泥巴山隧道水文地质结构特征及涌水量预测分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从现场实际出发,详细地介绍了隧址区的地形地貌及气象水文条件、岩石建造特征、地质构造特征及风化卸荷情况。分析了隧址区山体的岩性及其结构的水文地质意义、含水介质的渗透结构特征,研究了整个隧址区水文地质结构系统的渗透性能,进而利用Ansys中的热分析模块建立隧址区渗流模型,并进行数值分析,预测隧道涌水量。结合水量均衡法、模糊数学法,对隧道涌水量进行综合评价,并与现场实测数据对比。得出如下结论:
     (1)隧址区含水介质可分为成岩裂隙、成岩孔隙、构造断裂、岩溶空间(或者岩溶管道)、松散堆积层孔隙和风化卸荷裂隙等,其相应的渗透结构随空间分布特征而变化;
     (2)整个隧址区地下水运动在平面上和剖面上具有多层次、多介质和多流向等特征,各单元之间的水力联系程度强弱不一。考虑到隧址区浅表层以下非碳酸盐岩的裂隙岩体自身渗透性差,且深部裂面随埋深变深而趋向紧闭,岩体渗透性极弱,而只有断层发育地段具有较好的透水性。可将断层视为导水层,而将非断层发育段的裂隙岩体视为隔水层。在详细研究了隧址区地下水的补给排泄条件及地球化学特征的基础上,将隧址区地下水分为5个基本水文地质单元:进口端表层地下水单元、出口端表层地下水单元、进口端深层地下水单元、出口端深层地下水单元和出口端较深层地下水单元。
     (3)泥巴山隧道实测最大涌水量约为130000m3/d。经综合评价,泥巴山隧道稳定涌水量为86531m3/d,而在没有考虑水文地质结构的情况下,采用大气降水入渗系数法、地下水迳流模拟法、地下水动力学法所得出最大涌水量仅为48252.7m3/d。可见,本方法更能反映实际情况,基本可以满足工程需要。
In this paper, the topography, meteorological and hydrological conditions, rock characteristics, geological structures, and weathering and unloading conditions of the tunnel area are introduced detailedly according to the field investigation. Then, The hydrogeological significance of the lithology and structure and the permeability characteristics of the aqueous medium of the tunnel area are also analyzed with the permeability of the hydrogeological structure system of the tunnel area analyzed. After that, a seepage model of the tunnel area is built by the thermal analysis module of the Ansys software to simulate the water yield of tunnel. Finally, by combining with the water balance method and fuzzy mathematics, a comprehensive evaluation of tunnel water inflow is conducted to compare with the field test data. Conclusions are as follows:
     (1) The aqueous medium of the tunnel area can be divided into different types such as diagenetic fissures, diagenetic pores, tectonic faults, karst rooms, loose accumulation layer pores and weathering and unloading fissures, which have different permeability characteristics in different distributions.
     (2) The running of the underground water of the whole tunnel area presents the characteristics of multiple layers, multiple mediums and multiple flow directions in plane and vertical, which makes the hydraulic connection strength between units presents different levels. Considering the poor permeability of the fractured non-carbonate rock mass under the shallow layer of the tunnel area, which has a poorer permeability as the joint gets closer when the tunnel gets deeper, and the good permeability of the fault zone, the fault zone can be regarded as conducting layer and the non-fault development area of the fractured rock masses as aquifuge. Based on the detailed study of the recharge and discharge conditions and the geochemical characteristics of the groundwater in the tunnel area, the distribution of the underground water of the tunnel area is divided into five basic hydrological units:the shallow underground water unit near the inlet end, the shallow underground water unit near the outlet end, the deep underground water unit near the inlet end, the deep underground water unit near the outlet end, and the deeper underground water unit near the outlet end.
     According to the stress field test data, the maximum water inflow value is130000m3/d. And the predictive steady water inflow value by the comprehensive evaluation is86531m3/d. Without considering the hydro-geological framework characteristic, the atmospheric precipitation infiltration coefficient method, groundwater runoff simulation, groundwater dynamics method give us a maximum water inflow value of only48252.7m3/d. So, the method in this paper is closer to the field conditions, and the result could meet the basic needs of the project.
引文
[1]卢金凯,基岩裂隙水的野外调查方法[M].地质出版社,1985.
    [2]蒋爵光,铁路工程地质[M].西南交通大学出版社,1991.
    [3]王梦恕,大瑶山隧道—20世纪隧道修建新技术[M].广东科技出版社,1994.
    [4]FONG F L, LUNDIN T K, CHIN K. Impact of environmental regulations on groundwater discharges in tunnel:a case study[C].North American Tunneling. A.A.Balkema,1998,:73-78.
    [5]魏帼钧,隧道涌水量预测的计算方法比较[J].山西建筑,2007,33(14):339-340.
    [6]Goodman, R.E, D. G. Moye, A.Van Schalkwyk, and I. Javandel. Ground water Inflows During Tunnel Driving[J].Engineering Geology,1965,2(1):39-56.
    [7]El Tani M. Circular tunnel in a semi-infinite aquifer[J]. Tunneling and Underground Space Technology,2003,18(1):49-55.
    [8]顾承宇,山岳隧道涌水量之分析评估[D]。The 11th conference on current researches in geotechnical engineering in Taiwan Province, 2005.
    [9]黄涛,杨立中.渗流—应力—温度耦合下裂隙围岩隧道涌水量的预测[J].西南交通大学学报,1999,34(5):554-559
    [10]王纯祥,蒋宇静,江崎哲郎,徐帮树.复杂条件下长大隧道涌水预测及其对环境影响评价[J].岩石力学与工程学报.2008,27(12):2411-2417.
    [11]王坛华.基于三维网络模拟技术的裂隙网络水力研究及隧道涌水非线性预测[D].吉林大学,2008.
    [12]张寿全,黄巍,王思敬,蔡祖煌.水文地质结构系统的基本原理及其应用[J].地质科学,1992(12):354-360.
    [13]许模,黄润秋.岩体渗透特性的渗透张量分析在某水电工程中的应用[J].成都理工学院院报,1997,24(1):56-63.
    [14]钱会,马致远.水文地球化学[M].北京:地质出版社.2005.
    [15]尹观.同位素水文地球化学[M].成都:成都科技大学出版社,1988.
    [16]施鑫源,杜文才.大气降水中的同位素和环境同位素在地下水补给研究中的应用[J].工程勘察,1984,(6):15-18.
    [17]陈德敢,雅泸高速公路大相岭隧道初始地应力场研究[D].西南交通大学.2009.
    [18]贺晓明,李智录,王淑贤.利用ANSY热分析模块分析渗流场问题的探究[J].工程地质计算机应用.2005(4):26-29
    [19]魏成武.大相岭隧道典型地段水文地质模型及其涌水量预测研究[D].西南交通大学.2009.
    [20]胡海涛,许贵森.论构造体系与地下水网络[J].水文地质工程地质.1980,(03):1-7
    [21]黄润秋,王贤能.深埋隧道工程主要灾害地质问题分析[J].水文地质工程地质,1998,(4):21-24.
    [22]肖长来,梁秀娟,王彪.水文地质学[M].北京:清华大学出版社,2009.
    [23]仵彦卿,张倬元.岩体水力学导论[M].成都:西南交通大学出版社,1994.
    [24]朱珍德,郭海庆.裂隙岩体水力学基础[M].北京:科学出版社,2007.
    [25]张倬元,王士天,王兰生.工程地质分析原理(第二版)[M].北京:地质出版社,1993.
    [26]路凤香,桑隆康.岩石学[M].北京:地质出版社,2002.
    [27]徐开礼,朱志澄.构造地质学[M].北京:地质出版社,1989.
    [28]周志芳,王锦国.裂隙介质水动力学[M].北京:中国水利水电出版社,,2004.
    [29]黄涛,杨立中.山区隧道涌水量计算中的双场耦合作用研究[M].成都:西南交通大学出版社,2002.
    [30]李建林.卸荷岩体力学[M].北京:中国水利水电出版社,2003.
    [31]殷黎明,杨春和,罗超文等.高压压水试验在深钻孔中的应用[J].岩土力学,2005,26(10):1692-1694.
    [32]张美静,万力,王芳,王旭升,胡伏生.隔水边界附近围岩渗透性变化时隧道涌水的渗流模型[J].长江科学院院报,2008.25(5):75-78
    [33]张美静,基岩含水层水平井流的若干问题[D].中国地质大学(北京),2009.
    [34]毕焕军.裂隙岩体数值法预测计算特长隧道涌水量的应用研究[J].铁道工程学报.2000.3(1):59-62
    [35]罗文艺.秦岭东梁隧道水文地质特征分析及涌水量预测[J].铁道勘察,2009(6):62-65
    [36]大岛洋志,西森绅一,隧道恒定涌水量和降水量的关系.铁道技术研究资料,1981,(3).
    [37]蒋宇静,李博,王刚,李术才.岩石裂隙渗流特性试验研究的新进展[J].岩石力学与工 程学报,2008.27(12):2377-2386
    [38]LIU J, Elsworth D, Brady B H. Linking stress-dependent effective porosity and hydraulic conductivity fields to RMR[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1999,36(5):581-596.
    [39]Gale J E. The effects of fracture type (induced versus natural) on the stress fracture closure fracture permeability relationship[A]. Proceedings of the 23rd Symposium on Rock Mechanics[C].1982,:211-236.
    [40]BANDIS S C, LUMSDEN A C, BARTON N R. Fundamentals of rock joint deformation[J]. International Journal of Rock Mechanics and Mining Science and Geo-mechanics Abstracts,1983,20(6):249-268.
    [41]LEI Shi-zhong. An analytical solution for steady flow into a tunnel[J]. Ground Water,1999,37(1):23-25.
    [42]KOLYMBAS D, WAGNER P. Groundwater ingress to tunnel-the exact analytical solution[J]. Tunnelling and Underground Space Technology,2007,22(1):23-27.
    [43]许增荣.用地下径流模数法预测山岭隧道涌水量的局限性分析与改进[IT].地下水,2010,32(1):49-51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700