薄带坯铸轧板形智能识别与控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄带坯铸轧是新一代铝加工发展的重要方向和铝加工技术的制高点,而板形控制是当今铸轧技术领域的一个前沿课题,是保证铸轧工艺顺利进行,控制产品质量的关键技术。它包括板形模式识别技术与板形控制技术。
     本文以国家计委产业化前期关键技术及成套装备研制与开发项目“铝及铝合金铸轧新技术与设备研制开发”(计高技[1998]1985)为背景,以铸轧板形控制技术与装置为研究对象,分析总结了铸轧板形形成机理与控制特性,提出了铸轧板形控制的思路,并设计了控制方案,研究了BP网络和遗传算法人工智能技术用于板形模式识别的参数设计原则,应用神经网络初始权重多维空间优化方法,建立了GA-BP网络板形模式识别模型;根据铸轧板形控制的思路,引入人工智能预测控制的思想,建立了GA-BP网络板形在线预测模型和预测控制模型;开发了铸轧板形控制系统的主要子系统(板形检测系统、金属流场控制系统、数据采集系统和软件系统),对板形控制系统进行了技术集成:在此基础上,将铸轧板形控制系统及模型应用到了快速减薄铸轧工业试验,并进行了工业试验验证。这对于我国薄带坯铸轧技术的发展具有重要的理论意义和工程实用价值。
     论文的主要研究内容和成果如下:
     1.通过分析总结铸轧过程板形形成机理与控制特性,指出由于来料不存在板形问题,铸嘴内金属温度场和速度场是影响板形的关键因素,提出了以铸嘴内金属流场调节为主、外冷为辅来调节热辊型,压下缸为辅控制板形的铸轧板形控制思路,并设计了铸轧板形控制系统总体方案。
     2.研究了BP网络用于板形模式识别时快速BP算法的适用性,以及主要参数的变化对板形模式识别效果的影响,得出了BP网络板形模式识别参数设计的基本原则。指出BP网络模式识别的重要问题是提高网络对未学习样本的识别能力。
     3.研究了把高级语言对象封装的思想引入到遗传算法的优化过程,建立神经网络初始权重多维空间优化模型的方法,应用该方法建立了GA-BP网络板形模式识别模型。研究了遗传算法主要参数对遗传优化性能的影响,设计了以训
Thin-gauge roll casting is an important and new development in the technology of aluminum industry. And flatness control is the latest research field in the roll casting, which includes flatness recognition and control technology, and it is the key technology to the roll casting technics and product quality.Funded by the industrialization key technology and whole set equipment research of China Special Plan Project—"New Technology and Equipment Manufacture of the Aluminum and Aluminum Alloy Roll Casting"(No.[1998] 1985), this paper research on the roll casting flatness control technology and equipment. After analyzing flatness forming mechanism and flatness control particularity, the flatness control rules are concluded, and the control project are designed; study the rules of parameter densign with artificial intelligence technology of BP Network and Genetic Algorithms in the flatness pattern recognition, the GA-BP flatness pattern recognition models are innovated and improved by the method of optimizing the neural network initial right in multi-dimension; based on the flatness control rules, with the idea of artificial intelligence in predictive control, the GA-BP flatness on-line predictive and control models are formed; design and empolder the main subsystem(flatness measure system, flow control system, data sampling system and software system), integrate the flatness control technology, and apply the flatness control system to the high-speed thin-gauge roll casting line, which is validated by the industry test. All those are very important to the development of the high-speed thin-gauge roll casting both in theory and application. In this paper, the main research work and achievement as follows:1. After analyzing and summarize flatness forming mechanism and flatness control particularity, point out that the flatness problem dose not exist in raw material, while the tempreture field and velocity field are main factors to the flatness, control method has been concluded which take adjusting hot roller flexibility with flow as primary means, and take controlling the outer cooling and balance jar as subsidiary means, on this point, the control project are designed.2. After researching the applicability of the fast BP learning algorithm in the flatness pattern recognition and the effect of main parameter change to the
    recognition, the basic rules of the parameter designing are put forward, and point out that improving the recognition ability of the un-training samples is the key to BP network flatness pattern recognition.3. Reseach the method that brings the object encapsulation idea of advanced program into the GA optimization process, and establishs the models of optimizing the neural network initial right in multi-dimension, by this method, the GA-BP flatness pattern recognition models are established. Analyze the effect of main parameter change to the optimization's capability, design the GA fit function which involve the training sample errors and test sample errors, find the synthetically training strategy that the fit value evolution can't be too more in process of optimizing the neural network initial right, and the network goal after optimizing must be smaller than before optimizing. Improve the BP network's recognition ability effectively to the un-training samples.4. According to the flatness control project, the process control models are established, introduce the idea of artificial intelligence in predictive control, use the time-lag of flatness control and real-time data of roll casting mearsurement, establishing GA-BP flatness on-line predictive models and control models in roll casting process, which is validated by the off-line simulation.5. To measure the flatness, design a laser scanner that based on a pair of laser bean difference measure theory, it realize that measure flatness and thickness at the same time in low cost and high precision; develop the flow control system, it's core is PLC; make a distributed data sample system which based on management site, master control site and slave sample site; adopt the modularization idea to design the software system of roll casting flatness control; based on above systems, the flatness control technology is integrated.6. With the industrial trail data of High-speed thin-gauge roll casting, to validate the GA-BP flatness models and the online predictive models which have been founded, the industrial trail results indicate that the models are correct, and it established a basic in theory and trails for roll casting flatness control.
引文
[1] 中国期货证券金融网:对我国电解铝工业进行结构调整的构想(http://www.szcifco.com/readnews.asp?siteID=469)
    [2] 中国颗粒网:我国铝工业的环境、政策与发展(http://www.chinagrain.net/index_web/zl.asp?id=19)
    [3] 中国集装箱控股集团公司:我国铝工业发展、政策与前景展望(http://www.cnccg.com/Article_Show.asp?ArticleID=301)
    [4] 马锡良.铝带坯连续铸轧生产.长沙:中南工业大学出版社,1992
    [5] 潘世明.世界铝连续铸轧技术综述.有色金属,2003,(3):49~51
    [6] 王祝堂.铝带坯双辊式连续铸轧技术的现状与新进展.世界有色金属,1997,(8):9~13
    [7] 王祝堂.迈向新世纪的世界铝带坯铸轧.轻合金加工技术,2001,29(4):8~15
    [8] 谢风华.世界高速薄板铸轧机的开发现状及技术发展概况.世界有色金属,1998,(4):22~24
    [9] B. Taraglio, C. Romanowski. Thin-Gauge/High-Speed Roll Casting Technology for Foil Production. Light Metals, 1995,1165~1182
    [10] A. I.'Ed'Nussbaum. Three State-of-the-Art Thin-Gauge High-Speed Roll Casters for Aluminum Sheet Products. Light Metal Age, 1996, (12): 8~19
    [11] A.I.'Ed'Nussbaum. Three State-of-the-Art Thin-Gauge High-Speed Roll Casters for Aluminum Sheet Products--Part Ⅲ. Light Metal Age, 1997, (2): 34~39
    [12] R. Beal, B. Taraglio, B. Cared et al. An Update on Down-Gauging the Nuef-Brisach Thin Strip Caster. Light Metals, 1997, 753~756
    [13] P.Y. Menet, J. L. Hoffmann, K. Maiwald. Development of Sheet for Canst-ock and Other Application on Pechiney Neuf-Brisach JUMBO 3CM caster. Light Metals, 1998, 1153~1160
    [14] “铝及铝合金铸轧新技术与设备研究”申报材料.中南大学机电工程学院冶金机械研究所,1997
    [15] B.Q. Li. Producing Thin Strips by Twin-Roll Casting—Part Ⅰ: Process Aspects and Quality lssues. JOM, 1995, (5): 29~33
    [16] T. Haga, S. Suzuki. A high speed twin roll caster for aluminum alloy strip. Materials Processing Technology, 2001, 113: 291~295
    [17] R.P. Tavares, R.I.L. Guthrie. Computational fluid dynamics applied to twin roll casting. Canadian Metallurgical Quarterly, 1998, 37 (3): 241~250
    [18] Toshio Hagaa, Shinsuke Suzuki. Melt ejection twin roll caster for the strip casting of aluminum alloy. Materials Processing Technology, 2003, 137: 92~95
    [19] Toshio Haga. Semisolid strip casting using a twin roll caster equipped with a cooling slope. Materials Processing Technology, 2002, 130: 558~561
    [20] T. Haga. A twin-roll caster to cast clad strip. Materials Processing Technology, 2003, 138: 366~371
    [21] M.A. Cruchaga, D. J. Celentano, R. W. Lewis. Modeling of twin-roll strip casting processes. Communications in numerical methods in engineering, 2003, 19: 623~625
    [22] Buchner, Achim R. Thin Strip Casting of Steel with a Twin Roll Caster-Correlation between Feeding System and Strip Quality. Steel Research International, 2004, 75: 5~12
    [23] Gupta Manish, Cook Daniel P., Sahai Yogeshwar. Strip casting of aluminum using twin roll casters. Light Metals: Proceedings of Sessions, TMS Annual Meeting (Warrendale,, Pennsylvania), 1999, 925~930
    [24] Dundar Murat, Akkurt A.Soner, Sarioglu Kemal. The Influence of Caster Roll Diameter on the Mierostructure of Twin Roll Cast Aluminum Strip. Light Metals, 2003, 719~724
    [25] Kim Woo-Seung, Kim Deok-Soo, A.V. Kuznetsov. Simulation of coupled turbulent flow and heat transfer in the wedge-shaped pool of a twin-roll strip casting process. Heat and Mass Transfer, 2000, 3811~3822
    [26] Gao Zhi, Xiao Gang. Simulation of heat transfer behavior of shaped interface in aluminum cast-rolling process. Zhongguo Youse Jinshu Xuebao, 2003, 13 (6): 1350
    [27] 超薄快速铸轧仿真报告(内部资料).中南大学机电工程学院冶金机械研究所,1999
    [28] 板形控制组研究汇总报告(内部资料).中南大学机电工程学院冶金机械研究所,2000
    [29] 谭怀亮.复合材料铸轧辊温度场和热变形的界面元方法及其可视化仿真研究:[博士论文].长沙:中南大学,2001
    [30] 刘晓波.约束型快速流变系统薄层熔体流场与温度场研究:[博士论文].长沙:中南大学,2001
    [31] 张材.基于神经网络超薄快速铸轧过程板形控制系统设计与研究:[硕士论文].长沙:中南大学,2001
    [32] Ju Dong-Ying, Zhao Hong-Yang, Hu Lin. Development of thin strip caster with twin roll and experimental verification of temperature and solidification. Materials and Product Technology, 2001, 476~481
    [33] 高增伟.辊式连铸轧铝板带厚差及板凸度的控制与调整.轻合金加工技术,1998,26(8):17~19,35
    [34] 李向宇.铝铸轧板板形控制初探.轻合金加工技术,1999,27(11):16~17
    [35] 辛达夫.铸轧板厚差评价和厚度突变得预防.轻合金加工技术,1999,27(9):14~19
    [36] 王志勇.减小铝铸轧板坯裂边的研究.轻合金加工技术,1999,27(5):6~9
    [37] 李向字.铝铸轧板形控制技术及应用初探.轧制压延,2001,24(2):13~15
    [38] 逯锁柱,赵俊,黄建龙.铸轧板板形质量探析.山西机械,2001,增刊:129
    [39] 王国栋.板形控制和板形理论.北京:冶金工业出版社,1986
    [40] V.B.金兹伯格(美)著,姜明东,王国栋等译.高精度板带材轧制理论与实践.冶金工业出版社,2000
    [41] 华建新,周泽雁.冷轧带钢板形缺陷的多项式回归及数学模型.钢铁,1992,27(3):27~31
    [42] 刘进.冷轧带钢板形缺陷表达式回归及数学模型.轧钢,1996,(5):5~9
    [43] Anders G.Caristedt, Olov Keijser. Modem Approach to Flatness Measurement and Control in Cold Rolling. Ireland Steel Engineer, 1991, 68 (1): 34~37
    [44] 周旭东,王国栋.冷轧板形正交多项式分解模型.钢铁,1997,3(9):33~36
    [45] 邸洪双.冷轧薄带板形检测信号正交多项式分解及数学模型.钢铁,1995,32(8):46~47
    [46] Ikuya Hoshino, Masateru Kawai, Misao Kekubo, et al. Observer-based Multivariable Flatness Control of the Cold Rolling Mill. 12th World International Federation of Automatic Control, 1993, (6): 149~156
    [47] 杨景明.宽板板形显示及其分段张力数据处理方法的研究.东北重型机械学院技术档案室,1987,6
    [48] V.B. Ginzburg. Technology for Strip Profile and Flatness Control in Rolling Mills. World Steel Review, 1991, (3): 162~172
    [49] 大島启生.圧延形状制御.R&D神户制钢技报,1983
    [50] 堺俊夫.理論形状制御.日立評論,1989,71(8):103~108
    [51] 宫永徹夫,菱川滋,小林博幸.圧延.軽金属,1995,45(2):101~114
    [52] 片山恭記.新制御手法圧延適用.鉄鋼,1993,79(3):56~61
    [53] T. Jimba, et al. Continuous Close-Coupled Pickling Line with a New Cold Rolling Mill at NKK Fukuyama Works. AISE Year Book, 1990, 125~133
    [54] 张清东,陈先霖.徐金梧.板形模式的模糊分类方法.北京科技大学学报,1995,17(1):68~71
    [55] 张清东,陈先霖,徐金梧.板形缺陷模式识别方法的研究.钢铁,1996,31(10):56~60
    [56] 乔俊飞,郭戈,柴天佑.板形模式的一种模糊识别方法.钢铁,1998,33(6):37~40
    [57] 王益群,尹国芳,孙旭光.板形信号模式识别方法的研究.机械工程学报,2003,39(8):91~94
    [58] 戴江波,吴文彬,张清东.宝钢2030冷轧带钢板形识别和统计系统.北京科技大学学报,2003,25(6):573~574,583
    [59] 森谦一郎.有限知能化技术融合.塑性加工,1995,38(440):776~782
    [60] 张秀玲,刘宏民.变结构神经网络在板形信号模式识别方面的应用.钢铁研究学报,2001,13(2):62~66
    [61] 陶红勇,王京,刘聪.基于RBF神经网络的板形缺陷识别.新疆钢铁.2003,86(2):17~18,22
    [62] 王洪瑞,郭唐禾,宋维公.基于模糊距离的BP网络板形信号模式识别的研究.东北重型机械学院学报,1997,21(4):283~286
    [63] 张秀玲,刘宏民.基于人工神经网络的板形模式识别方法.自动化与仪器仪表,2001,93(1):20~22
    [64] 华建新.人工神经网络在板形缺陷识别中的应用.宝钢技术,1998,(3):45~49
    [65] 宋君烈,邵克勇,迟德选.小波分析在板形缺陷识别中的应用.控制与决策,2002,17(1):69~72
    [66] 任海鹏,刘丁,郑岗.一种基于遗传算法的板形模式识别方法.重型机械,2002,(3):9~12
    [67] 刘江,王长松,姜丽华.板形模式高斯分解.北京科技大学学报,2003,25(5):454~457
    [68] 张秀玲,刘宏民.板形模式识别的GA-BP模型和改进的最小二乘法.钢铁,2003,38(10):29~34
    [69] 孙增圻.智能控制理论及技术.北京:清华大学出版社,1997
    [70] 彭艳,刘宏民.冷轧带钢板形检测信号模式识别方法的进展.燕山大学学报,2003,27(10):29~34
    [71] 赵志业.金属塑性变形与轧制理论.北京:冶金工业出版社,1980
    [72] 王国栋,刘相华.金属轧制过程人工智能优化.北京:冶金工业出版社,2000
    [73] 王国栋,刘相华,姜正义等.人工智能在轧制中的应用(一).轧钢,1996,(3):36~38
    [74] 王国栋,刘相华,姜正义等.人工智能在轧制中的应用(二).轧钢,1996,(4):41~43
    [75] 小园东雄.人工知能压延工程适用例.塑性加工,1992,32(363):441~444
    [76] 界俊夫,前田英树,菱川滋理论形状制御.日立评论,1989,71(8):103~108
    [77] 前田英树,界俊夫,服部哲.庄延形状制御制御应用.塑性加工,1991,32(361):136~140
    [78] 广田.理论板厚、张力干涉防止开发.147回塑加,1992
    [79] 大贝晴俊,藤井章,野口幸雄.棒钢应用.塑性加工,1993,34(387):405~410
    [80] 北村章.多目标计画法热延仕上设计.铁钢,1993,79(3):332~338
    [81] 镰田宪幸.热延制御仕理论应用.塑性加工,1991,32 (361):130~135
    [82] 小田高士,佐藤直树.推论用热延钢板先端板厚精度向上.塑性加工,1995,36(417):1145~1149
    [83] 金子智弘,林浩正.千葉No.2操業AI开发.CAMP-ISIJ,1991,(4):1499
    [84] 井口弘明,北尾斋治,佐能克明.冷间千葉板厚精度诊断.川崎製铁技报,1991,23(3):225~231
    [85] 村上史敏.热延.铁钢,1993,79(3):339~344
    [86] 小西正躬,能势和夫.箔形状制御.神户製钢技报,1990,40(3):23~25
    [87] 能势和夫.压延机形状制御知识工学手法适用.塑性加工,1993,34(387):358~362
    [88] 片山恭纪,冈田隆,服部哲.应用形状制 御.塑性加工,1993,34(387):411~415
    [89] 佐藤俊二,水岛成人,花田真一郎.板厚、形状制御适用.川崎製铁技报,1996,28(2):95~102
    [90] Jong Yeob Jung, Yong Taek Im, Hyung Lee Kwang. Development of fuzzy control of Algorithm for shape control in cold rolling. Materials Processing Technology, 1995, 48: 187~195
    [91] H.T. Zhu, Z.Y. Jiang, A.K. Tieu. A fuzzy algorithm for flatness control in hot strip mill. Materials Processing Technology, 2003, 140:123~128
    [92] Valle Maurizio, Baratta Daniela, Caviglia Daniele D.. Application of hierarchical neural networks to pattern recognition for quality control analysis in steel-industry plants. Proceedings of International Workshop on Neural Networks for Identification, Control, Robotics and Signal/Image Processing, NICROSP, 1996, 246~252
    [93] Keintzel G., Vogel R., Schlegl B., et al. Automation of linked pickling line and tandem mil. Stal, 2001, (11): 57~61
    [94] Aeberli Karl Edward, Lee Young Ho, Schaefer Uwe. Electrical and automation equipment in the new continuous pickling and cold rolling line at Dongbu steel. MPT Metallurgical Plant and Technology International, 2000, 23 (6): 52~58
    [95] Turk R, Fajfar P, Robic R, et al. Prediction of hot strip mill roll wear. Metalurgija, 2002, (41): 47~51
    [96] Shim Minsuk, Lee Kwang Y., Lee Dae-Sik. Intelligent controller design for the flatness control in a cold rolling process. Proceedings of the IEEE Conference on Decision and Control, 2001, (3): 2720~2725
    [97] 王莉,王学秀,马云.基于IGA的板形板厚神经网络分散解耦PID控制.计算机仿,2003,20(12):82~85,57
    [98] Wang Fenhua, Sun Yikang, Chen Zhanying. Strip flatness and gauge composite control system based on fuzzy neural networks. Journal of University of Science and Technology, 2003, 25 (2): 182~184
    [99] Qiao Junfei, Guo Ge, Chai Tianyou, et al. A new method of flatness control in clod rolling process. American Control Conference, 1998
    [100] 陶红勇,王京,陆秀志.神经网络在板形自动控制中的应.北京汽车,2003,(6):8~10
    [101] 王粉花,孙一康,陈占英.基于模糊神经网络的板形板厚综合控制系统.北京科技大学学报,2003,25(2):182~184
    [102] 张秀玲,刘宏民.神经网络模型参考自适应控制及其在带材板形控制系统中的应用.机械工程学报,2001,37(9):83~87
    [103] 贾春玉.基于模糊神经网络进行冷轧板形智能控制的研究.重型机械.2000,(5):11~14,19
    [104] 贾春玉,王英华,周会锋.板形板厚综合调节神经模糊智能方法的研究.中国机械工程,2003,14(20):1741~1744
    [105] 王莉,葛平等.基于模糊RBF神经元网络的冷连轧板形板厚多变量控制.北京科技大学学报,2002,24(5):556~559
    [106] 焦李成.神经网络系统理论.西安:西安电子科技大学出版社,1996
    [107] 高隽.人工神经网络原理及仿真实例.北京:机械工业出版社,2003
    [108] 李金宗.模式识别导论.北京:高等教育出版社,1994
    [109] 黄同岗,宋克欧.模式识别.哈尔滨:哈尔滨工程大学出版社,1998
    [110] Dan Hammerstron. Neural Networks at work. IEEE, 1993, 5:26~32
    [111] King Damien, Flanagan C., Lyons W.B. et al. An Optical Fibre Water Sensor Utilizing Signal Processing Techniques and Artificial Neural Network Pattern Recognition. Proceedings of IEEE Sensors, 2002, 1 (2): 1374~1378
    [112] Lyons William B., Flanagan Colin, Lewis Elfed, et al. Interrogation ofmultipoint optical fibre sensor signals based on artificial neural network pattern recognition techniques. Sensors and Actuators, A: Physical, 2004, 114 (1): 7~12
    [113] Lyons William B., Flanagan C., Lochmann S., et al. A multipoint optical evanescent wave U-bend sensor system based on Artificial Neural Network pattern recognition. Proceedings of SPIE-The International Society for Optical Engineering, 2001, 4596:320~328
    [114] Al-Nuaimy W., Huang Y., Nakhkash M., et al. Automatic detection of buried utilities and solid objects with GPR using neural networks and pattern recognition. Journal of Applied Geophysics, 2000, 43 (2-4): 157~165
    [115] Abhijit S.Pandya,Robert B.Macy(美)着,徐勇等译.神经网络模式识别及其实现.北京:电子工业出版社,1998
    [116] 黄德双.神经网络模式识别系统理论.北京:电子工业出版社,1996
    [117] Richard P. Lippmann. Pattern Classification Using Neural Networks. IEEE Communication Magazine, 1989:47~64
    [118] Don R. Hush, Bill G. Horlte. Progress in Supervised Neural Networks. IEEE Signal Processing Magazine, 1993:8~39
    [119] 田凯,郑丽颖等.一种用于模式识别的新型神经网络模型.哈尔滨工程大学学报,2002,23(6):82~84
    [120] 袁友伟,金可音等.基于神经网络的不变性模式识别的人脸识别系统.计算机工程与应用,2002,38(16):95~96,249
    [121] 王成,秦江敏等.一种模块化神经网络结构用于模式识别.计算机工程与应用,2002,38(5):83~85
    [122] 罗中良,余剑峰等.基于多传感器的神经网络模式识别方法.中山大学学报,2001,40(5):21~24
    [123] 何玉彬,李新忠.神经网络控制技术及其应用.北京:科学出版社,2000
    [124] 王永骥,涂健.神经元网络控制.北京:机械工业出版社,1998
    [125] 张乃尧,阎平凡.神经网络与模糊控制.北京:清华大学出版社,1998
    [126] 李士勇.模糊控制·神经控制和智能控制论.哈尔滨:哈尔滨工业大学出版社,1998
    [127] Zarate Luis E., Galvez J.M., Heiman H.. A model-based predictive control scheme for steal rolling mills using neural networks. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2003, 25 (1): 85~89
    [128] Cannon M., Kouvaritakis B., Grimble M. et al. Nonlinear predictive control of hot strip rolling mill. International Journal of Robust and Nonlinear Control, 2003, 13 (3-4): 365~380
    [129] Bulut B., Katebi M. R., Grimble M.J.. Predictive control of hot rolling processes. Proceedings of the American Control Conference, 2000, 3:2058~2062
    [130] 王哲,张晓峰等.六辊可逆轧机板形神经网络广义预测控制系统.东北大学学报,2001,22(3):331~334
    [131] 周晓敏,陈守群.基于BP神经网络的CVC冷连轧机板形预测控制模型.北京科技大学学报,2000,22(4):374~376
    [132] 石中锁,孙一康.板形板厚综合系统的解耦神经网络预测控制方法.北京科技大学学报,1998,20(3):301~306
    [133] 飞思科技产品研发中心.MATLAB 6.5辅助神经网络分析与设计.北京:电子工业出版社,2003
    [134] 彭艳.基于条元法的HC冷轧机板形预设定控制理论研究及工业应用.[博士论文].秦皇岛:燕山大学,2000,81~82
    [135] 许东,吴铮.基于MATLAB 6.x的系统分析与设计—神经网络(第二版).西安:西安电子科技大学出版社,2002
    [136] 张智星,孙春在,水谷英二.神经—模糊和软计算.西安:西安交通大学出版社,2000
    [137] 闻新,周露,王丹力等.MATLAB神经网络应用设计.北京:科学出版社,2000
    [138] 张志涌等.精通MATLAB6.5版.北京:北京航空航天大学,2003
    [139] 玄光男,程润伟著,于歆杰等译.遗传算法与工程优化.北京:清华大学出版社,2004
    [140] 云庆夏,黄光球,王战权.遗传算法和遗传规划—一种搜索寻优技术.北京:冶金工业出版社,1997
    [141] 周明,孙树栋.遗传算法原理及应用.北京:国防工业出版社,1999
    [142] 苑希民,李鸿雁,刘树坤等.神经网络和遗传算法在水科学领域的应用.北京:中国水利水电出版社,2002
    [143] 杨建,罗安等.应用神经网络和遗传算法的智能电网综合补偿控制的研究.控制理论与应用,2002,19(5):737~740
    [144] 郭一楠,王凌等.基于遗传算法和神经网络混合优化的配煤控制.中国矿业大学学报,2002,31(5):404~406
    [145] 何玉敖,郭婷.遗传算法—神经网络结构控制系统研究.振动工程学报,2001,14(2):192~195
    [146] 周志坚,毛宗源.一种基于遗传算法的模糊神经网络最优控制.控制理论与应用,2000,17(5):784~788
    [147] Yang Tiemei, Zhang Jinggang, Dong Zengshou. Applying of genetic algorithm and neural networks in signal processing of roll shape measurement. Proceedings of the International Computer Congress 2004 on Wavelet Analysis and its Applications and Active Media Technology, 2004, 1:496~503
    [148] 汤庸.结构化与面向对象软件方法.北京:科学出版社,1998
    [149] 李少远.复杂系统的模糊预测控制及其应用.北京:科学出版社,2003
    [150] 关治,陆金甫.数值分析基础.北京:高等教育出版社,1998
    [151] 黄庆学,梁爱生.高精度轧制技术.北京:冶金工业出版社,2002
    [152] 王少清,庄葆华,张文伟.基于朗伯定律重建光学三角法测位移原理公式.光学学报,1996,16(12):1802~1808
    [153] Siemens.SIMATIC PLC硬件手册.北京:1998
    [154] Siemens.SIMATIC WinCC通讯手册.北京:2000
    [155] Borland/Inprise公司着.梁志刚,汪浩等译.C++ Builder 5开发人员指南.北京:机械工业出版社,2000
    [156] Jarrod Hollingworth(澳)等着.康向东,汪浩等译.C++ Builder 5程序设计大全.北京:机械工业出版社,2002
    [157] 清宏计算机工作室.C++ Builder编程技巧—网络与数据库篇.北京:机械工业出版社,2001
    [158] 刘瑞.Microsoft SQL Server2000宝典.北京:铁道出版社,2004
    [159] Siemens.SIMATIC CP340用户手册.北京:1998
    [160] Siemens.SIMATIC STEP7程序设计编程手册.北京:1998
    [161] 清源计算机工作室.Visual Basic 6.0开发宝典.北京:机械工业出版社,1998
    [162] 快速铸轧试验报告(内部资料).中南大学机电工程学院冶金机械研究所,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700