大区域地下水数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于水资源短缺,地下水大量超采形成大面积的漏斗,引起地面沉降、海水入侵以及区域生态退化等问题,严重影响了区域经济与社会可持续发展。目前,华北平原地下水环境问题已经从点发展到面,导致了区域性地下水环境灾害。因此,从大区域角度研究华北平原地下水,对合理开发、利用、保护地下水资源,具有十分重要的意义。
     本文在广泛了解有关地下水系统模拟研究进展的基础上,结合中国华北平原滏阳河平原区实际资料,首先通过实验,对地下水补给过程进行探讨,然后结合DEM提出修正的Residual Kriging(RK)法对大区域地下水初始水位进行推定,最后利用迦辽金有限元方法进行数值模拟,应用到研究区域。主要研究内容包括以下四个部分:
     第一部分,概述了目前水资源特别是地下水资源的情势和危机,介绍了地下水数值模拟技术的发展,总结了传统模型的特点和局限性,指出了进行大区域地下水数值模拟的必要性。
     第二部分,从水文学、土壤物理学相结合的角度出发,针对华北平原地下水漏斗问题,通过室内实验,研究大埋深情况下入渗水分运动的变化特点。为正确率定大区域地下水数值模拟的水文地质参数、建立合理的计算模型做准备。
     第三部分,针对大区域地下水数值模拟的初始条件,提出了一种与GIS相结合的Kriging方法——修正的Residual Kriging(RK)法,利用DEM作为辅助信息推定大区域地下水的初始流场。总的来说,修正RK法在很大程度上提高了初始水位的推定精度。
     第四部分,在比较精确的推定初始水位的基础上,采用迦辽金有限元方法进行大区域地下水二维稳定流数值模拟,通过模型的识别和验证,对不同参数进行反复调节和识别,得到了较为理想的拟合流场。
In North China, for lack of water resources, the large area funnel has been formed for the overdraft of ground water and it leads to many problems such as the ground sedimentation, the sea-water encroachment, the regional ecological degeneration and so on which have badly affected the sustainable development of the regional economy and the society. At present, the problem of ground water environment has been developed from point to surface, which has leads to the regional ground water environment disaster. So, in order to reasonably exploit, utilize and protect the ground water resources, it is important to study the ground water in North China within a large-scale domain.
    Based on fully realizing the evolvement of the groundwater system, connecting with the practical data and problems in Fu Yang River plain in North China, the supply of the ground water was discussed in this paper through the experiment and the initial level of the large-area ground water was deduced using the modified Residual Kriging(RK) which is modified with DEM. Finally this paper adopts the Galerkin finite element method to make numerical simulation and applies it in the study area.
    The main works are summarized as follows:
    In the first part, the regime and crisis of the water resource especially the groundwater resource was summarized. And the development of the groundwater numerical simulation technology has been introduced. The characterist and the limited of the traditional model was also summarized and the large-scale ground water numerical simulation was pointed out necessary.
    In the second part, aiming at the ground water funnel in the North China Plain, and from the combination of hydrology and soil-physics, the variety characteristic of the infiltration moisture movement was studied through the inside experiment, which makes prepare to properly determine the hydrogeologic parameters of the large-scale ground water numerical simulation and establish the reasonable groundwater models.
    
    
    In the third part, aiming at the initial condition of the groundwater numerical simulation, a Kriging method connected with GIS: the modified Residual Kriging(RK) was brought forward. This method deduced the initial flow field of the large-scale ground water using DEM as auxiliary information. Generally speaking, the deduced precision of the initial water level was improved at a great extent.
    In the fourth part, based on the foundation of the more accurate deduce of the initial water level, the Galerkin finite element method was adopted to put on the steady flow numerical simulation of the large-scale ground water. Through the identification and validate, the different parameters were adjusted and identified again and again, and finally, a relatively ideal flow field of fit was received.
引文
[1] Aboufirassi, M., and M.A. Marino (1983). Kriging of water levels in the Souss aquifer, Morocco, Math. Geol., 15, pp.537-551.
    [2] ASCE American Society of Civil Engineering Task Committee on geostatistics techniques in geohydrolgy(1990): Review of geostatistics in geohydrology 1: Basic concepts; 2: Applications, ASCE J. Hydraul. Eng., 116(5), pp.612-658.
    [3] Atwater J. (1994) Groundwater resources of British Columbia. BC Environment and Environment Canada: Vancouver.
    [4] Braud, I., Fernandez, P. and Bouraoui, F. (1999). Study of the Rainfall-Runoff Process in the Andes Region Using a Continuous Distributed Model, Journal of Hydrology, 216: p155-171.
    [5] Brown, Lester R.. Worsening Water Shortages Threaten China's Food Security. Earth Policy Institute. October 4, 2001
    [6] Chen, B., Huang, G.H., Li., Y.F. (2003b). "A Distributed Nonpoint Source Simulation Model-Case Study in the Thames River Basin, Canada." Transactions of Nonferrous Metals Society of China(In press)
    [7] Chen, B., Li, Y.F., Huang, G.H., Huang, Y.F., and Li, Y.R. (2004). "PELM: An Integrated Pesticide Losses Model for Simulating Pesticide Pollution in a Watershed System." Journal of Environmental Science and Health-Part B, B39(4)
    [8] Chen, B., Li, Y.F., Huang, G.H., Struger, J., Zhang, B.Y., and Wu, S.M. (2003a). "Estimation of Atrazine Loss through the Surface Runoff from Agricultural Land in Auglaize-Blanchard Watershed, the United States." Water Quality Research Journal of Canada, 38(4), 585-606.
    [9] Chen, J. and Wang, H. (1998). Geostatistical Applications to estimate groundwater levels(in Chinese), J. Hydogeo. & Eng. Geo., No. 6, pp.7-11.
    [10] Clark I. (1979). Practical Geostatistics. Elsevier: UK
    [11] Clifton, P.M. and Neuman, S.P. (1982). Effects of kriging and inverse modeling on conditional simulation of the Avra Valley aquifer in southern Arizona, Water Resour. Res., 18(4), pp.1215-1234.
    
    
    [12] Croke B., Cleridou N., Kolovos A., Vardavas I., and Papamastorakis J. (2000) Water resources in the desertification-threatened Messara Valley of Crete: estimation of the annual water budget using a rainfall-runoff model, Environmental Modeling and Software, 15(4): 387-402
    [13] Desbarats, A.J., Logan, C.E., Hinton, M.J., and Sharpe, D.R. (2002) On the kriging of water table elevations using collateral information from a digital elevation model. J. Hydrol. 255(1-4): 25-38.
    [14] Hoeksema, R.J., Clapp, R.B., Thomas, A.L., Hunley, A.E., Farrow, N.D., Dearstone, K.C. (1989). Cokriging model for estimation of water table elevation. Water Resour. Res. 25(3), 429-438.
    [15] Holland K., Overton I., Jolly I., and Walker G. (2004) An Analytical Model to Predict Regional Groundwater Discharge Pattems on the Floodplains of a Semi-Arid Lowland River. CSIRO Land and Water Technical Report No., CSIRO Land and Water, Atherton, Australia.
    [16] Khazaei E., Spink A.E.F., and Warner,J.W. (2003)A catchment water balance model for estimating groundwater recharge in arid and semiarid regions of south-east Iran. Hydrogeology Journal, 11(3): 333-342.
    [17] Kuchment, L.S., Demidov, V.N., Naden, P.S., Cooper, D.M. and Broadhurst, P. (1996). Rainfall-Runoff Modeling of the Ouse Basin, North Yorkshire: an Application of a Physically Based Distributed Model, Journal of Hydrology, 181: p323-342.
    [18] Li, Y.F., Li, Y.R., Huang, G.H., Struger, J., Wang, X., Chen, B., and Li, J.B. (2003). "Development of a decision support system for managing pesticide losses in agricultural watersheds." International Journal of Sediment Research, 18(1), 1-14.
    [19] Libiszewski S. (1995) Water Disputes in the Jordan Basin Region and their Role in the Resolution of the Arab-Israeli Conflict. ENCOP Occasional Paper No. 13., Swiss Peace Foundation: Wasserwerkgasse.
    [20] Liu Changming, Yu Jingjie, Eloise Kendy(2001). Groundwater exploitation and its impacts on the environment in the North China Plain. Water International. 26(2):265-272
    [21] Ma Tain-Shing, M. Sophocleous, and Yu, Yun-Sheng (1999): Geostatistical applications in groundwater modeling in South-Central Kansas, ASCE J. hydraul. Eng., 4(1), pp.57-64.
    
    
    [22] Mahé G., Olivry J.C., Dessouassi R., Orange D., Bamba F., and Servat E. (2000) Surface water and groundwater relationships in a tropical river of Mali., Series ⅡA-Earth and Planetary Science, 330(10): 689-692.
    [23] Minasny B., A. B. McBratney(2002): The efficiency of various approaches to obtaining estimates of soil hydraulic properties, Geoderma, 107, pp.55-70.
    [24] Moore, I. D., R. B. Grayson and A. R. Ladson, 1991, Digital Terrain Modelling: A Review of Hydrological, Geomorphological, and Biological Applications, Hydrological Processes, 5(1): 3-30
    [25] Mousavi S.M., Shamsai A., El Naggar M.H., and Khamehchian M. (2001) A GPS-based monitoring program of land subsidence due to groundwater withdrawal in Iran. Canadian Journal of Civil Engineering, 28(3): 452-464.
    [26] Neuman, S.P. and E.A. Jacobson(1984). Analysis of nonintrinsic spatial variability by residual kriging with application to regional groundwater levels, Math. Geol, 16(5), pp.499-521.
    [27] Nickum, James E. (1998). Is China Living on the Water Margin? In Richard Louis Edmonds(Ed.), Managing the Chinese Environment, pp.156-174. Oxford: Oxford University Press.
    [28] Oliver M. A. and Webster R.(1990). Kriging: a method of interpolation for geographical information system. Int. J. Geographical Information Systems, 4(3): 313-332
    [29] Peng M. H., Liu J.K., and Shi T.Y. (2000)Groundwater Level Forecasting with Time Series Analysis. In: Proceeding of Asian Conference on Remote Sensing (ACRS)2000, December 4-8, Taipei, Taiwan.
    [30] Petersen T. (1999). A comparison between kriging and geological data interpolation(GDI)in hydrogeological modeling. Spalvins A. (eds), Environmental Simulation. 85-97, Riga: Riga Technical University
    [31] Seyfried, M. S. (1998). Spatial cariability constraints to modeling soil water at different scales, Geoderma, 85, pp.231-254.
    [32] Sun, Ne-Zheng(1999): Inverse problems in groundwater modeling, Kluwer Academic Publishers, The Netherlands, pp. 161-210.
    
    
    [33] Thompson, J. A., J. C. Bell and C. A. Butler(2001). Digital elevation model resolution: effects on terrain attribute calculation and quantitative soil-landscape modeling, Geoderma, 100, pp.67-89.
    [34] USAID. (2003). USAID Investments in Drinking Water Supply and Related Activities-a Report to the U.S. House and Senate Appropriations Committees. Congressional Report, the USAID Water Team, U.S. Agency for International Development, Washington, D.C.
    [35] Wang Z. Q. (1999). The application of geostatistics to the ecology. Beijing: Science Press.
    [36] Wu K. (2002). Analysis of resources, environment, and development in southern Hebei region. Geology Progress, 21(5), 45-55
    [37] Xiangwei ZHANG, Kuniyoshi TAKEUCHI, Hiroshi ISHIDARIRA. Geostatistical Application to the Estimation of Unconfined and Confined Groundwater Heads in Quasi-3D Groundwater Flow Modeling in Kofu Basin. Annual Journal of Hydraulic Engineering, JSCE, 2003, 47, pp.289-294.
    [38] Zimmerman D.L.(1991). A comparison of spatial semivariogram estimators and corresponding ordinary kriging predictors. Technmcs. 33(1): 77-91.
    [39]张宗祜,沈照理,薛禹群等,华北平原地下水环境演化,第一版,北京,地质出版社,2000年,第1页
    [40] 刘昌明,陈志恺,中国水资源现状评价和供需发展趋势,第一版,北京,中国水利水电出版社,2001,第1,44页
    [41] 贾金生,地下水系统演化模拟与可持续利用的研究——以石家庄市、栾城县为例,中国科学院研究生院博士研究生学位论文,2002,pp1~3.
    [42] 张蔚榛论文集编写组,张蔚榛论文集,武汉,武汉大学出版社,2002,pp413~552.
    [43] 秦耀东,土壤物理学,北京,高等教育出版社,2003,pp28~92
    [44] 王大纯等,水文地质学基础,第一版,北京,地质出版社,1995,pp36~43.
    [45] 陈崇希,唐仲华,地下水流动问题数值方法,第一版,武汉,中国地质大学出版社,2002,pp1~5,87~156.
    
    
    [46] 陈家琦,王浩、杨小柳,水资源学,第一版,北京,科学出版社,2002,pp153~191.
    [47] 刘昌明,何希吾,中国21世纪水问题方略,第一版,北京,科学出版社,1996年,第1页
    [48] 贾金生,刘昌明,华北平原地下水动态及其对不同开采量响应的计算——以河北省栾城县为例,地理学报,2002(2)(201-209)
    [49] 夏军.华北地区水循环与水资源安全:问题与挑战.地理科学进展,2002,20(6),pp.517-526.
    [50] 陈家军,郭乔羽,王红旗,王金生.应用协同泛克立格法估计地下水水位.水利学报,2000,7,pp.7-13.
    [51] 张祥伟、山本直树、竹内邦良、石平博、中津川诚、羽山早织(2003)情报不足条件下広域地下水非定常流动解析手法关研究,日本水文·水资源学会志、第16卷第4号、pp.349-367.
    [52] 李金荣,杨振放,李云峰,李金玲.两种方法在地下水位估值中的应用.水文地质工程地质,2003,3,pp.42-46.
    [53] 秦耀东,李保国.应用析取克里格方法估计区域地下水埋深分布.水利学报,1998,8.pp.28-33.
    [54] 范鹏飞.华北平原地下水演化及预测.地球学报.1998,19(4),pp.346-352.
    [55] 张宗祜,施德鸿,沈照理,钟佐燊 薛禹群.人类活动影响下华北平原地下水环境的演化与发展.地球学报.1997,18(4),pp.337-344.
    [56] 侯景儒,黄竞先.地质统计学及其在矿产储量中的应用.地质出版社.1982.pp.70-110.
    [57] 王仁铎,胡光道.线性地质统计学.地质出版社.1988,pp.123-133.
    [58] 王政权.地质统计学及在生态学中的应用.科学出版社.1999,pp.104-149.
    [59] 张秀义,赵延宁,衡水市地下水开发利用存在的问题及对策,地下水2003.6,25(2),pp87-91
    [60] 付学功,衡水市深层地下水降落漏斗及发展趋势分析,水资源保护,2001,第1期,pp24-44
    
    
    [61] 金光炎等,地下水计算参数的测定与估计,水科学进展,1997,第8卷第1期,pp16-24
    [62] 韩占成,温浩,沧州市降雨入渗补给系数分析,河北水利科技,1997,18(3),pp11-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700