Fe~0-PRB修复地下水中铬铅复合污染的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水污染修复技术是现今环境领域的研究热点之一。可渗透反应墙(Permeble Reactive Barrier)是一种新兴的原位修复技术,它具有运行稳定、成本低、长效等优点。近年来,PRB技术迅速发展,在反应机理、结构安装、活性材料的改进等方面取得了突破。目前,PRB技术正逐步取代运行成本高昂的抽出处理技术,成为地下水修复技术的发展方向。其中零价铁可渗透反应墙(Fe~0-PRB)应用最为广泛,它具有持续原位处理、处理组分多和价格便宜等优势,已在许多国家地下水污染处理的众多方面得到了研究和发展。Fe~0-PRB已被证明是一项能够修复受卤代烃、卤代芳烃、有机氯农药以及重金属(如铬、硒、铀、砷和锝)等污染地下水的有效技术。
     本研究通过批实验和柱实验,研究了Fe~0-PRB技术修复铬铅复合污染地下水的效果和主要影响因素,探讨了以Fe~0为填料的PRB修复铬铅复合污染地下水的可行性和有效性,为了解决单独以铁粉为介质的PRB去除效率易下降的问题,首次使用堆肥-Fe~0混合PRB修复铬铅复合污染地下水,并对其作用机理进行了研究,得到了以下结论:
     ⑴零价铁能够有效、快速地去除水体中的铬污染,机理为氧化还原和共沉淀,产物为Fe(OH)_3、Cr(OH)_3和(Cr_xFe_(1-x))(OH)_3;对铁粉进行酸洗和镀镍等预处理能有效提高六价铬去除率;去除过程受铁粉投加量、污染物初始浓度及初始pH的影响;零价铁去除六价铬的过程伴随着pH值上升和Eh值下降;本实验条件下,铁粉最佳投加量为铁粉与铬的质量比为1000:1;当反应液为酸性时,Fe~(2+)浓度可以作为Cr(Ⅵ)是否完全去除的指示剂。
     ⑵零价铁能够有效去除水体中的铅污染,机理为氧化还原和混凝吸附,产物为Pb(0)、Pb(OH)_2和PbO·XH_2O等;零价铁去除铅的过程伴随着pH值上升和Eh值下降;铅去除率随铁粉投加量的增大而增大,随反应液初始pH值的上升而下降。
     ⑶零价铁能够快速有效地去除水体中的铬铅复合污染,去除率随铁粉投加量的增加或初始pH的下降而升高;相同反应条件下,零价铁对六价铬的去除率高于铅;复合污染时零价铁对六价铬的去除率略小于单独污染时,但铅的去除率明显低于单独污染时的去除率;
     ⑷分别研究了单独污染和复合污染时零价铁去污的动力学模型,结果表明:无论是单独污染还是复合污染,六价铬及铅的去除都符合准一级动力学方程,随着铁粉用量增加或反应液初始pH下降,反应速率常数增大。
     ⑸比较了不同阴离子及同一种离子以不同浓度存在对零价铁去除铬、铅污染的影响,其中四种无机离子存在时,Cr(Ⅵ)的去除率顺序:Cl~->SO_4~(2-)>HCO_3~->PO_4~(3-)。离子浓度为1 mmol/L时,Cl~-及SO_4~(2-)加快六价铬去除,HCO_3~-和PO_4~(3-)减慢六价铬去除;当无机阴离子浓度为3 mmol/L时,HCO_3~-变成了促进六价铬去除,此时只有磷酸根起抑制作用;由于Cl~-、SO_4~(2-)和高浓度的HCO_3~-(3 mmol/L)可以与铁反应生成绿锈从而促进了六价铬去除,低浓度的HCO_3~-(1 mmol/L)和PO_4~(3-)抑制六价铬去除是因为它们可以与铁粉或铁腐蚀产物发生专性吸附;高浓度或低浓度有机离子存在时,Cr(Ⅵ)的去除率顺序结果如下:C_6H_5O_7~(3-)> C_2O_4~(2-)> CH_3COO~-,其中前两者表现为促进作用,而CH_3COO~-则显著抑制六价铬去除;由于柠檬酸根(C_6H_5O_7~(3-))的吸附和螯合作用,草酸根(C_2O_4~(2-))与金属的强配位能力和刻蚀作用,所以它们的存在使六价铬去除率上升;CH_3COO~-与铁和铁的腐蚀产物,在铁粉表面发生络合或吸附,从而阻碍的零价铁去除六价铬;对于铅来说,测试的阴离子均使其去除率上升,其中四种无机阴离子存在时Pb的去除率结果如下:PO_4~(3-)>Cl~->HCO_3>SO_4~(2-);三种有机离子存在时Pb的去除率结果为:C_2O_4~(2-) > C_6H_5O_7~(3-)> CH_3COO~-;阴离子存在时,铅的去除率增加不仅与阴离子改进了铁粉的活性有关,还与Pb~(2+)容易和阴离子生成较小溶度积常数的化合物有关。
     ⑹考察了不同浓度阳离子存在对铬、铅污染去除的影响,结果如下:不同浓度的阳离子存在时,Cr(Ⅵ)的去除率如下:Fe~(2+) > Fe~(3+) > Ca~(2+) > Mg~(2+),其中Fe~(2+)和Fe~(3+)起促进作用,Ca~(2+)和Mg~(2+)起抑制作用,且Mg~(2+)的抑制作用更大;Ca~(2+)、Mg~(2+)阻碍零价铁去除铅;因为Fe~(2+)能直接还原污染物,而Fe~(3+)可以与铁反应生成Fe~(2+),所以二者可以促进反应;由于Ca~(2+)、Mg~(2+)易与水中OH-生成沉淀附着在铁粉表面,降低了铁粉的活性,造成污染物去除率下降。
     ⑺无论是促进作用还是阻碍作用,都随着离子浓度的增大而增大;总体上,不同离子存在时零价铁修复铬、铅污染的过程,伴随着溶液pH升高,Eh降低,但不同离子作用下二者变化的程度过程不相同;不同离子存在时六价铬及铅的去除符合准一级动力学模型,速率常数的大小与离子种类及浓度有关。
     ⑻分别用堆肥、零价铁、堆肥+零价铁为反应介质,对PRB处理铬铅复合污染地下水的可行性和有效性进行了研究。实验结果表明:用以堆肥、零价铁、堆肥-零价铁为反应介质的PRB处理铬铅复合污染地下水是可行的,其中以堆肥+零价铁作为介质的反应柱去除效果优于单独以堆肥或铁粉为介质的反应柱,且去除效果更长久。
     ⑼当反应介质为堆肥+零价铁的混合物时,污染物的去除率随堆肥或铁粉用量的改变而改变;堆肥时间对去除效果影响不大;吸附作用是堆肥去除污染物的主要作用,微生物作用为次要作用;添加活性炭有助于污染物的去除。
     ⑽对单独使用零价铁的反应柱、使用堆肥+零价铁的混合物为介质的反应柱以及添加活性炭的反应柱出水中可溶性总铁的含量进行了检测,其中添加活性炭的反应柱出水可溶性总铁含量最低,以堆肥+零价铁混合物作为介质的反应柱出水可溶性总铁含量次之,单独使用零价铁的反应柱出水总铁含量最高,但三者出水可溶性总铁含量都小于0.3 mg/L,符合《生活饮用水卫生标准》要求。这说明使用Fe~0-PRB修复铬铅污染地下水是安全可靠的。
Nowadays, the remediation technology of groundwater pollution is a hot topic in the field of environment. Permeable reactive barrier (PRB) technology is a new in situ remediation technology. It has the characteristics of less cost, stable operation and long-term efficiency. Moreover big progress has been made recently in remediation mechanism, design and construction of the system and the reactive materials in practical projects. Currently, PRB technology is gradually replacing the Pump-Treat technology which has high running costs. In a word, PRB is the developing direction of groundwater treatment technologies. The Fe0 permeable reactive barrier which is widely used was proved that the approach is characteristic with in situ remediation, good long-term performance, many remediable contaminants and low costs. It has been using in many countries and has been dealing with many aspects of research and development in groundwater pollution. It is an effective technology for the remediation of groundwater contaminated by chlorinated hydrocarbons, chlorinated aromatic hydrocarbons, chlorinated pesticides and toxic metals such as chromium, selenium, uranium, arsenic and technetium.
     Batch and column experiments were conducted to investigate the effect and major effect factors for Fe~0-PRB removal Cr-Pb contaminated groundwater and confirm the feasibility and effectiveness of Fe~0-PRB used in the Cr-Pb polluted groundwater. The results were as follow.
     ⑴Hexavalent chromium was removed quickly and effectively by zero valent iron, removal mechanism was redox and coprecipitation, products are Fe(OH)_3, Cr(OH)_3 and (Cr_xFe_(1-x))(OH)_3; the removal ratio was effected by the pretreatment with acid and nickelaqe; the amount of iron, the initial concentration of hexavalent chromium and initial pH; the removal of hexavalent chromium was accompanied by a sharp increase in pH, and a sharp decrease in Eh; Fe~(2+) could be used as an indicator for complete reduction of hexavalent chromium in the acidic condition.
     q⑵Pb was removed effectively by zero valent iron, removal mechanism was redox and flocculating settling, products were Pb(0), Pb(OH)_2 and PbO·xH_2O; the removal ratio was effected by the amount of iron and initial pH; the removal of Pb was accompanied by a sharp increase in pH, and a sharp decrease in E_h.
     ⑶Cr-Pb polluted groundwater was removed quickly and effectively by zero valent iron, the removal ratio was effected by the amount of iron and initial pH. The removal ratio of Pb was decreased obviously, and hexavalent chromium removal ratio was almost uninfluenced when the two metals existed simultaneously.
     ⑷The removal kinetics model of Cr(Ⅵ) and Pb by iron were studied as single pollutant or co-exsiting system.The results showed that the removal of Cr(Ⅵ) and Pb could be fit to pseudo-first-order reaction kinetics model in single pollutant or co-exsiting system. More iron,biger rate constant; lower initial pH, biger rate constant.
     ⑸The zero-valent iron for Cr(Ⅵ) removal ratio as follows: Cl~-> SO_4~(2-)> HCO_3~-> PO_4~(3-), in the presence of four inorganic anions. Because the effect of anion on iron and the effect of green rust, the results demonstrated that Cl~- and SO_4~(2-) enhanced remediation , however HCO_3~- and PO43- inhibited remediation observably when the 1.0 mmol/L inorganic anion existed. All anions except PO_4(3-) enhanced reaction when the 3.0 mmol/L inorganic anion existed. Because of adsorption , Cr(Ⅵ) removal inhibited by HCO_3~- and PO_4(3-). The zero-valent iron for Cr (Ⅵ) removal ratio as follows: C_6H_5O_7~(3-)> C_2O_4~(2-)> CH_3COO~-, when three organic anions existed. The results demonstrated that C_6H_5O_7~(3-) and C_2O_4~(2-) enhanced remediation, however CH_3COO~- inhibited remediation observably. Because of chelation of C_2O_4~(2-) and complexation of C_6H_5O_7~(3-), they enhanced remediation. In the presence of four inorganic anions exist, the zero-valent iron for Pb(Ⅱ) removal ratio as follows: PO_4~(3-)>Cl~->HCO_3>SO_4~(2-). When three organic anions existed, the zero-valent iron for Pb(Ⅱ) removal ratio as follows: C_2O_4~(2-) > C_6H_5O_7~(3-)> CH_3COO~-, and all anions enhanced reaction. This was not only because of increasing activity of iron, but also because Pb(Ⅱ) could react wih anions and prduce low Ksp compound.
     ⑹The zero-valent iron for Cr (Ⅵ) removal ratio as follows: Fe~(2+) > Fe~(3+) > Ca~(2+) > Mg~(2+), when different cations existed. The results demonstrated that Fe~(2+) and Fe~(3+) enhanced remediation. This was because that Fe~(2+) could deoxidize Cr (Ⅵ). Ca~(2+) and Mg~(2+) could react wih OH~- by formation precipitation, so they inhibited remediation. Moreover inhibition of Mg~(2+) was greater than Ca~(2+). The results also demonstrated that Ca~(2+) and Mg~(2+) played inhibition role in Pb(Ⅱ) removal.
     ⑺The higher ions concentration was, the stronger enhance role or inhibition, when different ions existed. The removal process was accompanied by a sharp increase in pH, and a sharp decrease in E_h. The removal of Cr(Ⅵ) and Pb could be fit to pseudo-first-order reaction kinetics model when different ions existed. The rate constant was effected by ions kinds and concentration.
     ⑻With the compost, ZVI, and ZVI-compost as reaction media respectively, the feasibility and effectiveness of the Cr-Pb polluted groundwater remediation by PRB were studied. The results showed that the using of compost, ZVI, and ZVI-compost as reaction media to remediatiton Cr-Pb polluted groundwater was feasibility. The reactor packed with ZVI-compost had a better performance than the reactor packed with compost or ZVI alone.
     ⑼With the ZVI-compost as reaction media, increasing the amount of compost and ZVI could increase the removal effects; moreover the removal effects were little influenced by the time of composting; adsorption was the primary role of compost removal pollutants, microorganisms as a secondary role; and the removal effects could be increased by adding active carbon.
     ⑽With the ZVI, ZVI-compost and ZVI-compost-active carbon as reaction media respectively, the dissoluble iron concentration in effluent were detected. The results showed that the dissoluble iron concentration in effluent of the column(ZVI-compost-active carbon) was lowest, the dissoluble iron concentration in effluent of the column(ZVI-compost) was lower than the column(ZVI); however total iron in effluent of all column could meet the requirement of standards for drinking water quality. So it indicated that the using of Fe~0-PRB is the safe method for Cr-Pb removal from groundwater.
引文
曹树梁,沈德忠,李龙土. 2007.铬渣危害和治理方法.铬盐工业, 1: 26~44
    陈传友,王春元,窦以松. 1999.水资源与可持续发展.北京:中国科学技术出版社: 8
    陈梦熊,马凤山. 2002.中国地下水资源与环境.北京:地震出版社: 331~345
    陈郁,全燮. 2000.零价铁处理污水的机理及应用.环境科学研究, 13(5): 24~26
    刁维萍,倪吾钟,倪天华,杨肖娥. 2003.水体重金属污染的生态效应与防治对策.广东微量元素科学, 10(3): 1~5
    董军,赵勇胜,黄奇文,王蕾,肖艳波,赵喆. 2003.垃圾渗滤液对地下水污染的PRB原位处理技术.环境科学, 24(5): 151~156
    范建军,张华,谢震震. 2005.堆肥在土壤生物修复和污染控制中的应用.环境卫生工程, 13(3): 46~49
    方生,陈秀玲. 2001.地下水开发引起的环境问题与治理.地下水, 23(1): 8~10
    冯尚友. 2000.水资源持续利用与管理导论.北京:科学出版社: 1~55
    冯元章. 1989.东河(城县段)中重金属迁移转化规律的初步研究.环境化学, 8(2): 17~25
    冯远胜. 2009.浅析重金属对地下水的污染.中国科技博览, 20: 304
    高广生,陈静生. 1983.我国主要河流悬浮物样品对镉离子的吸附作用.环境化学, 2(4): 29~39
    耿晓梅. 2007.辽宁省地下水环境问题.辽宁城乡环境科技, 27 (3): 5~6
    郭秀红,孙继朝,李政红,汪珊. 2005.我国地下水质量分布特征浅析.水文地质工程地质, 3: 51-54
    韩怀芬,陈小娟,褚淑纬,裘春熙. 2005.交联阳离子淀粉螯合剂用于重金属离子的处理.水处理技术, 31(4) : 45~47
    郝华. 2003.我国城市地下水污染现状及其基本对策. 2003年中国环境资源法学研讨会(年会)论文集.青岛: 317~320
    何升霞,姬相艳. 2000.利用废铁屑处理含铬废水实验研究.油气田环境保护, 10(2): 36~37
    何小娟,李旭东,汤明皋,刘菲,周琪. 2006.零价铁、镍-铁和铜-铁双金属对四氯乙烯的脱氯性能研.化工环保, 26(6): 451~454
    胡丽娟,董晓丹,周琪. 2005.零价铁修复土壤及地下水的PRB技术.环境保护科学, 31(4): 48~50
    胡莺. 2006.地下水污染修复的零价铁技术.环境, S1: 29~31
    胡莺. 2007.地下水污染修复技术研究进展—零价铁PRB技术的应用与实践.云南地理环境研究, 19(1): 11~15
    黄园英,刘菲,鲁雅梅. 2003.零价铁去除Cr(Ⅵ)的批实验研究.岩石矿物学杂, 22(4): 349~351
    姜楠,王鹤立,廉新颖. 2008.地下水铅污染修复技术应用与研究进展.环境科学与技术, 31(2): 56~60
    金相灿. 1983.黄河中游悬浮物对铅,铜,锌的吸附.中国环境科学, 3(4): 10~17
    金赞芳,陈英旭,小倉纪雄. 2004.以棉花为碳源去除地下水硝酸盐的研究.农业环境科学学报, 23(3): 512~515
    金赞芳,李文腾,潘志彦. 2006.地下水硝酸盐去除方法.水处理技术, 32(8): 34~37
    康海彦. 2007.纳米铁系金属复合材料去除地下水中硝酸盐污染的研究. [博士学位论文].天津:南开大学
    雷志栋,杨诗秀,王忠静,尚松浩. 2003.内陆干旱平原区水资源利用与土地荒漠化.水利水电技术, 34 (1): 36~40
    李波,林玉锁. 2005公路两侧农田土壤铅污染及对农产品质量安全的影响.环境监测管理与技术, 17(1): 11~14
    李国建,钱新东. 1990.堆肥腐熟度指标的探讨.城市环境与城市生态, 3(2): 27~30
    李君,常莉. 2006.我国城市地下水污染状况与治理对策.开封大学学报, 30(4): 89~91
    李敏,林玉锁. 2006.城市环境铅污染及其对人体健康的影响.环境监测管理与技术, 18(5): 6~10
    李培月,吴健华. 2010.地下水环境问题及其防治对策.环境科学与管理, 35(4): 60~62
    李胜业,金朝晖,金晓秋,周玲,李铁龙,张环,朱艳芳.还原铁粉反应柱去除地下水中硝酸盐氮的研究.农业环境科学学报, 23(6): 1203~1206
    李胜业. 2005.铁炭修复地下水中硝酸盐污染的理论与应用研究. [硕士学位论文].天津:南开大学
    李艳霞,王敏健,王菊思,陈同斌. 2000.固体废弃物的堆肥化处理技术.环境污染治理技术与设备, 1(4): 39~45
    李政红,孙继朝,汪珊,郭秀红. 2005.黄淮海平原地下水质量综合评价.水文地质工程地质, 4: 51~55
    梁渠,王继森,胡鸿颖. 1997.新型功能泡沫塑料及其吸附重金属离子的特性研究.四川化工, 4: 14 ~16
    刘玲,徐文彬,甘树福. 2006. PRB技术在地下水污染修复中的研究进展.水资源保护, 22(6): 76~79
    刘娜,赵勇胜,张兰英,刘红,刘鹏. 2006.锌粉降解地下水中的农药阿特拉津.中国环境科学,26(1): 116~119
    刘庆文. 1995.重金属离子废水的处理方法.天津化工, 4: 16~18
    龙新宪,杨肖娥,倪吾钟. 2002.重金属污染土壤修复技术研究的现状与展望.应用生态学报, 27(6): 757~762
    吕书君. 2009.我国地下水污染分析.地下水, 31(1): 1~5
    骆其金,谌建宇,许振成,虢清伟. 2010.适用于污染河水修复的可渗透反应墙材料筛选.水处理技术, 36(3): 55~58
    马艳,常志州,黄红英,叶小梅,张建英. 2005.堆肥防治植物病害的研究.土壤肥料, 2: 3~6
    孟凡生,王业耀,汪春香,陈洪波. 2005.铬污染地下水的PRB修复试验.工业用水与废水, 36(2): 22~25
    孟凡生,王业耀. 2007.渗透反应格栅修复铬污染地下水的试验研究.地下水, 29(4): 96~99
    朴哲,崔宗均,温耀伟,苏宝林. 2001.高温堆肥体系中主要营养元素的动态变.中国农学通报, 17(1): 17~19
    钱华. 1998.环境铅污染来源及其对人体健康的影响.环境管理监测与技术, 6: 16~19
    乔志香,金春姬,贾永刚,李鸿江,李青松,向勇. 2004.重金属污染土壤电动力学修复技术.环境污染治理技术与设备, 20(6): 80~83
    时文歆,于水利,邱晓霞,冯伟明. 2005.动电修复铅污染土壤和地下水的初步研究.环境科学
    与技术, 1: 21~23, 115
    宋召胜,张迎新. 1998.铁屑活性炭综合处理电镀废水.电镀与环保, 18(6): 31~32
    孙景云,左犀. 1996.地下水饮用水源地的保护.环境科学, 17(5): 20~24
    孙铁珩,周启星,李培军. 2001.污染生态学.北京:科学出版社, 12~34
    唐次来,张增强,李荣华. 2009.不同阴离子对Fe0还原硝酸盐的影响.环境科学学报, 29(4): 732~739
    唐次来. 2007. Fe0还原黄土高原地下水中NO3-污染的模拟研究. [硕士学位论文].杨凌:西北农林科技大学
    汪珊,孙继朝,李政红. 2004.西北地区地下水质量评价.水文地质工程地质, 4: 96~100
    王敦球,解庆林,张学洪,黄明. 2005.微生物方法去除污水污泥中重金属的试验研究.重庆建筑大学学报, 27 (2) : 68~71
    王文成,吴德礼,马鲁铭. 2007.零价金属还原降解水中污染物的应用研究综述.四川环境, 26(3): 99~103
    王新新,张颖,李慧,王元芬,徐慧,姜世英. 2009.零价铁对铬污染底泥的修复及其对微生物群落结构的影响.环境科学学报, 29(2): 297~304
    王业耀,孟凡生. 2004.地下水污染修复的渗透反应格栅技术. 26(2): 97~100
    王珍,张增强,唐次来,林建. 2008.生物-化学联合法去除地下水中硝酸盐.环境科学学报, 28(9): 1839~1847
    魏艳民. 2009.浅析地下水资源污染修复技术及应用.水资源保护, 22(5): 1~4
    吴银宝,汪植三,廖新俤,刘胜安,梁敏,吴启堂,黄焕忠,周立祥. 2001.猪粪堆肥臭气产生与调控研究.农业工程学报, 17(5): 82~86
    伍钧,孟晓霞,李昆. 2005.铅污染土壤的植物修复研究进展.土壤, 37(3): 258~264
    席北斗. 2006.有机固体废弃物管理与资源化技术.北京:国防工业出版社: 141~142
    夏海勇,王凯荣. 2009.有机质含量对石灰性黄潮土和砂姜黑土磷吸附-解吸特性的影响.植物营养与肥料学报, 15(6): 1303~1310
    徐小清,邓冠强. 1999.长江三峡库区江段沉积物的重金属污染特征.水生生物学报, 23(1): 1~9
    翟斌. 2005. PRB在地下水污染修复中的应用.中国环保产业, 2: 33~35
    张桂华,潘伟斌,秦玉洁,黄荣. 2005.受污染地下水可渗透反应墙修复技术研究.农业环境科学学报, S1: 153~157
    张丽君,刘树臣. 2001. 21世纪世界水资源研究趋势.国土资源情报, 12:1~5
    张瑞华,孙红文. 2004.零价铁修复铬污染水体的实验室研究.农业环境科学学报, 2(6): 1192~1195
    张文静,董维红,苏小四,柳富田.地下水污染修复技术综合评价.水资源保护, 2006, 22(5): 1~4
    张正斌,刘莲生. 1989.海洋物理化学.北京:科学出版社: 621~632
    张正洁,李东红,许增贵. 2005.我国铅污染现状、原因及对策.环境保护科学, 15(4): 41~42, 47
    赵胜玉. 2004.我国一半城市地下水污染较重.城市管理, 2: 44
    赵勇胜. 2007.地下水污染场地污染的控制与修复.吉林大学学报(地球科学版),37(2): 303~310
    中国环境保护总局. 2002水和废水检测分析方法. 4版.北京:中国环境科学出版社: 346~349, 365~369, 379)
    周学志. 1992.地下水开发利用的环境问题及防治措施研究.环境科学丛刊, 13(3): 1
    朱凤香,王卫平,陈晓旸,吴传珍,杨友坤,薛智勇. 2008.堆肥在环境修复与农业生产中应用的研究进展.浙江农业学报, 20(6): 491~495
    朱学愚,钱孝星. 2005.地下水水文学.北京:中国环境科学出版社: 4~23
    Ahmed M I, Holsen T M, Selman J R. 2001. Electrochemical chromic acid regeneration process with assistance part 1: removal of contaminants. Journal of Applied Electrochemistry, 31: 1381~1387
    Alowitz M J, Scherer M M. 2002. Kineticsofnitrate, nitrite and Cr(VI) reduction by iron metal. Environ Sci Technol, 36(3): 299~306
    Astrup T, Stipp S L, Christensen T H. 2000. Immobilization of chromate from coal fly ash leachate using an attenuating barrier containing zero-valent iron. Environmental Science and Technology, 34: 4163~4168
    Baker M J, Blowes D W, Ptacek C J. 1998. Laboratory development of permeable reactive mixtures for the removal of phosphorous from onsite wastewater disposal system. Environ Sci Tech, 32: 2308~2316
    Battelle Memorial Institute Columbus. 2002. Multi-Site air sparging. Columbus: Environmental Benner S G, Herbertr B J, Blowes D W, Herbert R B, Ptacek C J. 1999. Geochemistry and microbiology of a permeable reactive barrier for acidmine drainage. Environ Sci Tech, 33: 2793~2799
    Bennett T A. 1997. An in situ reactive barrier for the treatment of hexavalent chromium and trichloroethylene in groundwater. [M.S. thesis]. Canada: University of Waterloo
    Bettina S. 2002. Supported metal nanoparticles for the remediation of chlorinated hydrocarbons. [The Thesis of Doctor Degree]. Pennsylvania: Pennsylvania State University Blowes D W, Ptacek C J, Benner S G, et al. 2000. Treatment of inorganic contaminats using permeable reactive barriers. Journal of Contaminant Hydrology, 45: 123~137
    Blowes D W, Gillham R W, Ptacek C J, Puls R W, Bennett T A, O’Hannesin S F, Hanton-Fong C J, Bain J G. 1999. An in situ permeable reactive barrier for the the treatment for hexavalent chromium and trichloroethylene in ground water:volumn 1 design and installation. Washington:United States Environmental Protection Agency.
    Blowes D W, Ptacek C J, Benner S G, McRae C W T, Bennett T A, Puls R W. 2000. Treatment of inorganic contaminants using permeable reactive barriers. Journal of Contaminant Hydrology, 45: 123~137
    Blowes D W, Ptacek C J, Jambor J L. 1997. In-situ remediation of Cr(VI)-contaminated groundwater using permeable reactive walls: Laboratory studies. Environmental Science and Technology, 31(9): 3341~3357
    Bostick W D, Shoemaker J L, Osborne P E. 1994. Removal of agricultural nitrate from till-drainage water using inline bioreactors. Journal of Contaminant Hydrology, 3(15): 207~211
    Bowersa R, Ortiz C A, Cardozo R J. 1986. Iron process for treatment of Cr(VI) wastewater. Metal Finishing, 84: 37
    Buerge I J, Hug S J. 1997. Kinetics and pH dependence of chromium(VI) reduction by iron(II). Environmental Science and Technology, 31: 1426~1432
    Cantrell K J, Kaplan D I, Wietsma T W. 1995. Zero-valent iron for the in situ remediation of selected metals in groundwater. Journal of Hazardous Materials, 42: 201~212
    Cantrell K J, Kaplan D I, Gilmore T J. 1997. Injection of colloedal Fe0 particles in sand with shear thinning fluids. J Environ Eng, 123(8): 786~789
    Cantrell K J, Kaplan D I. 1997. Retention of zero, valent iron colloids by sand columns: application to chemical barrier formation. J Environ Eng, 123(5): 499~505
    Chang L Y. 2003. Alternative chromium reduction and heavy metal precipitation methods for industrial wastewater. Environmental Progress, 22(3): 174~182
    Chang L Y. 2005. Chromate reduction in wastewater at different pH levels using thin iron wires—a laboratory study. Environ Progr, 24: 305~316
    Chen S S, Cheng C Y, Li C W. 2007. Reduction of chromate from electroplating wastewater from pH 1 to 2 using fluidized zero valent iron process. Journal of Hazardous Materials, 142: 362~367
    Cheng S F, Huang C Y, Liu J Y. 2006. Study of different methods for enhancing the nitrate removal efficiency of a zero-valent metal process. Water Sci Technol, 53(1): 81~87
    Cheng S. 2003. Heavy metal pollution in China:orion, pattern and control. Environ Sci Pollut Res, 10: 192~198
    Chilakapati A, Williams M, Yabusaki S. 2000. Optimal design of an in situ Fe(II) barrier: Transport limited reoxidation. Environmental Science and Technology, 34: 5215~5221
    Choe S, Liljestrand H M, Khim J. 2004. Nitrate reduction by zero-valent iron under different pH regimes. Applied Geochemistry, 19: 335~342
    Choi S, Wai O, Choi T. 2006. Distribution of cadmium, chromium, copper, lead and zinc in marine sediments in Hong Kong waters. Environmental Geology, 51(3): 455~461
    Committee on Measuring Lead in Critical Populations. 1993. Measuring Lead exposure ininants, children and other sensitive population. Washington DC: National Academy Press: 1~72
    Conca J L, Wright J. 2006. An apatiteⅡpermeable reactive barrier to remediate groundwater containing Zn, Pb and Cd. Applied Geochemistry, 21(8): 1288~1300
    Dandrea P, Lai K C, Kjeldsen P, Lo I. 2005. Effect of groundwater inorganics on the reductive dechlorination of TCE by zero-valent iron. Water, Air, and Soil Pollution, 162(3): 401~420
    Deng B, Stone A T. 1996. Surface-catalyzed chromium(VI) reduction: Reactivity comparisons of different organic reductants and different oxide surfaces. Environmental Science and Technology, 30: 2484~2494
    Devlin J F, Allin K O. 2005. Major anion effects on the kinetics and reactivity of granular iron in glass-encased magnet batch reactor experiments. Environ Sci Technol, 39(6): 1868~1874
    Devlin J F, Eedy R, Butler B J. 2000. The effects of electron donor and granular iron on nitrate transformation rates in sediments from a municipal water supply aquifer. J. Contam Hydrol, 46: 81~97
    Dries J, Bastiaens L, Springael D, Agathos S N, Diels L. 2005. Combined removal of chlorinated ethenes and heavy metals by zerovalent iron in batch and continuous flow column systems. Environ Sci Technol, 39(21): 8460~8465
    Eary L E, Rai D. 1988. Chromate removal from aqueous wastes by reduction with ferrous ion. Environmental Science and Technology, 22: 972~977
    Farfel M R, Chisolm J J. 1990. Health and environmental outcomes of traditional and modified practices for abatement of residential Lead-based paint. Am J Public Health, 80: 1240~1245
    Farrell J, Kason M, Melitas N, Li T. 2000. Investigation of the longterm performance of zerovalent iron for reductive dechlorination of trichloroethene. Environ Sci Technol, 34: 514~521
    Fiedor J N, BostickW D, Jarabek R J, Farrell J. 1998. Understanding the mechanism of uranium removal from groundwater by zero-valent iron using X-ray photoelectron spectroscopy. Environ Sci Technol, 32(10): 1466~1473
    Gadd G M. 1990. Heavy metal accumulation by bacteria and other microorganisms.Cellular and molecular life sciences, 46(8): 834~840
    Gandhi S, Oh B T, Schnoor J L, Schnoor J L, Alvarez P J J. 2002. Degradation of TCE, Cr(Ⅵ), sulfate and nitrate mixture by granular iron in flow-through columns under different microbial conditions [J]. Water Research, 36(8): 1973~1982
    Gillham R W, Blowes D W, Ptacek C J. 1994. Use of zero-valent metals in-situ remediation of contaminated ground water. Scientific Basis for Current and Future Technology, 32(6): 913~930
    Gillham R W, O’Hannesin S F. 1994. Enhanced degradation of halogenated aliphatics by zero-valent iron.Ground water, 32(6): 958~967
    Gillham R W, O′Hannesin S F. 1992. Metal-catalysed abiotic degradation of halogenated organic compounds. IHA Conference“Modern Trends in Hydrogeology”. Hamilton ,Ontario: Hydrogeolgy Agency: 94~103
    Grambow B, Smailos E, Geckeis H, Müller R, Hentschel H. 1996. Sorption and reduction of uranium(VI) on iron corrosion products under reducing saline conditions. Radiochimica Acta: 74: 149~154
    Greenan C M, Moorman T B, Kaspar T C. 2006. Comparing carbon substrates for denireification of subsurface drainage water. Journal of Environmental Quality, 35(3): 824~829
    Grittini C, Malcomson M, Fernando Q. 1995. Rapid dechlorination of poly chlorinated-biphenyls on the surface of a Pd/Fe bimetallic system. Environmental Science&Technology, 29(11): 2898~2900
    Gu B, Liang L, Dickey M J, Yin X, Dai S. 1998. Reductive precipitation of uranium (VI) by zero-valent iron. Environ Sci Technol, 32(21): 3366~3373
    Guerin T F, Horuer S, Mcgovem T, Davey B. 2002. An application of permeable reactive barrier technology to petroleum hydrocarbon contaminated groundwater. Water Research, 36: 15~24
    Hansen H C B , Christian B K, Hanne N K, Borggaard O K, Sorensen J. 1996. Abiotic nitrate reduction to ammonium: key role of green rust. Environ Sci Technol, 30(12): 2053~2056
    Hansen H C B, Susanne G, Marianne E, Koch C B. 2001. Kinetics of nitrate reduction by green rust —effects of interlayer anion and Fe(Ⅱ): Fe(Ⅲ) ratio. Applied Clay Science, 18: 81~91 Hao Z W, Xu X H, Wang D H. 2005. Reductive denitrification of nitrate by scrap iron filings. Journal of Zhejiang University:Science, 6B(3): 182~186
    Haug R T. 1993. The practical handbook of compost engineering. Boca Raton: Lewis Publishers: 586~600
    Huang Y H, Zhang T C, Patrick J S. 2003. Effects of oxide coating and selected cations on nitrate reduction by iron metal. Journal Environmental Quality, 32(7): 1306~1315
    Huang Y H, Zhang T C. 2004. Effects of low pH on nitrate reduction by iron powder. Water Research, 38(11): 2631~2643
    Huang Y H, Zhang T C. 2005. Enhancement of nitrate reduction in Fe0-packed columns by selected cations. Journal Environmental Engineering, 131(4): 603~611
    Jeen S W, Blowes D W, Gillham R W. 2008. Performance evaluation of granular iron for removing hexavalent chromium under different geochemical conditions. Journal of Contaminant Hydrology, 95(1-2): 76~91
    Jr. M A, Jones K D, Ren Jianhong, Andreassen T E. 2009. Compost product optimization for surface water nitrate treatment in biofiltration applications. Bioresource Technology, 100: 3991~3996
    Keller P. 1961. Methods to evaluate maturity of compost. Compost Sci Util, 2(7): 20~26
    Kim C, Zhou Q, Deng B. 2001. Chromium(VI) reduction by hydrogen sulfide in aqueous media: Stoichiometry and kinetics. Environmental Science and Technology, 35: 2219~2225
    Klausen J, Ranke J, Schwarzenbach R P. 2001. Influence of solution composition and column aging on the reduction of nitroaromatic compounds by zerovalent iron. Chemosphere, 44: 511~517 Klausen J, Vikesland P J, Kohn T, Burris D R, Ball W P, Roberts A L. 2003. Longevity of granular iron in groundwater treatment processes: solution composition effects on reduction of organohalides and nitroaromatic compounds. Environ Sci Technol, 37: 1208~1218
    Kumpiene J, Lagerkvist A, Maurice C. 2008. Stabilization of As, Cr,Cu, Pb and Zn in soil using amendments—A review. Waste Manage, 28 (1): 215~225
    Lai K C K, Lo I M C, Birkelund V, Kjeldsen P. 2005. Field monitoring of permeable reactive barrier for removal of chlorinated organics. J. Environ. Eng. 132(2): 199~210
    Li Xiao-qin, Cao Jia-sheng, Zhang Wei-xian. 2008. Stoichiometry of Cr(VI) immobilization using nanoscale zerovalent iron(NZVI):a study with high-resolution X-Ray photoelectron spectroscopy(HR-XPS). Ind. Eng. Chem. Res., 47: 2131~2139
    Li Xiao-qin, Zhang Wei-xian. 2007 Sequestration of metal cations with zerovalent iron nanoparticless: a study with high resolution X-ray photoelectron spectroscopy(HR-XPS). J. PhyS. Chem. C, 111: 6939~6946
    Liang L, Gu B, Yin X. 1996. Removal of technetium-99 from contaminated groundwater with sorbents and reductive materials. Separations Technology , 6(2): 111~122
    Lien H L, Zhang W X. 2001. Nanoscale iron particles for complete reduction of chlorinated ethenes. Colliods and Surface A: Phy’siochemical and Engineering Aspects, 191: 97~105
    LIN Qi, CHEN Ying-xu, Plagentz V, Schafer D, Dahmke A . 2004. ORC-GAC-Fe0 System for the Remediation of Trichloroethylene and Monochlorobenzen Contaminated Aquifer: Adsortpation and Degradation. Journal of Environmental Sciences, 16(1): 108~112
    Lo I M C, Lam C S C, Lai K C K. 2005. Competitive effects of trichloroethylene on Cr (VI) removal by zero-valent iron. Journal Environmental Engineering, 131(11): 1598~1606
    Lo I M C, Lam C S C, Lai K C K. 2006. Hardness and carbonate effects on the reactivity of zero-valent iron for Cr(Ⅵ) removal. Water Research, 40(3): 595~605
    Ludwig R D, McGregor R G, Blowes D W, Benner S G, Mountjoy K. 2002. A permeable reactive barriers for treatment of heavy metals. Ground Water, 40(1): 59~66
    Ludwig R D, Smyth D J A, Blowes D W, et al . 2009. Treatment of arsenic, heavy metals, and acidity using a mixed ZVI-Compost PRB. Environmental Science & Technology, 43 (6): 1970~1976
    Ma H Y, Yang C, Li G Y, Guo W J, Chen S H, Luo J L. 2003. Influence of nitrate and chloride ions on the corrosion of iron. Corrosion, 59(12): 1112~1119
    Manning B A, Hunt M L, Amrhein C, Yarmoff J A. 2002. Arsenic (Ⅲ) and arsenic (V) reactionwith zero-valent iron corrosion products. Environ Sci Technol, 36(24): 5455~5461
    Martello L, Fuchsman P, Sorensen M, Magar V, Wenning R J. 2007. Chromium geochemistry and bioaccumulation in sediments from the lower Hackensack River, New Jersey. Archives of Environmental Contamination and Toxicology, 53(3): 337~350
    Matheson L J, Tratnyek P G. 1994. Reductive dehalogenation of chlorlnated methanes by iron metal.Environ. Sci. Technol, 28(12): 2045~2053
    Mcrae C W, Blowes D W, Ptacek C. 1997. Laboratory-scale investigation of remeadiation of As and Se using iron oxides. Sixth Symposium and Exhibtion on Groundwater and Soil Remediation Montreal. Canada: Groundwater and Soil Remediation Agency.
    Melitas N, Chuffe M Q, Farrell J. 2001. Kinetics of soluble chromium removal from contaminated water by zero-valent iron media: Corrosion inhibition and passive oxide effects. Environmental Science and Technology, 35: 3948~3953
    Melitas N, Wang J P, Conklin M, O’D P, Farrell J. 2002. Understanding soluble arsenate removal kinetics by zero-valent iron media. Environ Sci Technol, 36(9): 2074~2081
    Moore A M, Deleon C H, Young T M. 2003. Rate and extent of aqueous perchlorate removal by iron surfaces. Environ Sci Technol, 37(14): 3189~3198
    Moore A M, Young T M. 2005. Chloride interactions with iron surfaces: Implications for perchlorate and nitrate remediation using permeable reactive barriers. Journal Environmental Engineering, 131(6): 924~933
    Morel T L, Conlin F, Germon J. 1985. Methods for the evaluation of the maturity of municipal refuse compost. In: Gasser JKR ed. Composting of Agricultural and Other Wastes. London & New York: Elsevier Applied Science Publishers: 56~72
    Muftikiar R, Ernando Q, Korte N. 1995. A method for the rapid dechlorination of low-molecular-weight chlorinated hydrocarbons in water. Water Research, 29(10): 2434~2439
    O’hannesin S F, Gillham R W. 1998. Long-term performance of an in situ“iron wall”for remediation of VOCs.Ground Water, 36(1): 164~170
    Oliver S, Markus E, Margit F. 2000. Degradation of TCE with iron: The role of competing chromate and nitrate reduction. Ground Water, 38(2): 403~408
    Orlova A O, Bannon D I, Farfel M R, Thomas V M, Aleschukin L V, Kudashov V V, Shines J P, Kruchkov G I. 1995. Pilot study of sources of Lead exposure in Moscow, Russia. Environmental Geochemistry and Health, 17: 200~210
    Orth W S, Gillham R W. 1996. Dechlorination of trichloroethene in aqueous solution using Fe0. Environmental. Science&Technology, 30(1): 6671
    Ponder S M, Darab J G, Mallouk T E. 2000. Remediation of Cr (VI) and Pb( II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol, 34 (12): 2564~2569
    Pope D F, Acree S D, Levine H, Mangion S, Ee J V, Hurt K, Wilson B. 2004. Performance monitoring of MNA remedies for VOCs in ground water. Washington DC: National Service Center for Environmental Publications: 22~30
    Powell R M, Puls R W, Hightower S K, Sabatini D A. 1995. Coupled iron corrosion and chromate reduction : Mechanisms for subsurface remediation. Environ Sci Tech, 29 (8) :1913~1922
    Powell R M, Puls R W. 1997. Permeable reactive barriers for interception and remediation of chlorinated hydrocarbon and chromiun(VI) plumes in groundwater. USA: Environment Protection Agency.
    Power J F, Schepers J S. 1989. Nitrate contamination of groundwater in North America1. Agriculture, Ecosystems & Environment, 26(3): 165~187
    Pratt A R, Blowes D W, Ptacek C J. 1997. Products of chromate reduction on proposed subsurface remediation material. Environmental Science and Technology, 31(9): 2492~2498
    Puls R W, Paul C J, Powell R M. 1999. The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: A field tes. Applied Geochemistry,14(8): 989~1000
    Richard T W, Robertw P, Guy W S. 2003. Long-term performance of permeable reactive barriers using zero-valent iron: geochemical and microbiological effects.Ground Water, 41(4): 493~503
    Robertson W D, Blowes D W, Ptacek C J, Cherry J A. 2000. Long-term performance of in situ reactive barriers for nitrate remediation. Ground Water, 38(5): 689~695
    Rocca C D, Belgiorno V, Meric S. 2006. An heterotrophic/autotrophic denitrification (HAD) approach for nitrate removal from drinking water. Process Biochemistry, 41: 1022~1028
    Rodenas L A, Iglesias A M, Weisz A D. 1997. Surface complexation description of dissoulution of chromium(Ⅲ) hydrous oxides by oxalic acid. Inorg Chem, 36: 6423~6430
    Ruangchainikom C, Liao C H, Anotai J, Lee M T. 2006. Effects of water characteristics on nitrate reduction by the Fe0/CO2 process. Chemosphere, 63(2): 335~343
    Ruiz N, Seal S, Reinhart D. 2000. Surface chemical reactivity in selected zero-valent iron samples used in groundwater remediation. Journal of Hazardous Materials, 80(2): 107~117
    Scherer M M, Balko B A, Gallagher D A. 1998. Correlation Analysis of Rate Constants for Dechlorination by Zero-Valent Iron. Environ. Sci. Technol, 32(19): 3026~3033
    Schipper L, Barkle G F, Vojvodic-Vukovie M. 2005. Maximum rates of nitrate removal in a denitrification wall. Journal of Environmental Quality, 34(4): 1270~1276
    Schipper L, Vojvodic-Vukovic M. 1998. Nitrate removal from groundwater using a denitrification wall amended with sawdust: field trail. J Environ Qual, 27: 664~668
    Schlicker O, Ebert M, Fruth M, Weidner M, Wust W, Dahmke A. 2000. Degradation of TCE with iron: the role of competing chromate and nitrate reduction. Ground Water, 38: 403~409
    Schrick B. 2002. Supported metal nanoparticles for the remediation of chlorinated hydrocarbons. [The Thesis of Doctor Degree ]. Pennsylvania: The Pennsylvania State University
    Seal S, Ruiz N, Reinhart D. 2000. Surface chemical reactivity in selected zero-valent iron samples used in groundwater remediation. Journal of Hazardous Materials, 80(1-3): 107~117
    Seaman J C, Bertsch P M, Schwallie L. 1999. In situ Cr(VI) reduction within coarse-textured, oxide-coated soil and aquifer systems using Fe(II) solutions. Environmental Science and Technology, 33: 938~944
    Sekha K C, Chary N S. 2003. Fractionation studies and bioaccu-mulation of sediment– bound heavymetals in Kolleru lake by edible fish. Environmental International, 29: 1 001~1 008
    Seki H, Suzuki A, Mitsueda S. 1998. Biosorption of heavy metal ions on rhodobacter sphaeroides and alealigenes eutrphus H16. Journal of Colloid and Interface Science, 197 (2): 185~190
    Senzaki T, Kumagai Y. 1988. Removal of chlorinated organic compounds from wastewater by reduction process. Kogyo Yosui , 357: 2~7
    Singh B, Sekhon G S. 1979. Nitrate pollution of groundwater from farm use of nitrogen fertilizers -A review. Agriculture and Environment, 4(3): 207~225
    Son A, Lee J, Chiu P C, Kim B J, Cha D K. 2006. Microbial reduction of perchlorate with zero-valent iron. Water Research, 40: 2027~2032
    Star R C J. 1994. A cherry in situ remediation of contaminated groundwater:the funnel and gatesystem. Journal of Ground Water, 32(3): 465~476
    Su C M, Puls R W. 2001. Arsenate and arsenite removal by zero-valent iron: kinetics, redox transformation and implications for in-situ groundwater remediation. Environ Sci Technol, 35 (7): 1487~1492
    Su C M, Puls R W. 2001. Arsenate and arsenite removal by zerovalent iron: effects of phosphate, sulfate, chromate, molybdate and nitrate relative to chloride. Environ Sci Technol, 35(22): 4562~4568 Su C M, Puls R W. 2003. In situ remediation of arsenic in simulated groundwater using zerovalent iron: laboratory column tests on combined effects of phosphate and silicate. Environ Sci Technol, 37(11): 2582~2587
    Su C M, Puls R W. 2004. Nitrate reduction by zerovalent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate and phosphate. Environ Sci Technol, 38(9): 2715~2720
    Su C M, Puls R W. 2004. Significance of iron(II,III) hydroxycarbonate green rust in arsenic remediation using zerovalent him in laboratory column tests. Environ Sci Technol, 38(19): 5224~5231
    Sweeny K H, Fischer J R. 1972-02-08. Reductive degradation of halogenated pesticides. US Patent. 3640281
    Szulczewski M D, Helmke P A, Bleam W F. 2001. Xanes spectroscopy studies of Cr(VI) reduction by thiols in organosulfur compounds and humic substances. Environmental Science and Technology, 35: 1134~1141
    The Interstate Technology and Regulatory Council ( ITRC) of United States. 2005. Permeable reactive barriers: lessons learned new directions. Washington DC: Interstate Technology & Regulatory Council: 8~25
    The Interstate Technology and Regulatory Council ( ITRC) of United States. 2005. Overview of groundwater remediation technologies for MTBE and TBA. Washington DC: Interstate Technology & Regulatory Council: 26~50
    Turgut C, Pepe M, Teresea J C. 2004. The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni form soil using Helianthus. Environ pollut, 131: 147~154
    Turlough F G, Stuart H, Terry M G, Brent D. 2002. An application of permeable reactive barrier technology to petroleum hydrocarbon contaminated groundwater. Water Res, 36 (1): 15~24
    Tyrovola K, Nikolaidis N P, Veranis N, Kallithrakas-Kontosc N, Koulouridakis P E. 2006. Arsenic removal from geothermal water with zero-valent—effect of temperature, phosphate and nitrate. Water Research, 40(12): 2375~2386
    US Environmental Protection Agency. 1997. Analysis of selected enhancements for soil vapor extraction. Washington DC: National Service Center for Environmental Publications: 36~74
    US Environmental Protection Agency. 2002. Groundwater remedies selected at superfund sites. Washington DC: National Service Center for Environmental Publications: 8~45
    US Environmental Protection Agency. 2004. Cleaning up the nation’s waste sites : markets and technology trends. Washington DC: National Service Center for Environmental Publications: 50~63
    US Environmental Protection Agency. 2004. Treatment technologies for site cleanup: annual status report. Washington DC: National Service Center for Environmental Publications: 45~53
    US EPA. 2002. Long term performance of permeable reactive barriers using zero-valent iron: an evaluation at two sites. EPA/ 600/ S-02/ 001.
    Venkatapathy R, Bessingpas D G, Canonica S, Perlinger J A. 2002. Kinetics models for trichloroethylene transformation by zero-valent iron. Applied Catalysis B: Environmental, 37: 139~159
    Vogan J L, Focht R M, Clark D K. 1999. Performance evaluation of a permeable reactive barrier for remediation of dissolved chlorinated solvents in groundwater. Journal of Hazardous Materials, 68: 97~108 Weber J. 1999. Wastewater treament. Metal Finishing, 97 (1): 801~802
    Wersin P, Hochella Jr M F, Person Per, Redden G, Leckie J O, Harris W D. 1994. Interaction between aqueous uranium (VI) and sulfide minerals: spectroscopic evidence for sorption and reduction. Geochimica et Cosmochimica Acta, 58(13): 2829~2843
    Westerhoff P, James J. 2003. Nitrate removal in zero-valent iron packed columns.Water Research, 37(8): 1818~1830
    Westerhoff P, James J. 2003. Nitrate removal in zero-valent iron packed columns. Water Research, 37(8): 1818~1830
    Westerhoff P. 2003. Reduction of Nitrate, Bromate, and Chlorateby Zero Valent Iron(Fe0). Journal of Environ Eng, 129(1): 10~16
    Wielinga B, Mizuba M M, Hansel, C M. 2001. Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria. Environmental Science and Technology, 35: 522~527
    Wittbrodt P R, Palmer C D. 1995. Reduction of Cr(Ⅵ) in the pres-ence of excess soil fulvic acid. Environmental Science and Technology, 29: 255~263
    Xu Y, Zhao D. 2007. Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Research, 41(10): 2101~2108
    Yu X Y, Amrhein C, Deshusses M A, Kim B J, Cha D K. 2006. Perchlorate reduction by autotrophic bacteria in the presence of zero-valent iron. Environmental Science & Technology, 40(4): 1328~1334
    Zhang T C, Asce M, Huang Y H. 2006. Effects of surface-bound Fe2+ on nitrate reduction and transformation of iron oxide in zero-valent iron systems at near-neutral pH. Journal of Environmental Engineering, 132(5): 527~536

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700