南水北调中线总干渠两侧地下水风险源特征分析及保护
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以南水北调中线总干渠地下水水质保护为主线,以野外现场调查、室内试验和数值模拟为手段,开展中线总干渠风险源、地下水污染特征和水源保护区划的应用基础研究工作,获得的成果包括:
     (1)通过现场调查分析,确定了在南水北调中线总干渠两侧存在有大量风险源,以此为基础,构建了地下水风险源数据库,实现了对风险源信息编辑、查询和统计分析等自动化管理。
     (2)对中线总干渠焦作段的地下水13项污染因子进行主成分分析,得出9项为主要污染因子,按污染贡献率排序为硝酸盐>溶解性总固体>硫酸盐>硬度>六价铬>氟化物>镍离子>氨氮>氯化物。
     (3)河北磁县境内糠醛厂附近地下水污染特征研究表明:无机组分中总硬度、氯离子和溶解性总固体超过生活饮用水卫生标准(GB5749-2006),超标倍数分别为1.79~2.53、2.37~2.47、1.26~2.05;有机物检出以卤代烃和多环芳烃为主,但均未超标。
     (4)焦作大家作区域处于高度的碱性和氧化环境下,Cr~(3+)易转化为Cr~(6+),因此,该区域地下水污染呈现以Cr~(6+)为主的特征,而且浅层地下水Cr~(6+)污染日趋严重。
     (5)磁县糠醛厂地下水风险源模拟表明:处于总干渠左岸(西侧)的地下水易对总干渠水质造成影响;总干渠不排水或排水较小的情况下,处于总干渠右岸(东侧)的地下水不易对总干渠水质造成影响,在最大可能水位差4m的情况下该渠段含水层渗透系数为20m/d,排水段连续分布500m,排水的影响范围约180m,接近付生糠醛厂最西侧厂墙位置,存在一定风险。
     (6)对大家作区域不同情景模拟结果可以看出:①不抽水的情况下,Cr~(6+)污染羽在运移20年后到达总干渠,30年后Cr~(6+)污染羽到达总干渠的浓度值将达到0.06mg/L。②以每天5300m3/d的量抽水时,水力截获区有效控制了Cr~(6+)污染羽的运移速度,60年时Cr~(6+)污染羽则被截获在水力截获带,不在沿着水流流场向前运移。
     (7)鉴于南水北调中线工程输水用途,应按照饮用水源水质标准要求划定南水北调中线干渠两侧水源保护区,其中非明渠段和明渠段应分别划定一级及二级水源保护区。
This study was an applied basic research on risk sources of the Main Canal of theMiddle Route Project, characteristics of groundwater pollution, and the delimitation ofwater conservation districts, served as theme for the groundwater quality protection ofthe Main Canal of the Middle Route Project in South-to-North Water Transfer and as ameans of the field survey, indoor experiment, and numerical simulation; the results werepresented as followings.
     (1) Determine existence of many risk resources on both sides of the Main Canal ofthe Middle Route Project in South-to-North Water Transfer through the field survey andanalyses; and built on this, a database of groundwater risk sources was constructed toachieve functions of the automated management for information editing, queries, andstatistical analyses.
     (2) A principal component analysis was used to analyze13pollutants inunderground water from the Jiaozuo’s section of the Main Canal of the Middle RouteProject, and results demonstrated that nine out of13pollutants were main pollutionfactors; the order of contribution to the pollution of underground water was nitrate, totaldissolved solid, sulphate, degree of hardness, hexavalent chrome, fluoride, nickel ion,ammonia n, and chloride.
     (3) Results from the study on pollution characteristics of the underground water nearthe furfural plant in Cixian county, Hebei province showed that total degree of hardnessin inorganic components, chloride ion, and dissolved total solid exceeded sanitarystandards of the water for living and drink (GB5749-2006),1.79~2.53times,2.37~2.47times, and1.26~2.05times higher than their standards, respectively; halogenatedhydrocarbon and polycyclic aromatic hydrocarbon were primarily detectable organiccomponents, but both concentrations were under their sanitary standards.
     (4) Area of Dajia Zuo in Jiaozuo was located in an environment of highly alkalineand oxidizing, changing from Cr~(3+)to Cr~(6+)was easier; therefore, the pollution ofunderground water was appeared as Cr~(6+)contamination in this area, and Cr~(6+) contamination in phreatic water became worse and worse.
     (5) Risk sources’ simulation conducted in the furfural plant of Cixian county, Hebeiprovince illustrated that underground water on the left bank of the Main Canal (in thewest) was inclined to pollute the water quality of the Main Canal; under no drainage orless drainage in the Main Canal underground water on the right bank (in the east) was notinclined to pollute the water quality of the Main Canal; for the site of the most west plantwall near the Fusheng Furfural Plant, certain risks existed when the maximum possiblewater-head of4m and the aquifer permeability coefficient of20m/d in the segment of thecanal, as well as continuous distribution of500m and range of influence of about180mfor the water supply and drainage.
     (6) Simulating results under different scenarios in the area of Dajia Zuodemonstrated①under no pump water, Cr~(6+)pollution plume would arrive in the MainCanal of the Middle Route Project in South-to-North Water Transfer after20years ofmigration; after30years the concentration would be0.06mg/L when Cr~(6+)pollutionplume could reach the Main Canal;②with pump water quantity of5300m3/d, hydraulicintercept and capture section effectively controlled the migration velocity of Cr~(6+)pollution plume, and Cr~(6+)pollution plume would be captured on the hydraulic interceptand capture section60years later and no longer could migrate along flow field forward.
     (7) In light of the purpose of the transmission of water for the Main Canal of theMiddle Route Project in South-to-North Water Transfer, water conservation districtsought to be delimited according to the water standard for the source of drinking water; ofwhich, water conservation districts should be delimited for the non-open channel andopen channel, respectively.
引文
Alain Pochon,Jean-Pierre Tripet,Ronald Kozel, et al.Groundwater protection infractured media: a vulnerability-based approach for delineating protection zonesin Switzerland[J]. Hydrogeology Journal,2008,16:1267–1281.
    Azzellino A., Salvetti R., Vismara R.,et al.Combined use of the EPA-QUAL2Esimulation model and factor analysis to assess the source apportionment of pointand non point loads of nutrients to surface waters[J]. Science of the TotalEnvironment,2006,371:214-222.
    Chen Hai-Yang, TengYan-Guo, WangJ in-Sheng.Source apportionment for sedimentPAHs from the Daliao River(China)using an extended fit measurement mode ofchemical mass balance model[J]. Ecotoxicology and Environmental Safety.2012,1(1)1-7.
    Dong-Chan Koh, Bernhard Mayer,Kwang-Sik Lee,Kyung-Seok,Ko.Land-use controlson sources and fate of nitrate in shallow groundwater of an agricultural arearevealed by multiple environmental tracers[J]. Journal of ContaminantHydrology,2010,118:62-78.
    Dugin Kaown,Dong-Chan Koh,Bernhard Mayer,Kang-Kun Lee. I dentification ofnitrate and sulfate sources in groundwater using dual stable isotope approachesfor an agricultural area with different land use(Chuncheon,mid-eastern Korea)[J].Agriculture Ecosystems and Environment,2009,132:223-231.
    Erik Christensen R.,Philip Bzdusek A..PAHs in sediments of the Black River and theAshtabula River,Ohio:source apportionment by factor analysis[J].Water Research,2005,39:511-524.
    Erik Christensen R., Sidharta Aroral.Source apportionment of PAHs in sedimentsusing factor analysis by time records:Application toLakeMichigan,USA[J].Water Research,2007,41:168-176.
    Feng Zhou, Gordon H. Huang, Huaicheng Guoa, Wei Zhang, Zejia Hao.Spatio-temporal patterns and source apportionment of coastal water pollution ineastern Hong Kong[J]. Water Rese Rch,2007,(41):3429-3439.
    Grizzettia B., Bouraouia F., Marsilyb G.de,et al.A statistical method for sourceapportionment of riverine nitrogen loads[J]. Journal of Hydrology,2005,304:302–315.
    Hakan Pekey, Duran Karaka, Mithat Bakog lu. Source apportionment of trace metalsin surface waters of a polluted stream using multivariate statistical analyses[J].Marine Pollution Bulletin,2004,(49):809-818.
    Hakan Pekey,Güray Do an.Application of positive matrix factorisation for the sourceapportionment of heavy metals in sediments: A comparison with a previousfactor analysis study[J]. Microchemical Journal,2013,106:233-237.
    Husam Musa Baalousha. Mapping groundwater contamination risk using GIS andgroundwater modelling. A case study from the Gaza Strip, Palestine[J]. Arab JGeosci,2001,4:483-494.
    Jerker Jarsjo, Mart Bayer-Raich, Thomas Ptak. Monitoring groundwatercontamination and delineating source zones at industrial sites:Uncertaintyanalyses using integral pumping tests[J]. Journal of Contaminant Hydrology,2005,79:107-134.
    Konstadinos Moutsopoulos N., Alexandra Gemitzi, Vassilios Tsihrintzis A..Delineation of groundwater protection zones by the backward particle trackingmethod: theoretical background and GIS-based stochastic analysis[J]. EnvironGeol,2008,54:1081–1090.
    Kunwar Singh P., Amrita Malik, Sarita Sinha. Water quality assessment andapportionment of pollution sources of Gomti river (India) using multivariatestatistical techniques—a case study[J]. Analytica Chimica Acta,2005,53(8):355-374.
    Laurent Jeanneaua,Pierre Faurea,Emmanuelle Montarges-Pelletierb.Evolution of thesource apportionment of the lipidic fraction from sediments along the FenschRiver,France:A multimolecular approach[J]. Science of the total environment,2008,398:96-106.
    Lisa R A., Du Songyan, Xiao Baohua,et al. Source apportionment of polychlorinatedbiphenyls in the New York/New Jersey Harbor[J]. Chemosphere,2011,(83):792-798.
    Lorenzo Galleani, Bartolomeo Vigna, Cinzia Banzato, et al.Validation of aVulnerability Estimator for Spring Protection Areas:The VESPA index[J].Journalof Hydrology,2011,396:233-245.
    Martin Novaka, Petra Pacherovaa, Lucie Erbanova, et al.Using S and Pb isotope ratiosto trace leaching of toxic substances from an acid-impacted industrial-wastelandfill (Pozdatky, Czech Republic)[J]. Journal of Hazardous Materials,2011,1(235-236):54-61.
    Martine M.Savard,George Somers,Anna Smirnoff,Daniel Paradis,Eric vanBochove,Shawna Liao.Nitrate isotopes unveil distinct seasonal N-sources andthe critical role of crop residues in groundwater contamination[J].Journal ofHydrology,2010,381:134-141.
    Molson J.W., Frind E.O.. On the use of mean groundwater age, life expectancy andcapture probability for defining aquifer vulnerability and time-of-travel zones forsource water protection[J]. Journal of Contaminant Hydrology,2012,127:76-87.
    Pierina Ielpo,Daniela Cassano,Antonio Lopez,Giuseppe Pappagallo,et al.Sourceapportionment of groundwater pollutants in Apulian agricultural sites usingmultivariate statistical analyses:case study of Foggia province[J].Chemistrycentral Journal,2012,6(S2):1-12.
    Ren zhongyu,chen honghan,liu guohua.Delineating Water Resource Protection Areaalong the Trunk Canals of the Middle Route of the South-to-North WaterDiversion Project..Journal of China University of Geosciences[J].2007.7,(18):99-101
    Roberta Salvetti,Arianna Azzellino,Renato Vismara.Diffuse source apportionment ofthe Po river eutrophying load to the Adriatic sea:Assessment of Lombardycontribution to Po river nutrient load apportionment by means of an integratedmodelling approach[J].Chemosphere,2006,65:2168-2177.
    Robins N.S., Chilton P.J., Cobbing J.E.. Adapting existing experience with aquifervulnerability and groundwater protection for Africa[J]. Journal of African EarthSciences,2007,47:30-38.
    Said Muhammad, Tahir Shah a M.,Sardar Khan.Health risk assessment of heavymetals and their source apportionment in drinking water of Kohistanregion,northern Pakistan[J]. Microchemical Journal,2011,98:334-343.
    Saravanan R.,Balamurugan R.,Karthikeyan M.S.,et al.A. Navaneetha Gopalakrishnan.Groundwater modeling and demarcation of groundwater protection zones forTirupur Basin—A case study[J]. Journal of Hydro-environment Research,2001,5:197-212.
    Su Shiliang, Li Dan, Zhang Qi, et al. Temporal trend and source apportionment ofwater pollution in different functional zones of Qiantang River, China[J]. WaterResearch,2011,45:1781-1795.
    Su Shiliang, Zhi Junjun, Lou Liping, et al.Spatio-temporal patterns and sourceapportionment of pollution in Qiantang River (China) using neural-basedmodeling and multivariate statistical techniques[J]. Physics and Chemistry of theEarth,2011,(36):379-386.
    Tim Heaton H.E.,Marianne Stuart E.,Manuel Sapiano,et al.An isotope study of thesources of nitrate in Malta’s groundwater[J].Journal of Hydrology,2012,414:244-254.
    敖静,阮晓红,万宇.水环境中粪便污染的微生物溯源技术及研究进展[J].环境与健康杂志,2012,29(7):658-662.
    曹治国,刘静玲,王雪梅,徐杰.漳卫南运河地表水中溶解态多环芳烃的污染特征、风险评价与来源辨析[J].环境科学学报,2012,30(2):254-260.
    长江水利委员会.南水北调中线一期工程可行性研究报告,2005
    长江水利委员会环保科学研究所.南水北调中线一期工程环境影响评价报告,2005
    韩菲,马溪平,刘颖颖.辽河水中PAHs的污染水平及源解析[J].气象与环境学报,2009,25(6):68-71.
    贺玉晓,尹国勋,谭利敏.某电厂堆灰场附近浅层地下水中Cr6+成因及治理措施[J].环境污染治理技术与设备,2003,4(9):75-76.
    金爱芳,李广贺,张旭.地下水污染风险源识别与分级方法[J].地球科学—中国地质大学学报,2012,37(2):247-252.
    金爱芳,张旭,李广贺.地下水源地污染源危害性评价方法研究[J].中国环境科学,2012,32(6):1075-1079.
    李茂军.牡丹江水文站柴河大桥断面污染源分析[J].东北水利水电,2004,(7):40-41,45.
    刘荣霞.南水北调中线丹江口水库调度水质影响模拟[J].应用基础与工程科学学报,2011,19(增刊):194-200.
    陆燕,何江涛,王俊杰,等.北京平原区地下水污染源识别与危害性分级[J].环境科学,2012,33(5):1527-1531.
    陆燕,何江涛,王俊杰,等.北京市平原区地下水污染防控区划不确定性分析[J].环境科学,2012,33(9):3118-3123.
    马溪平,吕晓飞,等.辽河流域水质现状评价及其污染源解析[J].水资源保护,2011,27(4):1-4.
    秦保平,房玉梅,等.天津市地表水环境氮污染特征及来源解析[J].城市环境与城市生态,2009,22(4):37-40.
    任仲宇,陈鸿汉,刘国华.南水北调中线干渠水污染途径分析研究[J].环境保护,2008,1(392):66-67.
    申利娜,李广贺.地下水污染风险区划方法研究[J].环境科学,2010,31(4):918-923.
    师荣光,周启星,等.天津郊区土水界面污染流多环芳烃的污染特征及来源解析[J].环境科学学报,2010,30(4):874-881.
    宋雪英,李玉双,等.太子河水体中多环芳烃分布与污染源解析[J].生态学杂志,2010,29(12):2486-2490.
    邰超,张坤峰,周天健,等.南水北调中线源头淹没区土壤中多环芳烃的赋存分布特征[J].环境科学,2012,32(2):403-409.
    王光谦,左海凤,魏加华,等.南水北调中线工程水源区老鹳河流域农业非点源污染关键源区识别[J].地学前缘,2010,17(6):14-20.
    王金生,王澎,刘文臣,等.划分地下水源地保护区的数值模拟方法[J].水文地质工程地质,2004(4):83-86.
    肖伟华,庞莹莹,张连会,等.南水北调东线工程突发性水环境风险管理研究[J].南水北调与水利科技,2010,8(5):17-21.
    徐海珍,李国敏,张寿全,等.基于OLHS随机模拟的地下水源地保护区划分[J].吉林大学学报(地球科学版),2011,41(增刊1):259-264.
    徐华山,徐宗学,等.漳卫南运河流域水质时空变化特征及其污染源识别[J].环境科学,2012,33(2):359-369.
    杨忠山,窦艳兵,王志强.南水北调工程北京市受水区非正规垃圾填埋场控高水位研究[J].水资源保护,2011,27(1):28-33.
    于瑞莲,胡恭任.土壤中重金属污染源解析研究进展[J].有色金属,2008,60(4):158-165.
    于树宾,马振民,张慧申.南水北调中线焦作典型区浅层地下水污染特征[J].济南大学学报(自然科学版),2012,26(1):92-95.
    余亚男,孙向鹏.浅论南水北调中线工程总干渠两侧生态带建设的必要性[J].河南水利与南水北调,2012,1(5):43-44.
    张保祥,孟凡海.地下水源保护区划分原理及其在龙口市城市供水水源地中的应用[J].灌溉排水学报,2009,28(5):102-105.
    张丽君,曹红,马颖.地下水源保护区划分方法的探讨[J].辽宁城乡环境科技,2006,26(2):9-13.
    赵学彬.南水北调中线工程水源区水体风险管理研究[D].武汉:华中科技大学,2011.
    郑毅,崔建国.划分地下水水源地保护区方法浅析[J].科技情报开发经济,2006,16(8):140-141.
    钟华平,卞锦宇,李伟.南水北调受水区地下水保护与修复措施[J].水资源管理,2011:33-35.
    左海凤,黄跃飞,魏加华.南水北调中线沿线劣质地下水对输水水质的潜在风险分析[J].南水北调与水利科技,2008,6(5):1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700