用户名: 密码: 验证码:
鄂尔多斯盆地大克泊湖淖地区地下水循环和水化学形成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鄂尔多斯盆地内蕴藏着丰富的矿产资源,是我国重要的能源化工基地,然而由于气候干旱、降水稀少、蒸发强烈、地表淡水资源短缺,地下水成为当地工农业和居民生活饮用水的主要来源。因此查明地下水的水循环和水化学形成机理成为指导该区地下水资源合理开发利用亟待解决的问题。大克泊湖淖是鄂尔多斯盆地众多湖淖之一,是控制局部地下水循环的最低排泄基准面,也是鄂尔多斯遗鸥国家级自然保护区。地下水成为了维护湖淖和湿地生态的重要的、持续稳定的水源,由于受到工作程度的限制以及研究目的的不同,对湖淖地区尚未开展过地下水循环和水化学演化规律研究。
     本论文依据国家自然科学基金项目(41073054)“沙漠地区湖水—地下水交互作用中的硫的生物地球化学行为研究”进行选题。通过对大克泊湖淖地区的大气降水、地表水、地下水的水化学和同位素分布特征,揭示研究区的地下水循环特征,建立该区域的水循环模式;利用水化学组分分布特征、离子比值法、矿物饱和指数法、13C同位素示踪和反向水文地球化学模拟技术对地下水形成作用机理进行分析。主要得到以下结论:
     (一)与全球雨水线相比,研究区雨水线的斜率和截距偏小,这与研究区位于远离蒸汽源的内陆,受到强烈蒸发作用的干旱半干旱地区有关;大气降水的δ18O、δD分布存在季节性变化,夏季表现出高δ18O和δD值,而冬季表现出低δ18O和δD值。丰水期δ18O、δD值分布较集中,而枯水期δ18O、δD值的分布范围大:
     (二)湖水、地下水、大气降水的δ18O和δD分布特征表明,研究区湖水的来源有大气降水补给、地下水侧向排泄和通过湖眼顶托排泄等方式补给,湖水的排泄方式主要为蒸发作用。
     (三)根据地下水水化学、同位素的分布规律,总结出大克泊湖淖地区地下水循环模式:大克泊湖淖控制浅、中层地下水的循环。浅、中层地下水在大克泊湖淖四周接受丰水期大气降水的补给,在势能差的作用下向大克泊湖淖径流,在径流过程中受到蒸发、蒸腾等作用的影响,尤其在大克泊湖淖周边受到更加强烈的蒸发作用,地下水最终通过侧向排泄和湖眼等方式排泄给湖水。浅层地下水交替强烈,年龄较小,为现代水补给;而湖水年龄为54年左右,年龄较大,反映了中层地下水的影响。
     (四)浅层地下水TDS.Na-、Cl-、SO(?)2-浓度由四周低值向中央高值变化,而Ca2-、Mg2+则与其相反,由四周高值向中央低值变化,而HCO3-和NO3-浓度在整个研究区均较高。沿着地下水流向地下水阳离子由Ca2-、Mg2-向K-、Na+转化,而阴离子以HCO3-为主,水化学类型由四周主要为Ca·Mg-HCO3、Ca·Mg·Na-HCO3型水向大克泊湖周边地下水化学类型Na·HCO:-Cl-SO4、Na-HCO3演化,呈现出很好的水平分带规律。
     (五)通过离子组合及其比值、矿物饱和指数等方法,确定地下水化学形成的主要作用为溶滤作用、浓缩作用、阳离子交替吸附作用、混合作用、人类活动的影响。
     (六)依据研究区地下水水化学及13C同位素等资料,地下水中δ13C、pH值沿着地下水流动方向分别表现出较小、增加的趋势,反映该地区大气降水在补给区迅速入渗到地下水中,在径流过程中不断溶解土壤中以玉米为代表的C1型植被根系呼吸的CO2,使地下水中δ13C表现为在补给区地下水δ13C值与大气CO2的δ13C值接近,而在径流和排泄区地下水δ13C值与C4型植被的玉米根系中CO2的δ13C值接近。
     (七)利用NETPATH软件对大克泊湖淖地区进行了反向地球化学反应路径模拟,总结出研究区各水流路径上的反应模式为:发生了钾长石、NaCl、CO2气体的溶解,方解石沉淀、阳离子交换作用以及浓缩作用,可能发生斜长石、伊利石、石膏的溶解。
Although Ordos basin is one of the most significant energy and chemical industry base which is particularly well-known as it's mineral resources, arid and semi-arid climate conditions and lack of surface water that cause groundwater becoming the only source of local industry, agriculture and resident drinking water.To it is very urgently needed to study the water cycle and water chemistry of groundwater formation mechanism for guiding rational exploitation of groundwater resources.The Habor Lake is one of multitude lakes in Ordos Basin which control the local groundwater circulation, and it is Ordos Relict Gull National Nature Reserve. Groundwater is important and stedy source to maintain ecosystem of lake and wetland. but due to the different purpose of study in this area, groundwater circulation and hydrogeochemical evolution are never researched in small area like the Habor Lake area.
     The topic of this thesis for Master Degree is selected on the basis of National Natural Science Foundation of China-The behavior of sulfur biogeochemical in hyporheic Zone of desert lake-groundwater. This paper will reveal the circulation characteristics of groundwater in habor area by analysing the chemical and isotopic distribution of precipitation, surface water and groundwater. The formation of groundwater mechanism is analyzed by methods of hydrogeochemistry. isotope and inverse modeling of hydrogeochemistry. The results show the following conclusions.
     1. Compare theδ18O andδD in precipitation in the Habor Lake of Ordos Basin with global lines, the gradient and intercept is small. Because the study area is located with the strong evaporation, the slope and intercept of the local meteoric line are lower than that of global meteoric water line.δ18O and 8D in precipitation is higher in summer and lower in water. The 8D andδ18O of rain concentrated in wet season, and dispersed in dry season.
     2. Theδ18O andδD of lakes and groundwater are used to analyze the convers relationship among the lake. groundwater and precipitation. The habor lake water come from precipitation and groundwater by mud spring, it is discharged by evaporation.
     3. The regional groundwater circulation model will be given by the distribution of hydrogeochemical components and the isotopes:The Habor Lake control the less than 200m depth of groundwater circulation (shallow groundwater and mid-groundwater). The groundwater is recharged by precipitation in recharge area and effected by evaporation and transpiration in runoff way. especially the groundwater is effected by the strong evaporation in the surrounding of Habor Lake. Finally, the groundwater discharge to lakes. Confered the shallow groundwater age is less than 50 years.
     4.The concentration of TDS、Na+、Cl-and SO42- of shallow groundwater reduce from around to central area. while the concentration of Ca2- and Mg2- are opponent. and the concentration of HCO3- and NO3- is in high level in the whole area. The distribution of cation is transformed from Ca2+、Mg2+ to K-、Na-. while HCO3 is the mian anion along the groundwater flow direction. The chemical types is well distribution from Ca·Mg-HCO3, Ca·Mg·Na-HCO3 to Na-HCO3-Cl-SO4,Na-HCO3
     5. Through the mineral saturation index. ion combination and ratio method confer the groundwater hydrogeochemistry formation were effected by lixiviation. evaporation function, cation alternative adhesive action, mixing action and the effect of man.
     6. Because the precipitation infiltration into the groundwater rapidly in recharge area and the CO2 of soil dissolve into groundwater in runoff way and discharge area. theδ13C of groundwater is close to CO2 of atmospheric in recharge area and theδ13C of groundwater is close to CO2 of soil in runoff way and discharge area.
     7. A inverse modeling of hydrogeochemistry in Habor Lake area has been carried out with NETPATH. and the simulation results show that:The chief actions are the solution of Gypsum, illite, Albite, K-feldspar, NaCl, CO2,the cation exchange, and the precipitation of calcite. Feldspar may be dissolution or precipitation on the simulated flow path by NETPATH
引文
[1]王大纯,张人权,史毅虹,等.水文地质学基础[M].北京:地质出版社,1995:50-51.
    [2]侯光才,张茂省,刘方,等.鄂尔多斯盆地地下水勘查研究[M].北京:地质出版社,2007:183-188.
    [3]王洪道,史复祥.干旱、半干旱地区的湖泊水资源及其保护[J].中国干旱半干旱地区自然资源研究,1985,84-90.
    [4]刘存富,王佩仪,周炼.河北平原地下水氢、氧、碳、氯同位素组成的环境意义[J].地学前缘,1997,4(1)
    [5]张宗祜,施德弘,沈照理,等.人类活动影响下华北平原地下水环境的演化与发展[J].地球学报,1997,18(4)
    [6]Mebus A geyh,顾慰祖,刘涌,等.阿拉善高原地下水的稳定同位素异常.水科学进展,1998,9(4)
    [7]林学钰,王心义,廖资生.地下热流系统及其开发工程配置——以河南省开封市区为例.吉林大学学报地球科学版,2008,38(6)
    [8]张之淦,刘芳珍,张洪平等.应用环境氚研究黄土包气带水分运移及入渗补给量[J].水文地质工程地质,1990,3.
    [9]刘存富,王佩仪,周炼,等.河北山前平原第四系年龄初探.水文地质工程地质[J],1999,2.
    [10]余振国,杨顾,连炎清.应用强氧同位素方法俺就兰州傍河水源地地下水水体的形成和循环机理.甘肃地质学报[J],1992,1(1)
    [11]史基安,王先彬,王琪,等.地下水补给、循环和混合作用的氦同位素证据——以石羊河、黑河流域为例[J].沉积学报,1999,17.
    [12]章新平,姚谭栋.利用同位素比率估计湖泊的蒸发[J].冰川冻土,1997,19(2)
    [13]包为民,胡海英,瞿思敏,等.稳定同位素方法在湖泊水量平衡研究中的应用.人民黄河,2007,29(8
    [14]万军伟,刘存富,晁念英,等. 同位素水文学理论与实践[M].武汉:中国地质大学出版社,2003.
    [15]Huddart, P. A., Longstaffe, F. J. and Crowe, A. S. A stable isotope study of groundwater recharge at Point Pelee National Park, Ontario Canada[J]. Third Annual Environmental Science Symposium.1997,4.
    [16]Fritz, P., R. J. Drimmie, S. K. Frape, and O.O'Shea.. The isotopic composition of precipitation and groundwater in Canada [J]. Isotope techniques in water resources development,1987.
    [17]苏小四,林学钰,廖资生,等.黄河水δ180、δ D和3H的沿程变化特征及其影响因素研究[J].地球化学,2003,32(4)
    [18]William M A, Thomas E R, Lehn F O. Sustainability of Ground-Water Resources[J]. U.S. Geological Survey Circular,1999.1186:1~79.
    [19]Wood W W, Sanford W E. Chemical and isotopic methods for quantifying groundwater recharge in a regional, semiarid environment [J] Ground Water.1995.33 (3):458-468.
    [20]陈宗宇,聂振龙,张荷生,等.从黑河流域地下水年龄论其资源属性[J].地质学报,2004,(4):560-567.
    [21]杨陨城,侯广才,马思锦.鄂尔多斯盆地地下水中氚的演化及其年龄[J],西北地质,2004,37(1)
    [22]Lovelock J. E. Atomospheir fluorine compound as indicators of air movements[J]. Nature,1997,230-379.
    [23]Thompson G M, Hayes J M. Trichloromethane in groundwater:A possible tracer and indicator of groundwater age[J]. Water Resource Research,1979,15:546-554.
    [24]Plummer L. N, Eric C. Prestemon, David L. Parkhurst. An interactive code (NETPATH) for moding Net geochemical reactions along a flow Path[J],U.S. Geological Survey,1994.
    [25]James D. Happell Opsahlh S,Top.Z.Apparent CFC and 3H/3He age differences in water from Floridan Aquifer springs [J]. Journal of Hydrology,2005,1-17.
    [26]秦大军.地下水CFC定年方法及应用[J].地下水,2005,27(6):435-437.
    [27]郭永海,王驹,王志明,等.CFC在中国高放废物处置库预选区地下水研究中的应用[J].地球科学,2006,27(3)
    [28]沈照理,朱宛华,钟佐燊.水文地球化学基础[M].北京:地质出版社,1993:86-90.
    [29]Hem, J. D. Study and Interpretation of the Chemical characteristics of natural water(Third Edition) [M]. U. S. Goverment Printiong Office, Washington.1989.
    [30]宋献方,李发东,于静洁,等.基于氢氧同位素与水化学的潮白河流域地下水水循环特征[J].地理研究,2007,26(1)
    [31]N. Subba Rao. Geochemistry of groundwater in parts of GunTur district, Andhra Pradesh, India[J]. Envirnmental Geology,2002, (41): 552-562.
    [32]R.Umar, A. Absar. Chemical characteristics of ground-water in parts of the Gambhir river basin, Bharatpur district, Rajasthan, India [J]. Envirnmental Geology,2003, (44):535-544.
    [33]E. Lakshmanan, R. Kannan, M. Senthil Kumar. Major ion chemistry and identification of hydrogeochemical processes of ground water in a part of Kancheepuram district Tamil Nadu of India [J]. Environmental Geosciences,2003,10(4):157-166.
    [34]温小虎,许彦卿,苏建平,等.额济纳盆地地下水盐化特征及机理分析[J].中国沙漠,2006,26(5):836-841.
    [35]Drever,J. I. The geochenmistry of natural water[M], Prentijce-Hall, inc..1982.
    [36]张慧,张新基,何元庆等.水文地质学中的环境同位素[M].黄河水利出版社,2006:1-2.
    [37]Dogramaci SS, Herczeg A L. Strontiom and carbon isotope constraints on carbonate-solution interactions and interaquifer mixing in groundwaters of the semi-arid Murray Basin, Australia. Journal of Hydrology,2002,262.
    [38]Chapelle F. H.,Knobel L. L., Stable carbon isotopes of HCO3-in the Aquia aquifer, Maryland:Evidence for an isotopically heavy source of C02[J]. Ground Water,1985,23(5):592-599.
    [39]刘小龙,刘丛强,李思亮,等.碳与锶同位素在六盘山地下水研究中的应用.生态学杂志,2010,29(5)
    [40]Wachniew P. et al., Carbon budget of a mid-latitude, groundwater-controlled lake:Istopic evidence for the importance of dissolved inorganic carbon recycling[J]. Geochimica et Cosmochimica Acta,1997,61:2453-2465.
    [41]Cartwright I., Weaver T., Tweed S., et al.,O, H. C isotope geochemistry of carbonated mineral springs in central Victoria, Australia: sources of gas and water-rock interaction during duing basaltic volcanism[J]. Journal of Geochemical Exploration,2000,69-70:257-267.
    [42]L. N. Plummer, Eric C. Prestemon and Dabid L. Parkhurst. An interactibe code(NETPATH) for moding Net geochemical reactions along a flow Path. U. S. Geological Survey,1994.
    [43]Plummer LN. Geochemical modeling of water-rock interaction:past, Present, future. Water Rock Interaction, Volume 1:Low Tempera Ture Environments[M]. Netherlands:U.S. Geological Survry,1992,23-33.
    [44]王焰新,马腾,罗朝晖,等.山西柳林泉域水一岩作用地球化学模拟[J]地球科学一中国地质大学,1985(5)
    [45]苏小四.同位素技术在黄河流域典型地区地下水可更新能力研究中的应用——以银川平原和包头平原为例[D].长春:吉林大学博士论文.2002:64-73.
    [46]柳富田.基于同位素技术的鄂尔多斯白垩系盆地北区地下水循环和水化学演化规律研究[D].长春:吉林大学.2005.
    [47]杨郧城,侯光才,赵振宏等.鄂尔多斯白垩系地下水盆地湖眼的形成及其水文地质意义[J].地质通报,2008,27(8).
    [48]曹阳.鄂尔多斯白垩系盆地北部典型湖淖地区地下水循环模式研究[D]长春:吉林大学硕士论文.2009.
    [49]尹立河,王晓勇,黄金廷,等.大克泊湖床垂向渗透系数试验研究[J].盐湖研究,2011,19(1)
    [50]李思亮.喀斯特城市地下水C、N同位素地球化学-污染物迁移和转化[D].贵阳:中国科学院地球化学研究所,2005:39-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700