星等,空调器控制中模糊控制方法的研究,西安矿业学院学报,1997,7:48-52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700