用户名: 密码: 验证码:
多年生牧草衰老特征及氮代谢变化规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物衰老是受内外因子直接或者间接影响的器官或组织逐步走向衰退和死亡的变化过程。全叶马兰是根蘖型多年生菊科草本植物,具有较强的营养繁殖能力和种子繁殖能力。本文以不同生长年限的全叶马兰为研究材料,从植株衰老的形态特征、种子质量、光合作用与蒸腾作用特征、生理生化代谢特征等方面进行了系统性的研究,同时采用15N示踪技术研究了全叶马兰衰老过程中氮素分布以及运移规律,旨在掌握全叶马兰衰老特征特性以及在衰老过程中氮代谢变化的规律,丰富多年生草本植物衰老理论,为草原生态系统的建设和维持提供必要的理论指导。研究结果表明:
     (1)随着生长年限的增加,全叶马兰形态特征和种子质量发生明显变化。株高、根长、分支数逐渐升高,生长年限为1年的全叶马兰植株各项指标均较低。植株生物量的分配规律为茎>叶>根>种子。伴随生长年限的增加,地上生物量与地下生物量均有增加趋势。与之相反,全叶马兰种子繁殖能力随生长年限的增加而有所减弱。全叶马兰生长过程中根毛数量动态变化呈现先升高后降低的“钟形曲线”。根毛数量在7月份达到最大值,而后根毛逐渐脱落。与1、2龄级相比,7月份过后生长年限为三年的全叶马兰植株根毛数量锐减。就种子质量而言,生长年限为3年的全叶马兰所结种子品质较差。3龄植株所结种子的芽率、发芽势、发芽指数显著低于较年轻植株所结种子的各项指标,同时3龄株种子霉变率较高,种子所含的过氧化氢酶和过氧化物酶活性也较低,种子活力较差。
     (2)全叶马兰光合作用、蒸腾作用日变化动态有明显的季节性特征,并在龄级之间呈现出一定的差异性。夏季和秋季净光合速率日变化曲线都为双峰曲线,但夏季净光合速率多数时间都保持在较高水平。不同生长年限的植株夏季净光合速率日变化规律并无明显不同。秋季与夏季不同,生长年限为3年的全叶马兰各时间点的净光合速率显著低于1、2龄级全叶马兰。全叶马兰蒸腾速率日变化动态也显示出明显的季节性特征。夏季蒸腾速率日变化呈双峰曲线,而秋季则呈单峰曲线。夏季不同生长年限植株的蒸腾速率无明显差异,秋季3龄植株蒸腾速率较低,与1、2龄级差异显著。夏季与秋季的蒸腾速率均存在饱和现象。蒸腾速率随有效光辐射的增强而增强,达到饱和有效光辐射后蒸腾速率不再增加。
     (3)生长过程中植物体内调节物质的含量发生着变化,这些变化反映了衰老的进程。研究发现各器官中脯氨酸含量、丙二醛含量、活性氧自由基含量随着生长周期的推移有所增加,而SOD活性则下降。各类内含物质的含量或活性及其在生长过程中含量或活性的变化幅度在各器官中略有差异。激素是调节衰老以及氮代谢的重要物质,全叶马兰衰老过程中细胞分裂素、生长素、赤霉素在各器官中的含量基本呈现先上升后下降的趋势,但不同器官中激素含量变化幅度不尽相同。不同龄级植株中各类激素含量变化情况略有差异。
     (4)全叶马兰衰老过程中,氮含量、氮代谢相关酶的活性先上升后下降。不同器官中蛋白质含量、游离氨基酸含量先上升,到6月份达到峰值后下降。全叶马兰生长过程中,植株总氮量占干物质比重先上升后下降,各器官中硝酸还原酶活性、谷氨酰胺合成酶活性与之变化趋势相似。酶活性在不同龄级植株上有一定差异。
     (5)营养生长阶段,全叶马兰植株氮主要在茎叶中,根中氮素含量较低。新生营养器官的氮源为较老的茎和叶片。生殖生长阶段,幼嫩营养器官以及生殖器官为氮库,氮源为根和较老的主茎以及主茎上的叶片。不同生长年限的全叶马兰植株氮素移动效率差异明显。
Plant senescence can be described as a process of decline and death which may be affected directly or indirectly by internal and external factors. Kalimeris integrifolia is a root sucker form perennial herb of compositae, meanwhile, it has relatively strong capability of vegetative and seed reproduction. In this study we used Kalimeris integrifolia as the model plant and material, to study the characteristics of morphology of plant, seed quality, characteristics of photosynthesis and transpiration, characteristics of physiology and biochemistry metabolism during plant senescence. Meanwhile, we adopted15N tracing method to study nitrogen distribution and mobilization during senescence of Kalimeris integrifolia, So that we can make clear the regular pattern of nitrogen metabolism during the senescence of Kalimeris integrifolia, enrich the theory of perennial plant senescence. That can help to prove some necessary theoretical direction in the activities of building and maintaining the grassland ecosystem. The results are as follows:
     (1) Morphology and seed quality of Kalimeris integrifolia varied obviously as the increasing of growing year. Plant height, length of root, number of branches saw an increasing trend.1year old(ly) plants got the lowest plant height, length of root and the number of branches which were significantly lower than2(2y) and3years old(3y) Kalimeris integrifolia. The characteristic of biomass participation in Kalimeris integrifolia is stems> leaves> roots> seeds. As the increase of growing year, above ground biomass and underground biomass got up gradually. On the contrast, the capability of seed reproduction of Kalimeris integrifolia decrease,3years old plants had the worse seed reproduction capability, it had an worse seeds output and seeds quality.Root is an important plant absorbing organs that help plant absorb nutrients, root hairs is the main function part of root. The number of root hairs reflects the capability of nutrients absorption. In the growing season ofKalimeris integrifolia, number of root hairs varied. This number of root hair varied following an "bell-shaped curve", in July it got the peak and after July root hairs dropped quickly. Compared with1y and2y plants, root hairs of3y plant dropped more quickly. When it comes to seed quality, seeds that form3y plant had the worse seed quality. The1000-seed weight, germination rate, Germination energy, Germination index in seeds from3y plant were lower, while, seeds in this group were more easier Infected by mold. Seeds from1y and2y plant had higher catalase,Peroxidase activity and seed vigor.
     (2)Net photosynthetic rate diurnal variation of Kalimeris integrifolia showed seasonal characteristics. It was saw a "bimodal curve" in both summer and autumn. The difference was that in most of the time net photosynthetic rate in summer keeps a higher level. There was no significant difference in net photosynthetic rate in summer among plants with different ages, but in autumn the differences were significantly. Photosynthetic rate In every time interval in3y plant was lower. As similar with net photosynthetic rate diurnal variation, diurnal variation of transpiration rate in Kalimeris integrifolia also saw some seasonal characteristics obviously. In summer, transpiration rate diurnal variation performed a "bimodal curve", but in autumn it acted a "unimodal curve". There were no significant differences among the plants with different ages in summer. When it comes to autumn, the conditions were that3y plant showed a lower transpiration rate in the whole day comparedwith1y and2y plants. In both summer and autumn, transpiration rate of Kalimeris integrifolia had the phenomenon of "saturation", that means the transpiration rate increased as the increasing of effective radiation, after it reached the peak the transpiration rate would not increase along with effective radiation increasing.
     (3) The senescence of Kalimeris integrifolia happened as its vegetative growth stopped and started the reproductive growth. As the plants growth and development the growth regulating substances content was always changing, these changes reflected the process of senescence. According to the determination results, proline content, malondialdehyde content, active oxygen free radicals content risealong with plants growth and development. While SOD activity decreased. Substances content/activity and their amplitude of variation during plant life cycle had some tiny differences in different kind of organs of Kalimeris integrifolia. Hormones are important regulated materials in the process of senescence and nitrogen metabolism. During the senescence of Kalimeris integrifolia, cytokinins, gibberellins and auxin content increased until they got the peak, after that the content dropped in different organs. Among these three hormones, gibberellins and auxin content had tinier amplitude of variation. Content of abscisic acid and ethylene rose obvious gradually as life cycle backwards in time. Hormones content are a little differently in different organs.1y and2y plants had higher cytokinins, gibberellins and auxin content than those in3y plants, and lower abscisic acid and ethylene content.
     (4)During senescence of Kalimeris integrifolia, protein content and free amino acid content in different organs increased, in June they got the top, after that the content dropped. Along with growing, whole plant nitrogen quantity/whole plant biomass rate also got a "bell-shaped curve", that was similar with the variation of nitrate reductase and glutamine synthetase activity during the same period. Enzymes activities were seen some differences in the plants with different ages.
     (5)In vegetative growth stage, nitrogen stored mainly in stems and leaves of Kalimeris integrifolia. The nitrogen sources of new born vegetative organs were older main stem and leaves on it, roots were not the nitrogen source in this period. Nitrogen sinks were the seed and tender new born vegetative organs, while sources were roots and older main stem as well as leaves on main stem. Significant differences were seen in plants with different ages.
引文
[1]Thimann KV.Senescence in plants. CRC Press, Boca Raton, Florda,1978,3
    [2]胡廷章.植物的衰老.自然科学研究,2001,1(17):89-90
    [3]Leopold AC. Senescence in plant development:The death of plants or plant parts may be of positiveecological or physiological value. Science,1961,134:1727-1732
    [4]Leopold AC. Aging, senesence and turnover in plants. Bioscience,1975,25:659-662
    [5]宋纯鹏.植物衰老生物学.北京:北京大学出版社,1998,5
    [6]Roca M, James C, Pruzinska A, et al. Analysis of the chlorophyll catabolism pathway in leaves ofan introgression senescence mutant of Lolium temulentum. Phytochemistry,2004,65:1231-1238
    [7]Takamiya K, Tsuchiya T, Ohta H. Degradation pathway(s) of chlorophyll:what has gene cloningrevealed. Trends in Plant Science,2000,5:426-431
    [8]Jean FR, Philippe C, Vincent G. Photodegradation of chlorophyll phytyl chain in senescentleaves of higher plants. Phytochemistry,1996,42(2):347-351
    [9]Ghosh S, Mahoney S R, Penterman J N, et al. Ultrastructural and biochemical changes inChloroplasts during Brassicanapus senescence. Plant Physiol Biochem,2001,39:777-784
    [10]Dalling MJ, Boland G, Wilson JH. Relation between acid proteinase activity redistribution of nitrogen during grain development in weat. Plant Physiology,1985,3:721-730
    [11]Cabello P, Aguera E, De la Haba P. Metabolic changes during natural ageing in sunflower (Helianthus annuus) leaves:expression and activity of glutamine synthetase isoforms are regulated differently during senescence. Plant Physiology,2006,128:175-185
    [12]Celine Diaz, Thomas Lemaitre, Aurelie Christ, et al. Nitrogen Recycling and Remobilization Are Differentially Controlled by Leaf Senescence and Development Stage in Arabidopsis under Low Nitrogen Nutrition. Plant Physiology,2008,147:1437-1449
    [13]Wang Y T, Yang C Y, Chen Y T, et al. Characterization of senescence-associated proteases inpostharvest Broccoli florets. Plant Physiology and Biochemistry,2004,42:663-670
    [14]Brown J H, Paliyath G, Thompson JE. Plant Physiology:A Treatise, Vol. X. Academic Press,1991:227-275
    [15]Pauls K P, Thompson J E. In vitro simulation of senescence related membrane damage by ozoneinduced lipid peroxidation. Nature,1980,283:504
    [16]Chials, Thompson J E, Dumbroff E B. Simulation of the eddects of leaf senescence on membranesby treatment with parquet. Plant Physiol,1981,69:296
    [17]Fobel M, Lynch D D, Thompson J E. Membrane deterioration in senescing carnation flowers. PlantPhysiol,1987,85:204-211
    [18]Borochov A. Plasma membrane lipid metabolism of petunia petals during senescence. Plant Physiol,1994,90:279-284
    [19]Borochov A, Halevy AH, Shinitzky M. Senescence and the fluidity of rose petal membranes. Plant Physiol,1982,69:296-299
    [20]马林.植物衰老期间生理生化变化的研究进展.生物学杂志.2007,3(24):12-15
    [21]赵春江,康书江,王纪华等.植物内源激素对小麦叶片衰老的调控机理研究.华北农学报,2000,15(2):53-56
    [22]张治礼,郑学勤,吕应堂.内源细胞分裂素调控油菜叶片衰老进程的研究.作物学报,200,31(1):1-6
    [23]张丽欣,宗汝静.四种叶菜衰老期间呼吸、乙烯产生、IAA和过氧化物酶的变化及其相互关系.植物生理学报,1988,14(1):81-87
    [24]秦宏伟.植物衰老机理研究进展.生物学教学,2007,7(32):10-12
    [25]沈成国.植物衰老生理与分子生物学.北京:中国农业出版社,2001,15-19
    [26]潘瑞炽.植物生理学.北京:高等教育出版社,2001
    [27]布坎南,格鲁依森姆.植物生物化学与分子生物学.北京:科学出版社,2004,857
    [28]陆定志.植物衰老及其调控.北京:中国农业出版社
    [29]Brady C J, In:Senescence and aging in plants. Eds:Nooden L D, Leoplod A C, Academic Press,San Diego,1988,147-179
    [30]Jean FR, Adelaide R, Franck P, et al. Visible light-induced oxidation of unsatriated components ofcutins:a significant process during the senescence of higher plants. Phytochemistry,2005, 66:313-321
    [31]Jogadhenu S, Masroor A, Anil S, et al. Characterisation of senescence-induced changes in lightharvesting complex 11 and photosystem I complex of thylakoids of Cucumis sativus cotyledons: Ageinduced association of LHCII with photosystem I. Plant Physiol,2003,160:175-184
    [32]Megumi A, Saneyuki K, Ryozo S. Effects of temperture and stem length on changes incarbohydrate content in summer-grown cut chrysanthemums during development and senescence.Postharvest Biology and Technologh,2000,20:63-70
    [33]Frank L, Uwe S. High CO2-mediated down-regulation of photosynthetic gene transcripts is causedby accelerated leaf senescence rather than sugar accumulation. FEBS Letters,2000,479:19-24
    [34]石岩,于振文,位东斌等.土壤水分胁迫对小麦根系与旗叶衰老的影响.西北植物学报,1998,18(2):196-201
    [35]冯佰利,高小丽,王长发等.干旱条件下不同温型小麦叶片衰老与活性氧代谢特性的研究.中国生态农业学报,2005,13(4):74-76
    [36]阎成仕,李德全,张建华.冬小麦旗叶旱促衰老过程中氧化伤害与抗氧化系统的响应.西北植物学报,2000,20(4):568-576
    [37]Feller U, Soong T, Hagema RH. Leaf proteolytic activities senescence during grain development of field grown corn. Plant Physilogy,1977,59:290-294
    [38]魏道智,戴新宾,许晓明等.植物叶片衰老机理的几种假说.广西植物,1998,18(1):89-96
    [39]秦宏伟.植物衰老及其调控机制的探讨.济宁师范专科学校学报,2005,26(6):12-13
    [40]王孝威,曹慧.高等植物衰老的机理研究.山西农业大学学报,2004,4:416-419
    [41]Molisch H, Der Lebensdawer derpfeamze. In the Longevity of plants. Translated and published byH. Fulling New york,1978,1938
    [42]张治礼,郑学勤,吕应堂.内源细胞分裂素调控油菜叶片衰老进程的研究作物学报.2005,31(1):1-6
    [43]周相娟,姜微波,胡小松等.赤霉素和乙烯对香菜叶片衰老的影响.北方园艺,2003,(3):54-56
    [44]罗云波,生吉萍,李钰.番茄脂肪氧合酶与乙烯释放量的关系.园艺学报,1999,26(1):28-32
    [45]Sheng J, Luo Y, Wainwright H. Studies on lipoxygenase and the formation of ethylene in tomato. Science Biology,2000,75:69-71
    [46]王兆龙,曹卫星.细胞分裂素对植物基因表达的调节.植物生理学通讯.2000,36(1):82-88
    [47]陆定志,潘裕才,马跃芳等.杂交水稻抽穗结实期间叶片衰老的生理生化研究.中国农业科学,1988,21(3):21-26
    [48]Thomas H. Delayed senescence in leaves treated with protein synthesis inhibitor MDMP. Plant Science.1976,6:369-377
    [49]Nooden LD, Guiamet JJ, John I. Senescence mechanisms, Physiology Planta,1997,101:746-753
    [50]蒋明义,荆家海.植物羟基自由基的产生及其与膜脂过氧化的关系.植物生理学通讯,1993,29:300-305
    [51]王爱国,罗广华.植物的超氧自由基与羟胺反应的定量关系.植物生理学通讯,1990,(6):55-57
    [52]林植芳,李双顺,林桂珠等.衰老叶片和叶绿体中H202累积与膜脂过氧化的关系.植物生理学报,1988,14:16-22
    [53]Jocelyn RE, Tatyana TP, Jason WJ. DNA fragmentation and nuclear degradation during harvestinduced senescence of asparagus spears. Postharvest Biology and Technology,2002,26:231-235
    [54]Lee R H, Chen S C G. Programmed cell death during rice leaf senescence is nonapoptotic. NewPhytologist,2002,155:25-32
    [55]Simpson R J, Lambers H, Dalling M J. Translocation of nitogen in a vegetative wheat plant. PlantPhysiol,1982,56:11-17
    [56]任小林,张少颖,于建娜.一氧化氮与植物成熟衰老的关系.西北植物学报,2004,24(1):167-171
    [57]段留生.器官间关系对叶片衰老的影响.植物生理学通讯,1998,15(1):43-49
    [58]Dalling MJ.The physiological basis of nitrogen redistribution during grain filling in cereals. In: Harpen JE, Schrader LE, Howell RW. Exploitation of physiological genetic variability to enhance crop productivity.Plant physiology. Pockville,Maryland,1985:55-71
    [59]Eissenstat DM. Costs and benefits of constructing roots of small diameter. Plant Nutrition, 1992,15:763-782
    [60]Wittenbach VA, Ackerson RC, Giaguinta TR. Changes in photosynthesis, ribulose bisphosphate carboxylase, proteolytic activity ultrastructure of soybeans during senescence. Crop Science, 1980.20:225-231
    [61]Feller U, Soong T, Hagema RH. Leaf proteolytic activities senescence during grain development of field grown corn. Plant Physilogy,1977,59:290-294
    [62]许守民,石连旋,胡波等.大豆叶片衰老过程中光合作用与有关酶活性变化的研究.东北师大学报自然科学版,1997,4:70-73
    [63]周琴,赵超鹏,曹春信等.不同氮肥基追比对多花黑麦草碳氮转运和种子产量的影响.草业学报,2010,19(4):47-53
    [64]张凡,袁澍,雷韬等.大量元素缺乏对小麦光合、呼吸作用和生理特性的影响.四川大学学报,2009,46(2):462-468
    [65]Bardy C J. A coordinated decline in the synthesis of subunits of ribulose bisphosphate carboxylase in ageing wheat leaves. Analysis of isolated protein, subunit ribosomes.Plant Physiology.1981, 8:591-602
    [66]RaoM V, Watkins C B. Active oxygen species metabolism in'White AnglexRome Beauty'appleselections resistant and susceptible to superficial scald.Science.1998,123(2):299-304
    [67]Yang Y F, Wang S Z, Li J D. Development and age structure of ramets of Kalimeris integrifoliapopulation in the Songnen Plains, Northeast China. Acta Botanica Sinica.2003,45(2): 158-163
    [68]田尚衣,万泓志,黄国辉等.在线超声提取96-孔盘技术高通量快速测定全叶马兰中果聚糖成分.分析化学,2011,39(3):397-400
    [69]Han YH, Chen W, Brian W, Brassard. Intrinsic and extrinstic controls of fine root life span. Plant Sciences,2013,32(3):151-161
    [70]汪晓峰,丛滋金.种子活力的生物学基础及提高和保持种子活力的研究进展.种子,1997,(6):36-39
    [71]镲亮,包维楷,向永华.种子贮藏物质变化及贮藏生理.种子,2003,(5):60-63
    [72]汪自强,俞法明.不同收获期春大豆种子贮藏后的活力研究.大豆科学,2000,19(1):31-34
    [73]齐冬梅,张卫东,刘公社.羊草种子生活力测定技术研究.草业学报,2004,13(2):89-93
    [74]郑光华.种子生理学研究.北京:科学出版社,2004,611-613
    [75]李永刚,王正旭,杨民峰等.电导率法测定烟草种子发芽率的研究.安徽农业科学,2008,36(34):15052-15058
    [76]许大全.光合作用效率.上海科学技术出版社,2002
    [77]杜林方.光合作用研究的一些进展.世界科技研究与发展,1999,21(1):58-62
    [78]李新国,许大全,孟庆伟.银杏叶片光合作用对强光的响应.植物生理学报,1998,24(4):354-360
    [79]施建敏,郭起荣,杨光耀.CO2浓度倍增下毛竹光合作用对光照强度的季节响应.江西农业大学学报,2007,29(2):215-219
    [80]谢会成,姜志林,尹建道.杉木的光合特性及其对CO2倍增的响应.西北林学院学报,2002,17(2):1-3
    [81]孟繁静.植物生理学基础.北京:中国农业出版社,1987,53-55
    [82]朱林,许兴.植物水分利用效率的影响因子研究综述.干旱地区农业研究,2005,1:204-207
    [83]周海燕,黄子琛.植物生态学报,1996,20(2):120-131
    [84]王旭军,徐庆国,杨建知.水稻叶片衰老生理研究进展.中国农学通报,2005,21(3):187-190
    [85]蒋文智,黎继岚.Cd对烟草光合特性的影响.植物生理学通讯,1989,(6):27-31
    [86]赵素达,付成秋,朱松龄.镉对石莼光合作用和呼吸作用及叶绿素含量的影响.青岛海洋大学学报,2000,30(3):519-523
    [87]李绍长.低磷胁迫对植物光合和呼吸作用的影响.石河子大学学报,2003,7(2):157-160
    [88]Gouia H, Ghorbal M H, Meyer C. Effects of cadmium on activity ofnitrate reductase and on other enzymes of the nitrate assimilationpathway in bean.Plant Physiol Biochem,2000,38:629-638
    [89]Shalaby A M, Wakeel S A. Changes in nitrogen metabolismenzyme activities ofVicia faba in response to aluminium and cadminm. Biology Plant,1995,37:101-106
    [90]上官周平,李世清.旱地作物氮素营养生理生态.北京科学出版社,2004
    [91]张华珍,徐恒玉.植物氮素同化过程中相关酶的研究进展.北方园艺,2011,20:180-183
    [92]高俊凤.植物的矿质与氮素营养.植物生理学,北京:中国农业出版社,1999:80-110
    [93]沈文飚,叶茂炳,徐朗莱等.小麦旗叶自然衰老过程中清除活性氧能力的变化.植物学报,1997,39(7):634-640
    [94]关颖谦.脱落酸对离体水稻叶片衰老的效应.植物生理学报,1981,7(3):257-263
    [95]Koop K L, Guillard K. Clipping management and nitrogen fertilizationof turfgrass:Growth, nitrogen utilization, and quality.Crop Science,2002,42(4):1225-1231
    [96]吴光南,刘宝仁,张金渝.水稻叶片蛋白水解酶的某些理化特性及其与衰老的关系.江苏农业学报,1985,1(1):1-8
    [97]Huffaker RC. Proteolytic activity during senescence of plants. New Phytology,1990,116:199-231
    [98]Rays, Choudhurim A. Flag leaf senescence in intactrice plant:effect of hormones on the activities'senescense-eniymes'during leaf age at the reproductive development. Biochemistry Physiology. Pflanzen,1980,175:346-353
    [99]PateJS, kinsK, HamelD. Pransport of organic solutes in phoem and xylem ofa nodulated legume. Plant Physiology,1979,63:1082-1088
    [100]王学奎.氮钙光对小麦谷氨酰胺合成酶和氮同化的影响.湖北:华中农业学,2000:9-13
    [101]陈胜勇,侯静,李彩凤.蛋白和核酸合成抑制剂对氮素诱导甜菜谷氨酰胺合成酶基因表达的影响.作物学报,2009,35(3):445-451
    [102]Edwards J W, Walker E L, Coruzzi G M. Cell-specific expression intransgenic plants reveals nonoverlapping roles for chloroplast andcytosolic glutamine synthetase. Acadamic Science,1990,87:3459-3463
    [103]袁永泽,林清华,张楚富等.蔗糖对水稻幼苗叶片谷氨酰胺合成酶和1,5-二磷酸核酮糖羧化酶加氧酶的影响.武汉植物学研究,2002,20(3):219-222
    [104]王云华,王志强,张楚富等.硝态氮对黄瓜子叶谷氨酰胺合成酶和谷氨酸脱氢酶活性的影响.武汉植物学研究,2004,2(6):534-538
    [105]徐济春,林钊沐,罗微等.矿质营养对光合作用影响的研究进展.安徽农学通报,2007,13(7):23-25
    [106]刘贵河,韩建国,王堃.硼、钼、锌与大量元素配施对紫花苜蓿草产量和品质的影响.草地学报,2004,12(4):268-272
    [107]Li H S. Principles and technique of plant physiological biochemical experiment, Beijing:Higher Education Press,2000
    [108]Loulakakis K A, Roubelakis-Angelakis K A. Intracellular localization and properties of NAGH-glutamate dehydrogenase from vitis vinifera L.:Purification and characterication of the major leaf isoenzyme. Exp Bot,1990,41:1223-1230
    [109]Hortensteiner S, FellerU. Nitrogen metabolism and remobilization during senescence. Exp Bot,2002,53:927-937
    [110]Molish H.The longevity of plant. Lancaster.PA:Science Press,1938
    [111]Dalling M J, Boland G, Wilson J H. Relation between acid proteinase activity redistribution of nitrogen during grain development in wheat. Plant Physiology.1976,3:721-730
    [112]Abbott J A, Conway W S, Sams C E. Postharvest calcium chloride infiltration affects textural attributes of apples. Science,1989,114:932-936
    [113]龚明,李英,曹宗.植物体内钙信使系统.植物学通报,1990,7(3):19-29
    [114]李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000
    [115]朱广廉,钟海文,张爱琴.植物生理学实验.北京:北京大学出版社,1990
    [116]郑炳松.现代植物生理生化研究技术.北京:气象出版社,2006
    [117]朱玉贤.现代分子生物学.北京:高等教育出版社,1997
    [118]王俊炜.老芒麦衰老的种群特征和生理机制的研究:[博士学位论文].北京:中国农业大学,2010
    [119]武维华.植物生理学.北京:科学出版社,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700