仿人足球机器人运动规划方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着RoboCup和FIRA等国际机器人足球比赛相继引入仿人足球机器人的竞技单元,极大地促进了仿人足球机器人技术的发展和国际交流。但是就目前发展水平来看,仿人足球机器人技术还远未达到人类的期望。本文主要对仿人足球机器人运动规划方法进行了研究。
     首先在分析了仿人足球机器人本体结构后,设计了仿人足球机器人控制系统。应用齐次坐标表示法建立了机器人的运动学模型。基于Lagrange方程建立了单脚支撑期的动力学模型。
     其次,对仿人足球机器人动作单元规划进行研究。以给出的运动规划策略为基础,对机器人运动过程中的主要动作进行了分类和定义。对几种典型的基本步态进行了规划,同时分析了其他基本动作单元步态规划的主要问题。针对仿人足球机器人典型的摔倒过程,给出了仿人足球机器人自我保护的摔倒策略。
     最后,对仿人足球机器人路径规划方法进行了研究。考虑到在给定路径上,仿人足球机器人机构约束对机器人运动效率的影响,提出路径曲折度的概念,并将其作为路径规划寻优过程的目标函数。采用蚁群智能算法解决路径寻优问题。提出了基于交叉操作的周游最优蚂蚁的改进蚁群算法,实验验证,改进算法提高了收敛速度和搜索效率。
In recent years, with the international robotic soccer such as RoboCup and FIRA successively providing the platform for humanoid soccer robot, the international exchange of humanoid soccer robot technology has been promoted hugely. However, the current development is still far from reaching the our expectation. In the present study, we mainly focused on the research of motion planning of humanoid soccer robot.
     Firstly, the control system was designed after analyzing the structure and main frame parameters of humanoid soccer robot. Moreover, the kinematics model was built by homogeneous coordinates while kinetics model of single-supporting was built by Lagrange function.
     Secondly, the movement unit on humanoid soccer robot was studied. The process of robot exercise was classified to some actions based on the motion planning strategy. In addition, the typical gaits were planned and the main problems of the action planning of other basic gait units were analyzed as well. Furthermore, a fall protection strategy was provided according to the falling process of humanoid soccer robot.
     Finally, the humanoid soccer robot path planning method was studied. Humanoid soccer robot efficiency would be influenced due to the machine restriction. This paper put forward the concept of path crooked degrees which was used as the objective function in the path planning. The ant colony algorithm was adopted to solve the intelligent optimization path problems. In addition, an improved ant colony algorithm (the optimal travelled ants based on crossover operation) which improved the algorithm convergence speed and search efficiency was proposed.
引文
[1]周远清、张再兴,许万雍.智能机器人系统[M].北京:清华大学出版社,1989:p.1-15
    [2](日)棍田秀司著.管贻生译.仿人机器人[M].北京:清华大学出版社,2007:p.1-5.
    [3]Hirai K., Hirose M., Haikawa Y., Takenaka T.. The Development of Honda Humanoid Robot. in Proceddings of IEEE International Conference on Robotics and Automation.1998:p.1321-1326.
    [4]Hirose M., Haikawa Y., Takenaka T., et al. Development of Humanoid Robot ASIMO. in Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems.2001:p.1321-1326
    [5]Hirukawa, H., Humanoid Robotics Platforms Developed in HRP. Robotics and Autonomous Systems,2004.48:p.165-175.
    [6]Kazuhiko AKACHI, Kenji KANEKO, Noriyuki KANEHIRA. Development of Humanoid Robot HRP-3P. in Proceedings of 2005 5th IEEE-RAS International Conference on Humanoid Robots.2005:p.50-55.
    [7]Ill-Woo Park, Jung-Yup Kim, Jungho Lee and Jun-Ho Oh. Mechanical Design of Humanoid Robot Platform KHR-3. in Proceedings of IEEE-RAS International Conference on Humanoid Robots.2005:p.321-326.
    [8]Lohmeier, S. Loffler, K. Gienger, M. Ulbrich, H. Pfeiffer, F. Computer System and Control of Biped "Johnnie". in Proceeding of IEEE International Conference on Robotics and Automation.2004:p.4222-4227.
    [9]Loffler, K. Gienger, M. Pfeiffer et al, Sensors and Control Concept of a Biped Robot. IEEE Transactions on Industrial Electronics,2004.51(5):p.972-980.
    [10]Yang J, Huang Qiang, et al. Walking Pattern Generation for Humanoid Robot Considering Upper Body Motion in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems 2006:p.4441-4446.
    [11]Mingguo Zhao, Li Liu, Jinsong Wang, et al. Control System Design of THBIP-I Humanoid Robot. in Proceedings of IEEE International Conference on Robotics and Automation.2002:p.2253-2258.
    [12]Li Liu, Jinsong Wang, Ken Chen,el al. The Biped Humanoid Robot THBIP-Ⅰ. in Proceedings of International Workshop on Bio-Robotics and Teleoperation 2001:p.164-167.
    [13]笁长安.两足机器人系统分析、设计及运动控制[D].长沙:国防科学技术大学,1989:p.5-53.
    [14]马宏绪.两足步行机器人动态步行研究[D].长沙:国防科学技术大学, 1995:p.1-30.
    [15]Jian Wang, Tao Sheng, Jianwen Wang, Hongxu Ma, System Overview of The Humanoid Robot Blackmann. WSEAS TRANSACTIONS on SYSTEMS, 2005.4(7):p.1070-1075.
    [16]M.Asada, H.Kitano.The RoboCup Challenge.Robotics and Autonomous System,1999.29(1):p.3-11.
    [17]H.D.Burkhard, D.Duhaut, M.Fujita, P.Lima, R.Murphy, R.Rojas. The Road to RoboCup 2050. IEEE Robotics and Automation Magazine,2002,9(2):p.31-38
    [18]夏泽洋,陈恳,熊璟等.仿人机器人运动规划研究进展[J].高技术通讯,2007,17(10):p.1092-1097.
    [19]Kuffner J J, Nishiwali K, Kagami K, et al. Online footstep planning for humanoid robots.In:Proceedings of IEEE International Conference on Robotics and Automation,2003:p.324-332.
    [20]Chestnutt J, Lau M, Cheung G, et al. Footstep planning for the Honda Asimo humanoid.In:Proceedings of IEEE/RSJ International Conference on Intelligent Robots and System,2005:p.631-636
    [21]Ayaz Y, Munawar K, Malik M B, et al. Human-like approach to footstep planning among obstacles for humanoid robots. In:Proceedings of IEEE International Conference on Intelligent Robots and Systems, Beijing, China, Oct 2006:p.129-136
    [22]刘莉,汪劲松,陈恳等.THBIP-1拟人机器人研究进展.机器人,2002,24(3):p.262-267.
    [23]徐凯,陈恳,刘莉等.基于主支持腿运动优化的仿人机器人快速步态规划算法.机器人,2005,27(3):p.203-209.
    [24]谢涛,徐建峰,李霞.神经网络及误差补偿在HIT-Ⅲ双足机器人步态规划中的应用.中国机械工程,2003,14(2):p.131-134.
    [25]Cheng M Y, Lin C S. Genetic algorithm for control design of biped locomotion. Journal of Robotic System,1997,14(5):p.365-372.
    [26]Jong H P. Fuzzy-logic zero-moment-point trajectory generation for reduced trunk motions of biped robots. Journal of Fuzzy Sets and System,2003,134(1): p.189-203.
    [27]CMUcam3 Datasheet[R]. Carnegie Mellon University,2007
    [28]刘祚时,林桂娟,张海英.足球机器人的视觉系统的研制[J].传感器技术,2004,23(3):p.38-42.
    [29]上海郎尚科贸有限公司:SCA61T单轴倾角传感器http://www.lamshine.com
    [30]Dynamixel AX-12 User's Manual[R].Robotis,2006.
    [31](美)理查德.摩雷,(中)李泽湘,(美)夏恩卡.萨思特里著.徐卫良,钱瑞明译[M].北京:机械工业出版社,1997:p.13-25.
    [32]李霞,谢涛,陈维山.基于神经网络的双足机器人逆运动学求解[J].机械设计,2003,4,20(4):p.36-38.
    [33]徐丽娜.神经网络控制[M].北京:电子工业出版社,2003,2:p.2-18.
    [34]杨庆.仿人机器人实时运动规划方法研究.国防科学技术大学硕士学位论文,2005,12:p.25-34
    [35]王剑.仿人机器人在线运动规划方法研究[D].长沙:国防科学技术大学,2008,5:p.25-30.
    [36]Kaminka G.A., Lima P.U., and Rojas R.. The Role of Motion Dynamics in the Design, Control and Stability of Bipedal and Quadrupedal Robots. in RoboCup 2002, LNAI 2752.2003:p.206-223.
    [37]Featherstone R., Orin D.. Robot Dynamics:Equations and Algorithm. in Proceddings of IEEE International Conference on Robotics and Automation. 2000:p.826-834.
    [38]谭民,徐德,侯增广等著.先进机器人控制[M].北京:高等教育出版社,2007:p.294-297
    [39]霍伟著.机器人动力学与控制[M].北京:高等教育出版社,2005:p.51.63.
    [40]绳涛.欠驱动两足机器人控制策略及其应用研究[D].长沙:国防科学技术大学,2009,3:p.45-50.
    [41]Vukobratovic, M., Zero-Moment Point-Thirty Five Yeas of Its Life. International Jounal of Humanoid Robotics,2004.1(1):p.157-173.
    [42]Vukobratovic M, Juricic D, Contribution to the Synthesis of Biped Gait. IEEE Transactions on Bio-Medical Engineering,1969.16(1):p.1-6.
    [43]Goswami, A., Postural Stability of Biped Robots and the Foot-Rotation Indicator (FRI) Point. International Journal of Robotics Research,1999.18(6): p.523-533.
    [44]Goswami, A. V. Kallem. Rate of Change of Angular Momentum and Balance Maintenace of Biped Robots. in Proceedings of IEEE International Conference on Robotics and Automation. 2004:p.3785-3790
    [45]McGeer, T, Passive Dynamic Walking. International Journal of Robotics Research,1990.9(2):p.62-82.
    [46]曹杰.小型仿人机器人的动态稳定步态规划.哈尔滨工业大学工学硕士论文,2007,7:p.26-28.
    [47]Ishida. T, Kuroki.Y, Yamaguchi. J. Mechanical System of a Small Biped Entertainment Robot. in Proceedings.2003 IEEE/RSJ International Conference on Intelligent Robots and Systems.2003:p.1129-1134.
    [48]Kiyoshi FUJIWARA, Fumio KANEHIRO, Hajime SAITO, Shuuji KAJITA, Kensuke HARADA and Hirohisa Hirukawa. Falling Motion Control of a Humanoid Robot Trained by Virtual Supplementary Tests in proceedings of IEEE International Conference on Robotics and Automation.2004:p. 1077-1082.
    [49]Kiyoshi FUJIWARA, Fumio KANEHIRO, Hajime SAITO, Shuuji KAJITA, Kensuke HARADA and Hirohisa Hirukawa.The First Human-size Humanoid that can Fall Over Safely and Stand-up Again in proceedings of IEEE International Conference on Robotics and Automation.2004:p.1920-1926.
    [50]唐俊,赵晓娟,贾逸龙.基于动作分解的柔性仿人机器人摔倒保护算法[J].船海工程,2008,12,37(6):p.54-56.
    [51]李国勇,李维民.人工智能及其应用.北京:电子工业出版社,2009:p.148.153.
    [52]王凌.智能优化算法及应用.北京:清华大学出版社,2003:p.37-53.
    [53]张汝波等.基于遗传蚁群算法的机器人全局路径规划研究[J].哈尔滨工程大学学报,2004,25(6):p.725-728.
    [54]马良,朱刚,宁爱兵.蚁群优化算法.北京:科学出版社,2009:p.16-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700