用户名: 密码: 验证码:
北京张坊岩溶地下水库特征及调蓄能力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北京地处华北平原的北部,是国际上为数不多的以地下水作为主要供水水源的大都市,地下水资源占城市供水总量的2/3。境内降水具有时空分布不均、丰枯交替出现等特点,导致水资源有效利用率不高,供需矛盾突出,缺水严重制约着北京城市建设和社会经济的可持续发展。利用地下含水层的天然调蓄库容建立地下水库,通过有计划的储蓄和调节水资源,实现水资源的丰补旱采,提高区域水资源综合利用效率,是缓解区域水资源紧张局势的主要途径之一。
     岩溶水资源作为北京地区主要地下水资源之一,由于赋存介质不均一,系统特征比较复杂。本文结合张坊岩溶应急水资源地的勘探建设,从水源地的选址、勘察和开采评价等多方面论述了岩溶地下水系统的特征。综合影响和控制岩溶水系统的主要因素,作者通过对区域古气候、地形地貌、地质构造等特征分析,应用地球物理勘探、水文地质勘探、水化学、同位素等多种技术手段相结合,通过对区域构造应力场、水化学场、水动力场等多种特征场的综合对比分析,阐述了岩溶地下水的补径排特征;应用氢氧同位素和CFCs示踪剂取样分析,初步分析了地下水的形成年龄。最后划分了白岱、石窝和长沟3个富水区,圈定了张坊岩溶地下水库的范围,面积约401 km~2,其中山区补给面积约280 km~2。研究结果表明,区内岩溶水的分布明显受构造控制,富水性不均匀;地下水的补给条件较好,循环演化较快。最后建立了岩溶地下水系统数值模型,预测了不同开采方案下区域水位降深,评价了岩溶地下水库的调蓄能力。综合区域水资源特点,分析了地表水和地下水联合调蓄条件,提出了地下水和地表水联合调蓄方案。
     张坊岩溶地下水库,属半开放式山前浅埋岩溶地下水系统,其补给条件好,但可调蓄资源量有限。多年平均可采地下水资源为2330×10~4m~3/a,年内最大可调蓄库容为4690×10~4m~3/a。拒马河自张坊岩溶地下水库西北部流入,年均径流量为11804×10~4m~3/a。区内具备地表水和地下水联合调蓄条件,通过胜天渠地表引水与张坊岩溶地下水库联合调度供水,利用地下水库的调蓄功能,弥补了地表水资源的不足,提高了区域水资源的综合利用效率。地表引水和地下水库联合调蓄,可满足年供水1.3-1.5×108m~3/a。
Beijing is in the north of Huabei Plain, is the big city in the world which usesgroundwater as the main water supply source. Two thirds of water is groundwater.The precipitation distributes irregularly and alternates abundance and deficiency,which leads to low efficiency of water use and contradiction between supply anddemand. Water shortage restricts the sustainable development of society andeconomy. Using storage capacity of aquifer to set up the groundwater reservoir,which can realize water storage and adjustment and improve the water utilizationefficiency, is the main approach to relax the tension of water resources.
     The karst-water is the import water resources in Beijing, which has complex systemcharacteristics due to irregular storage media. The paper discussed the characteristics of theZhangfang karst-water system based on water source site selection, engineering investigation andwater production. Considering the dominating factors such as paleoclimate, topography andgeological structure, the author used geophysical and hydrogeological exploration,hydrochemistry and isotope method to analyze regional tectonic stress field, hydrochemical fieldand groundwater dynamic field. Then, the condition of recharge, runoff and discharge wasdiscussed, and the groundwater age was tested by using deuterium and oxygen isotope and CFCstracer. Three water-rich zones were classified named Baidai, Shiwo and Changgou, whichdetermined the range of karst-water reservoir. The reservoir area is about 401 km~2, in which themountain area for recharge is 280 km~2. The result of research shows that the distribution ofkarst-water is dominated by geological structure. The water yield property distributes irregularly.The recharge condition is good and water circulates fast. On the basis above and dynamicmonitoring of groundwater level, the numerical groundwater flow model was established toforecast the drawdown of groundwater table and evaluate the regulation-storage capacity ofgroundwater reservoir. Thereafter, the joint regulation-storage plan of surface water andgroundwater was put forward.
     The Zhangfang karst groundwater reservoir is in the Piedmont, which isbelongs to the semi-open type karst-water system and has good recharge condition.The average annual groundwater could be product is 2330×10~4m~3/a, and the largestregulation-storage capacity is 4690×10~4m~3/a. The Juma river enters the karst-waterreservoir in northwest with runoff of 11804×10~4m~3/a. The karst-water region hasjoint regulation-storage condition. The Shengtian trench can be used to adjust watersupply of karst-water reservoir which has excellent storage function and remediesthe deficiency of surface water. So, the utilization efficiency of water resourcescould be improved. The research shows that the joint regulation-storage can meetwater supply 1.3-1.5×108m~3/a.
引文
五渡拦蓄坝拦截了拒马河水经胜天渠向下游输水,每年1-6月枯水期,由于拒马河来水减少,需要通过张坊应急水源地供水来弥补胜天渠供水量的不足。5.5.2张坊岩溶地下水库调蓄库容
    调蓄库容指现状开采条件下已疏干潜水含水层的储水空间。
    调蓄库容计算公式:
    V=H×F×μ
    式中:V-调蓄区库容(m3);H-含水层疏干厚度(m);F-含水层面积(m2);μ
    [1]钱正英,张光斗,中国可持续发展水资源战略研究-综合报告及各专题报告,北京:中国水利水电出版社,2001.
    [2] 21世纪议程,巴西里约热内卢召开的联合国环境与发展大会,巴西里约热内卢,1992
    [3]张永波等著,水工环研究的现状与趋势.地质出版社,2001
    [4]北京市发展改革委员会,北京市国民经济和社会发展报告,2004
    [5]林学钰.论地下水库开发利用中的几个问题.长春地质学院学报,1984,2:113-121
    [6]向华龙,论天然地下水库的开发利用.中国水利学会2003年学术年会论文集.地质大辞典,地质出版社,2003
    [7]杜新强,廖资生,李砚阁,冶雪艳,地下水库调蓄水资源的研究现状与展望.科技进步与对策,2005.2:178-180
    [8] Told D K. Groundwater Hydrology. New York: John Willey & Sons,1980: 353-356,458-488.
    [9] Fetter C W. Applied Hydrogeology. New Jersey: Pren-tice-Hall Inc.,2001: 511-541.
    [10]罗伯特P阿姆布罗格,刘立明译,控制水循环的地下水库.地下水,1995,17(3)
    [11]王大纯,张人权,等.水文地质学基础.地质出版社,1995
    [12]沈照理主编.水文地球化学基础.地质出版社,1992
    [13]周训,胡伏生,何江涛,等.地下水科学概论.地质出版社,2009
    [14]吴忱,王子惠,南宫地下水库的古河流沉积与古河型特征.地理学报,1982,7(3):317-324
    [15]赵天石,关于地下水库几个问题的探讨.水文地质工程地质,2002,(5):65-67.
    [16]杜汉学,常国纯,张乔生,等.利用地下水库蓄水的初步认识.水科学进展,2002,13(5):618-622
    [17]李砚阁,地下水库建设研究.北京:中国环境科学出版社,2007
    [18]杜新强,李砚格,等.地下水库的概念-分类和分级问题研究.地下空间与工程学报,2008年4月,第4卷,第二期,209-204
    [19] Bouwer H. Artificial recharge of groundwater: Hydrogeology and engineering.Hydrogeology,2002,10(1):121-142.
    [20] Stonestrom D A,Constantz J,Ferrél P A,et al. Ground-water recharge in the arid andsemiarid southwestern United States∥USGS Professional Paper 1703,2007: 375.
    [21] Han Z S. Management of aquifer recharge for sustainable de-velopment: Review of the 4thinternational Conference of Groundwater Artificial Recharge . Regional Geology of China,2003,22(2): 142-143(in Chinese).
    [22] British Geology Survey Elucidating the hydrogeological issures associated with aquiferstorage and recovery in the UK 2002.
    [23] Herman Bouwer Artificial recharge of groundwater:hydrogeology and engineering g.Hydrogeology Journal,2002.
    [24] HUISMAN L.Olsthoorn T N Artificial Groundwater Recharge. Northern Ireland:Universities Press,1983.
    [25] Pyne RDG. Groundwater recharge and wells: Aguide to Aquifer Storage Recovery. Florida:Lewis Publishing,1995.
    [26] George R,Aiken.Eve L.Kuniansky U.S.Geological Survey artificial recharge workshopproceedings,[USGS Open-File Report 02-89.] 2002
    [27] H K Jones.I Gaus.A T Williams.P Shand,I N Gale ASR-UK.A review of the status ofresearch and investigations.[Technicial Report WD/99/54.]
    [28]金本信夫(日),日本地下水坝的建造技术,中日地下水库建设技术交流研讨会论文.大连,2000年2月
    [29]陈鸿汉,张永祥.中国北方岩溶区地下岩溶水库-地表水联合调蓄.地学前缘,2001,8(1):185-190
    [30]戴长雷,迟宝明,地下水库调蓄能力分析.水文地质工程地质,2003,(2):37-40
    [31]胡君春,郭纯青,徐海振.中国北方地区地下水库的若干问题的研究.水文,2009,29(1)
    [32]北京市水文地质工程地质公司.北京西郊地下水库试验研究报告,1985
    [33]韩宝平,国外岩溶水文地质学进展.中国岩溶,1993,12(4):400- 408
    [34] Shuster E T,W hite W B.Seasonal fluctuations in the chemistry of limestone springs;Apossible means forharacterizing carbonate aquifers,J.Hydro1.1956,14:93- 128.
    [35] White W B.Conceptual Model for Carbonate Aquifer:in:Hydrogeologic Problem in KarstRegions.W estern Kentucky Univ.,1977:176-187.
    [36] Atkinson T C.Diffuse flow and conduit flow in limestone tarraln in the Mendip hills,Somerset.J.Hydro1.1977,35:93-110.
    [37] Scanlon B R and J Thrailkil1.Chemical similarities among physically distinct spring typesin a karstterraln.J.Hydro1.1987,89:259-279.
    [38] Atkinson T C and Smart P L.Traceur artificiels enhydrogeology.Bull,BRGM.1979:365-380.
    [39] Atkioson T C.Present and future directions in karst hydrogeology.Annales de la S0cieteG~ologiquede Belgique,T.1985,108:293-296.
    [40] Quinlan R F and Ewers R O.Ground Water Flow in Limestone Terraines:Strategy Rationaland Procedure for Reliable,Efficient Monitoring of Groundwater Quality in KarstArea[M].Proc.5th Nat.Symp,Aquifer Restoration and Ground W ater Monitoring,Nat.W ater W ell Assoc.,W orthington,1985,197-234.
    [41] Quinlan J F,Davies G J,Jones S W,Huntoon P W. 1996. The application ofnumerical model s to adequately characterized ground-water flow in karstic and other tripple-porosity aquifers.In : Ritchy J D,Rumbaugh J O,eds. Subsurface Fluid-flow( Ground-Water and Vadose Zone ) Modeling,ASTM STP 1288. American Society forTesting and Materials,114-133.
    [42] Compana M E and E S Simpson.Groundwater Residence Time and Charge Rate Using aDiscret-state Compartment Model and 14C Data.J.Hydro1.,1984,72:171- 185.
    [43] Coppana M E and D A M ahin.Model-derived estimates of groundwater mean ages,recharge rates effective porosities and storage in alimestone aquifer.J.Hydro1.1985,76:247-264.
    [44] Bear J. and B. Berkowitz. Groundwater flow and pollution in fractured rock aquifers. InDevolopment of hydraulic Egineering,1987,Vol.4.
    [45] Diodato D.M. A compendium of fracture flow models.Center for EnvironmentalRestoration Systems.1994:94.
    [46]袁道先.中国岩溶学.北京:地质出版社,1993.
    [47]雒征,胡彩虹,郝永红.岩溶泉水的研究现状与进展.水资源与水工程学报,2005.16(1):56-59.
    [48]迟宝明,戴长雷.黄河中游地区岩溶水资源人工调蓄的可行性研究.水文地质工程地质,2003,4:31-34
    [49]裴捍华,杨亲民,郭振中.山西岩溶水强径流带的成因类型及其水文地质特征.中国岩溶,2003,22(3):219-224
    [50]韩行瑞,鲁荣安,李庆松,等.岩溶水系统-山西岩溶大泉研究.北京:地质出版社,1993.
    [51]钱孝星.岩溶地下水运动与计算的若干问题讨论.水利水电科技进展,1998,18(4):18-22.
    [52]韩宝平.喀斯特微观溶蚀机理研究.中国岩溶,1993,12(2):97-103.
    [53]吴应科,毕于远,郭纯青.西南岩溶区岩溶基本特征与资源、环境、社会、经济综述.中国岩溶,1998,17(2):141-150
    [54]刘再华.娘子关泉群水的来源再研究.中国岩溶,1989,8(3):200-207
    [55]薛禹群,张幼宽.双重介质渗流模型及其在矿坑涌水预测中的应用.水文地质工程地质,1984,11(2):33-39
    [56]陈明佑,岩溶水流动的数学模型探讨.水文地质工程地质,1984,No.5:37-39
    [57]武强,陈明佑,田开铭,等.中国华北型煤田矿坑用水量预测准三维数学模型研究.地球科学,1992,17(1):87-94
    [58]朱远峰.中国岩溶水系统和岩溶水资源研究进展,见:地质部环境地质研究所主编.工程地质水文地质环境地质论文集.北京:地震出版社,1993:194-199.
    [59]袁道先,戴爱德,蔡五田,等.中国南方裸露岩溶峰丛山区岩溶水系统及其数学模型研究.广西师范大学出版社,1996
    [60]李传谟,康凤新,等.岩溶水资源及增源增采模型.山东科技出版社,1999
    [61]卢耀如等.岩溶水文地质循环演化与工程效应研究.科学出版社,1999
    [62]田开铭,裂隙水偏流.第一版.北京,学苑出版社,1989.
    [63]王宇.西南岩溶地区岩溶水系统分类、特征及勘察评价要点.中国岩溶,2002,21(2):114-119.
    [64]李砚阁,杨昌兵,耿雷华,等.北方岩溶大泉流量动态模拟及其管理.水科学进展,1998,9(3):275-281.
    [65]钱家忠,汪家权,葛晓光,等.我国北方型裂隙岩溶水流及污染物运移数值模拟研究进展.水科学进展,2003,14(4):509-512.
    [66]李文兴,刘建之.岩溶水系统降水入渗的随机模拟.水文地质工程地质,1996,(6):32-35.
    [67]张之淦.娘子关地区马家沟灰岩岩溶,见:中国地质学会第二届岩溶学术会议论文集.北京:科学出版社,1982:14-24.
    [68]赵敬孚.娘子关泉域水均衡研究,见:中国地质学会第二届岩溶学术会议论文集.北京:科学出版社,1982:156-161.
    [69]袁崇桓.山西娘子关泉域降水入渗系数的计算及陶凯(Turc)公式使用条件浅析.中国北方岩溶和岩溶水,北京:地质出版社,1982:122-126.
    [70]周仰效.山西娘子关泉流量的滑动平均模拟.中国岩溶,1986:5(2):97-104.
    [71]刘思峰,郭天榜,党耀国,等.灰色系统理论及其应用.北京:科学出版社,1999.
    [72]郭纯青,夏日元,刘正林,等.岩溶地下水评价灰色系统理论与方法研究.北京:地质出版社,1993.
    [73]郝永红,王学萌.娘子关泉灰色系统模型研究.系统工程学报,2001,16(1):39-44.
    [74]张发旺,候靳伟.裂隙水偏流-一种寻找岩溶洞穴靶区的实用理论.中国岩溶,1998,17(3):291-295.
    [75]北京市水文地质工程地质公司.北京市昆明湖-洼里地区基岩供水水文地质初勘报告,1980
    [76]北京市水文地质工程地质公司.北京市玉泉山地区基岩供水水文地质勘察总结报告,1981
    [77]北京市水文地质公司.北京市房山区磁家务地区401所供水水文地质勘察报告,1981
    [78]北京市水文地质工程地质大队.北京西山能源基地供水水文地质勘察报告,1982
    [79]北京市水文地质工程公司.北京泉志,1983
    [80]北京市水文地质工程地质公司.北京石花洞(潜真洞)岩溶地质勘察报告,1984
    [81]北京市水文地质工程地质大队.北京市云岗地区航天部三院供水水文地质勘察报告,1987
    [82]北京市水文地质工程地质大队.北京市昌平卫星城邓庄、化庄水源地供水水文地质报告,1988
    [83]北京市水文地质工程地质大队.房山区娄子水-新街水源地供水水文地质勘察报告,1989
    [84]北京市水文地质工程地质大队.北京缺水山庄供水水文地质勘察报告,1991
    [85]北京市水文地质工程地质大队.北京大兴念坛水源地供水水文地质详查报告,1993
    [86]北京市水文地质工程地质大队.北京市大兴县隐伏基岩水普查报告,1997
    [87]北京市水文地质工程地质大队.北京通州区龙旺庄隐伏灰岩应急水源地供水水文地质勘探报告,1998.
    [88]北京市水文地质工程地质大队.北京市第三水厂改扩建工程供水水文地质勘察报告,1999
    [89]北京市水文地质工程地质大队.北京市石景山区杨庄水厂改水水文地质勘察报告,2000
    [90]李学礼.水文地球化学.北京:原子能出版社,1988
    [91]曹玉清,胡宽瑢,胡忠毅.水文地球化学反应-迁移-分异模型.长春科技大学学报.2000,30(3).
    [92]陈宗宇.水文地球化学模拟研究的现状.地球科学进展,1995,10(3):278-282
    [93]郭平生.环境同位素方法在平凉电厂岩溶水研究中的应用.地下水,2004,26(3):181-184.
    [94] Dansgaard W. The abundance of 18O in atmospheric water and water vapor. Tellus,1953,5(4):461-469.
    [95] Hiscock K M,Dennis P E. Hydrochemical and Stable Isotope Evidence for the Extent andNature of Effective Chalk Aquifer of North Norfolk,U K. Journal of Hydrology,1996,(80):79-107.
    [96]王恒纯,等.同位素水文地质概论.北京:地质出版社,1991
    [97]王东升,徐乃安.中国同位素水文地质学之进展.天津:天津大学出版社,1993
    [98]刘锋,李延河,林建.北京永定河流域地下水氢氧同位素研究及环境意义.地球学报,2008,29(2):161-166.
    [99]陈建生,汪集,赵霞.用同位素方法研究额济纳盆地承压含水层地下水的补给.地质论评,2004
    [100]钱云平,秦大军,庞忠和,等.黑河下游额济纳盆地深层地下水来源的探讨.水文地质工程地质,2006,(3):25-29
    [101]段光武,梁永平.应用34S同位素分析阳泉市岩溶地下水硫酸盐污染.西部探矿工程,2006,(1):100-103
    [102]马致远,钱会,黄建勋,等.关中盆地南部含水层间相互关系的环境同位素水文地球化学证据.地球科学与环境学报,2006,28(2):69-74
    [103] Hiroshi Satake. Stable isotopes (S,Cl) and hydrochemical variations in a karstic groundwatersystem,Guiyang,SW China.Chinese Journal of Geochemistry,2006,(S1):113-117.
    [104]庞忠和. Isotope and chemical geothermometry and its applications,Science ChinaTechnological Sciences. Vol.44 supp,August 2001.
    [105]秦大军.用CFC(氟里昂)数据确定地下水的年龄.中国科学院地质与地球物理研究所2002学术年会.
    [106]王宇,李丽辉.德国岩溶水勘查技术与开发利用概况.水文地质工程地质,2005,6:91-95
    [107]张宗祜,沈照理,薛禹群,等.华北平原地下水环境演化.北京:地质出版社,2000
    [108]朱洪山,张翼. 44万年以来北京地区石笋古温度记录.科学通报. 1992,(20):213-219
    [109]蒋忠诚,等.北京西山岩溶研究.北京:地质出版社,1996
    [110]赵逊,赵汀,冀显江,等.中国房山岩溶地貌研究.北京:地质出版社,2010
    [111]鲍亦冈,等.北京燕山期火山地质及火山岩.北京:地质出版社,1995
    [112]鲍亦冈,等.北京百年地质研究.北京:地质出版社,2001
    [113]北京市水文地质工程地质大队.房山张坊-长沟地区地球物理勘探报告. 2002
    [114]肖重华,李鹏,李文鹏.天山北麓中段拗陷带地下水库的特征及开发利用建议.水文地质工程地质,2005,4:74-77
    [115]郑西来,程善福,林国庆,等.滨海地下水库利用与保护.北京:地质出版社,2007
    [116]王广才,李竟生.平顶山矿区地下水流系统识别及岩溶发育规律初步研究.水文地质工程地质,1992. 4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700