混凝-微滤工艺制备饮用水的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着饮用水水质标准的日益严格,膜技术在水处理中的应用得到了高度关注,如何提高膜装置的产水率也越来越受到重视。本文研究开发了混凝-微滤工艺处理膜反洗/清洗水,使其达到《生活饮用水卫生标准》(GB5749-2006)要求,以提高膜装置的产水率。另外采用混凝-微滤工艺进行了地下水除氟试验的初步研究,以扩大混凝-微滤工艺的应用领域。
     试验分别以两套中试规模的混凝-浸没式微滤系统的膜反洗水和混凝-压入式超滤系统的膜清洗水为原水。膜反洗水和清洗水的DOC和三卤甲烷生成潜能均主要分布在分子质量>30k Da和分子质量<1k Da的区间内,UV254主要分布在分子质量<1k Da的区间内。膜反洗水和清洗水水质均受到中试源水水质变化的影响,而且随着过滤时间的延长,压入式膜清洗水的水质变差。
     浸没式微滤系统的反洗水经过投加粉末活性炭(PAC)的混凝-微滤工艺处理后,出水浊度、CODMn、TOC、UV254、微生物指标、三卤甲烷和铁浓度均满足生活饮用水卫生标准。出水中有机物集中在分子质量<1k Da的区间,混凝、PAC吸附和膜截留处理单元起到了协同作用。
     投加合适剂量的混凝剂和在必要时PAC投加到处理系统后,压入式超滤系统的膜清洗水处理后能保证出水水质满足饮用水卫生标准。过滤时间为20 min的膜清洗水中分子质量>10k Da的大分子有机物得到了有效去除,而且随着混凝剂投加量的增加有机物的去除率提高;但分子质量<1k Da的小分子有机物去除效果较差,随投加量增加变化的规律不明显。投加PAC后,有效提高了过滤时间为30 min的膜清洗水中分子质量<1k Da的小分子有机物和三卤甲烷生成潜能的去除效果。
     降低膜通量和投加PAC均可以减缓膜反洗水/清洗水对膜组件的污染,其中泥饼层是导致微滤膜比通量下降的主要因素。膜表面污染主要是有机物污染,其中有机物以小分子为主,无机污染元素主要是铁。
     地下水除氟试验中硫酸铝比聚合硫酸铝更适宜作为除氟混凝剂,前者除氟效果受到pH值的显著影响。为降低反应的pH值以提高除氟效果,采用了向混凝反应器内投加H2SO4、HNO3、充入CO2和降低曝气量四种方法,其中加入CO2对于改善出水水质最为有利。充入CO2的混凝-微滤工艺出水的F-浓度低于1.0 mg/L,其他水质指标也满足饮用水卫生标准要求。
The application of membrane technology in water treatment is highly concerned with the stricter standards for drinking water quality, and improving the productivity of membrane process is more important than ever. In this study, a coagulation-microfiltration process was operated to treat the membrane backwash water and membrane clean water to meet Standards for Drinking Water Quality (GB5749-2006). The aim of the experiment was for improving the productivity of the membrane process. In addition, the coagulation-microfiltration process was studied for defluoridation from underground water in this paper. The application field of coagulation-microfiltration process was enlarged.
     The raw water for the coagulation-microfiltration process was membrane backwash water from a pilot-scale submerged microfiltration unit and membrane clean water from another pilot-scale pressurized ultrafiltration unit, respectively. Two pilot-scale coagulation-membrane systems produced the membrane backwash water and clean water. DOC and trihalomethanes formation potential in membrane backwash and clean water were mainly distributed in molecular weight>30k Da and <1k Da, UV254 was main in molecular weight<1k Da. The quality of membrane backwash and clean water was influenced by the quality changes in the raw water for the pilot experiments during different periods. The quality of membrane clean water was worse as the filtration time was extended.
     The powdered activated carbon (PAC) was added in the coagulation-microfiltration system to treat the membrane backwash water from submerged microfiltration unit. The concentrations of turbidity, CODMn, TOC, UV254, trihalomethanes, Fe and bacteria in the treated water from the coagulation-microfiltration system were below the limit value of the drinking water standards. The organic matter in the treated water distributed mainly in molecular weight<1k Da, and the effects of coagulation, PAC adsorption and microfiltration on the organic removal were complementary.
     When the proper coagulant and PAC were added in the system treating the membrane clean water from pressurized ultrafiltration unit, the quality of the treated water meets the drinking water standards. The removal of organic matter in the membrane clean water with the filtration time of 20 min was main in the molecular weight>10k Da, and the removal rate was increased with the increase of the coagulant dosage. The organic matter with molecular weight<1k Da was not removed significantly, and the changes of removal rate with the coagulant dosage had no good correlation. The adding of PAC improved effectively the removal of organic matter and trihalomethanes formation potential in membrane clean water with the filtration time of 30 min with molecular weight<1k Da.
     The membrane fouling could be alleviated by the flux reduction and the adding of PAC. The cake layer on the membrane surface was the main cause for the specific flux decrease. The organic foulant was the most important fraction in the membrane foulants. The majority of organic foulant had low molecular weight, and Fe was the main element on the fouled membrane surface among the inorganic elements.
     Aluminum sulfate was more proper than polyaluminum sulphate as the defluoridation agent of underground water. The defluoridation was dramatically effected by the pH in the experiment. For improving the defluoridation efficiency, four methods, which was adding H2SO4 or HNO3, dissolving CO2 and reducing aeration intensity, respectively, were adopted to reduce pH. The results showed that CO2 dosing was much better than the other methods by comparing the treated water quality. The concentration of fluoride was less than 1.0 mg/L, and the quality of the treated water meets the drinking water standards.
引文
[1]苏征耀.我国水资源形式及其应对策略[J].水资源研究,2007,28(1):11-13.
    [2]王浩.我国水资源合理配置的现状和未来[J].水利水电技术,2006,37(2):7-14.
    [3]王烨,朱琨.我国水资源现状与可持续利用战略[J].兰州交通大学学报(社会科学版),2005,24(5):77-80.
    [4]畅明琦,刘俊萍.论中国水资源安全的形式[J].生产力研究,2006,(8):5-7.
    [5]中国国家环境保护总局. 2007年中国环境状况公告,http://www.sepa.gov.cn/plan/zkgb/06hjzkgb.
    [6]王开章,孔凡亮.地下水水源地污染分析及可持续利用对策[J].天津农业大学学报(自然科学版),2002,33(4):464-470.
    [7]姜建军.中国地下水污染现状与防止对策[J].环境保护,2007,381(10):16-17.
    [8]杨敏,曲久辉.水源污染与饮用水安全[J].环境保护,2007,38(1):62-64.
    [9]马军,冯琦,刘勇.给水处理面临的主要问题与技术发展对策[J].哈尔滨建筑大学学报,2000,23(2):49-52.
    [10]严煦世,范瑾初.给水工程(第四版)[M].北京:中国建筑工业出版社,1999.
    [11]雷挺.加强混凝沉淀在处理微污染原水中的作用[J].中国给水排水,2003,29(5):23-26.
    [12] Zhang L L, Yang D, Zhong Z J, et al. Application of hybrid coagualtion-microfiltration process for treatment of membrane backwash water from waterworks[J]. Separation and Purification Technology, 2008, 62(2) : 415-422.
    [13]刘成,黄廷林,赵建伟.混凝、粉末活性炭吸附对不同分子量有机物的去除[J].净水技术,2006,25(1):31-33.
    [14] Xu B, Gao N Y, Sun X F, et al. Characteristics of organic material in Huangpu River and treatability with the O3-BAC process[J]. Separation and Purification Technology, 2007, 57(2) : 348-355.
    [15]陈宇畅,唐三连,邵林光,等.普通快滤池与V型滤池的比较[J].净水技术,2007,1(5):41-43.
    [16]王占生,刘文君.微污染水源饮用水处理[M].北京:中国建筑工业出版社,1999.
    [17] Gang D, Clevenger T E, Banerji S K. Relationship of chlorine decay and THMs formation to NOM size[J]. Journal of Hazardous Materials, 2003, 96(1) : 1-12.
    [18] Bashtan S Y, Goncharuk V V, Chebotareva R D, et al. Production of sodium hypochlorite in an electrolyser equipped with a ceramic membrane[J]. Desalination, 1999, 126(1) : 77-82.
    [19] Chizuko M, Kouichi S, Shinichi M, et al. Disinfection potential of electrolyzed solution containing sodium chlorite at low concentrations[J]. Journal of Virological Methods, 2000, 85(2) : 163-174.
    [20]朱建文,吴浩汀. BAF+常规工艺+UF工艺在微污染源水处理中的应用展望[J].工业水处理,2004,24(1):12-15.
    [21] Vickers J C, Thompson M A, Keikar U G. The use of membrane filtration in conjunction with coagulation processes for improved NOM removal[J]. Desalination, 1995, 102(1-3) : 57-61.
    [22]熊毅.天然有机物(NOM)与膜[J].西南给排水,2001,23(5):18-21.
    [23]罗欢,刘广立,刘杰,等.不同超滤膜过滤天然有机物的膜污染特性研究[J].环境污染治理技术与设备,2005,6(5):23-26.
    [24] Malgorzata K K. Impact of pre-coagulation on ultrafiltration process performance[J]. Desalination, 2006, 194(1-3) : 232-238.
    [25]王志伟,王增长.水源水中有机物的类别与处理方法[J].科技情报开发与经济,2007,17(3):154-155.
    [26]徐志诚,罗微,洪义国,等.腐殖质在环境污染物生物降解中的作用研究进展[J].微生物学通报,2006,33(6):122-127.
    [27]陈忠林,王立宁,马军,等.预氧化强化混凝去除颤藻及其嗅味的研究[J].中国给水排水,2003,19(5):13-15.
    [28]董文艺,范洁,张金松.微滤膜与活性炭联用去除富营养化水源水中藻类[J].环境污染治理技术与设备,2004,5(3):74-80.
    [29] Teixeira M R, Rosa M J. Microcystins removal by nanofiltration membranes[J]. Separation and Purification Technology, 2005, 46(3) : 192-201.
    [30] HervéG, Urs G. Chlorination of naural organic matter: kinetics of chlorination and of THM formation[J]. Water Research, 2002, 36(1) : 65-74.
    [31] Roccaro P, Chang H S, Vagliasindi F G, et al. Differential absorbance study of effects of temperature on chlorine consumption and formation of disinfectionby-products in chlorinated water[J]. Water Research, 2008, 42(8-9) : 1879-1883.
    [32] Hong H C, Liang Y, Han B P, et al. Modeling of trihalomethane (THM) formation via chlorination of the water from Dongjiang River (source water for Hong Kong’s drinking water)[J]. Science of the Total Environment, 2007, 385(1-3) : 48-54.
    [33] Yang C Y, Xiao Z P, Ho S C, et al. Association between trihalomethane concentrations in drinking water and adverse pregnancy outcome in Taiwan[J]. Environmental Research, 2007, 104(3) : 390-395.
    [34] Cowman G A, Singer P C. Effect of bromide ion on haloacetic acid speciation resulting from chlorination and chloramination of aquatic humic substances[J]. Environmental Science and Technology, 1996, 30(1) : 16-24.
    [35]胡江泳,张锡辉,王占生.强化传统工艺处理微污染水源水的试验研究[J].给水排水,1996,22(2):18-20.
    [36]肖华,周荣丰.微污染水源水处理技术的现状与发展[J].北方环境,2005,30(1):62-66.
    [37] Camel V, Bermond A. The use of ozone and associated oxidation processes in drinking water treatment[J]. Water Research, 1998, 32(11) : 3208-3222.
    [38]范艳丽,邵林广.微污染水源水净化技术[J].工业安全与环保,2004,30(11):1-3.
    [39] Rei?mann F G, Schulze E, Albrecht V. Application of a combined UF/RO system for the reuse of filter backwash water from treated swimming pool water[J]. Desalination, 2005, 178(1-3) : 41-49.
    [40] Hochstrat R, Wintgens T, Melin T. Development of integrated water reuse strategies[J]. Desalination, 2008, 218(1-3) : 208-217.
    [41]郑少平.滤池反冲洗废水处理研究进展[J].山西建筑,2007,33(34):185-186.
    [42] Dotremont C, Molebeghs B, Doyen W, et al. The recovery of backwash water from sand filters by ultrafiltration[J]. Desalination, 1999, 126(1-3) : 87-94.
    [43]邝璐,许仕荣,陈益清,等.滤池反冲洗水的超滤处理回收中试[J].中国给水排水,2007,23(14):83-85.
    [44] Ressmann F G, Uhl W. Ultrafitration for the reuse of spent filter backwash water from drinking water treatment[J]. Desalination, 2006, 198(1-3) : 225-235.
    [45] Anselme C, Mandra V, Baudin I, et al. Removal of total organic matters and micropollutants by membrane processes in drinking-water treatment[J]. Water Supply, 1993, 11(3-4) : 249-258.
    [46]邵刚.膜法水处理技术及工程实例[M].北京:化学工业出版社,2000.
    [47] Dong B Z, Chen Y, Gao N Y, et al. Effect of pH on UF membrane fouling[J]. Desalination, 2006, 195(1-3) : 201-208.
    [48] LainéJ M, Vial D, Moulart P. Status after 10 years of operation - overview of UF technology today[J]. Desalination, 2000, 131(1-3) : 17-25.
    [49] Lee N, Amy G, CrouéJ P, et al. Identification and understanding of fouling in low-pressure membrane (MF/UF) filtration by natural organic matter[J]. Water Research, 2004, 38(20) : 4511-4523.
    [50]王湛.膜分离技术基础[M].北京:化学工业出版社,2000.
    [51] Kim H S, Takizawa S, Ohgaki S. Application of microfiltration systems coupled with powdered activated carbon to river water treatment[J]. Desalination, 2007, 202(1-3) : 271-277.
    [52] Panglisch S, Dautzenberg W, Kiepke O, et al. Ultra- and microfiltration pilot plant investigations to treat reservoir water[J]. Desalination, 1998, 119(1-3) : 277-288.
    [53] Qina J J, Oo M H, Kekrea K A, et al. Reservoir water treatment using hybrid coagulation-ultrafiltraion[J]. Desalination, 2006, 193(1-3) : 344-349.
    [54]范瑾初.混凝技术[M].北京:中国环境科学出版社,1992.
    [55] Wang J, Wang X C. Ultrafiltration with in-line coagulation for the removal of natural humic acid and membrane fouling mechanism[J]. Journal of Environmental Sciences-China, 2006, 18(5) : 880-884.
    [56] Judd S J, Hillis P. Optimization of combined coagulation and microfiltration for water treatment[J]. Water Research, 2001, 35(12) : 2895-2904.
    [57] Lakenes T, ?degaard H, Mykleust H. Removal of natural organic matter (NOM) in drinking water treatment by coagulation-microfiltration using metal membranes[J]. Journal of Membrane Science, 2004, 242(1-2) : 47-55.
    [58] Pikkarainen A T, Judd S J, Jolela J, et al. Pre-coagulation for microfiltration of an upland surface water[J]. Water Research, 2004, 38(2) : 455-465.
    [59] Konieczny K, Bodzeku M, Rajca M. A coagulation-MF system for water treatment using ceramic membranes[J]. Desalination, 2006, 198(1-3) : 92-101.
    [60] Fiksdal L, Leiknes T. The effect of coagulation with MF/UF membrane filtration for the removal of virus in drinking water[J]. Journal of Membrane Science, 2006, 279(1-2) : 364-371.
    [61]中华人民共和国卫生部,国家标准化管理委员会.生活饮用水卫生标准(GB5749-2006),2007.
    [62] Aydiner C, Bayramoglu M, Kara S, et al. Nickel removal from waters using surfactant-enhanced hybrid PAC/MF process[J]. Industrial and Engineering Chemistry Research, 2006, 45(11) : 3926-3933.
    [63] Han B, Runnellsb T, Zimbronb J, et al. Arsenic removal from drinking water by flocculation and microfiltration[J]. Desalination, 2002, 145(1-3) : 293-298.
    [64]董秉直,孙飞,闫昭晖,等.在线混凝-超滤联用工艺用于小城镇给水的应用研究[J].给水排水,2007,33(12):26-31.
    [65]何文杰,康华,顾金辉,等.膜混凝反应器处理滦河水中试研究[J].中国给水排水,2007,23(7):23-27.
    [66]蒋绍阶,郭庆彬,刘长兴.混凝沉淀、微滤一体化装置处理长江原水的试验研究[J].中国给水排水,2007,23(15):66-71.
    [67] Choi K Y, Dempsey B A. In-line coagulation with low-pressure membrane filtration[J]. Water Research, 2004, 38(20) : 4271-4281.
    [68] Maartens A, Swart P, Jacobs E P. Feed-water pretreatment: methods to reduce membrane fouling by natural organic matter[J]. Journal of Membrane Science, 1999, 163(1) : 51-62.
    [69]董秉直,曹达文,陈艳.饮用水膜深度处理技术[M].北京:化学工业出版社,2006.
    [70]董秉直,陈艳,高乃云,等.混凝对膜污染的防止作用[J].环境科学,2005,26(1):90-93.
    [71] Wiesner M R, Clark M M, Mallevialle J. Membrane filtration of coagulated suspension[J]. Environmental Engineering, 1989, 115(1) : 20-40.
    [72] Altmann J, Ripperger S. Particle deposition and layer formation at the crossflow microfiltration[J]. Journal of Membrane Science, 1997, 124(1) : 110-128.
    [73] Altmann J, Ripperger S. Experimental and theoretical study of the influence of particle interaction forces in crossflow micro and ultrafiltration[J]. Separation Science and Technology, 1989, 24(3) : 383-398.
    [74]金伟,李怀正,范瑾初.粉末活性炭吸附技术应用的关键问题[J].给水排水,2001,27(10):11-12.
    [75] Suzuki T, Watanabe Y, Ozawa G, et al. Removal of soluble organics and manganese by a hybrid MF hollow fiber membrane system[J]. Desalination, 1998, 117(1-3) : 119-130.
    [76]苏兆斌,章诗芳,孙伟,等.微污染富营养化水源水净化处理试验[J].净水技术,2002,21(3):10-12.
    [77]李伟光,李大鹏,张金松.用粉末活性炭去除饮用水中嗅味[J].中国给水排水,2002,18(4):47-49.
    [78] Oh H K, Takizawa S, Ohgaki S, et al. Removal of organics and viruses using hybrid ceramic MF system without draining PAC[J]. Desalination, 2007, 202(1-3) : 191-198.
    [79] Adham V I, Snoeyink M, Clark M, et al. Predicting and verifying organics removal by PAC in an ultrafiltration system[J]. Journal of American Water Works Association, 1991, 82(12) : 81-91.
    [80]张雨山,王静,任华峰,等.混凝-活性炭-超滤工艺处理洪水的试验研究[J].工业水处理,2007,27(6):19-22.
    [81]谭章荣,李伟英,尚亚波,等.混凝-粉末炭-超滤技术处理长江原水[J].中国给水排水,2002,18(8):51-52.
    [82] Uyak V, Yavuz S, Toroz I, et al. Disinfection by-products precursors removal by enhanced coagulation and PAC adsorption[J]. Desalination, 2007, 216(1-3) : 334-344.
    [83] Haberkamp J, Ruhl A S, Ernst M, et al. Impact of coagulation and adsorption on DOC fraction of secondary effluent and resulting fouling behaviour in ultrafiltration[J]. Water Research, 2007, 41(17) : 3794-3802.
    [84] Tomaszewska M, Mozia S. Removal of organic matter from water by PAC/UF system[J]. Water Research, 2002, 36(16) : 4137-4143.
    [85] Li Q, Snoeyink V L, Marin?s B J, et al. Pore lockage effect of NOM on aerazine adsorption kinetics of PAC: the roles of PAC pore size distribution and NOM molecular weight[J]. Water Research, 2003, 37(20) : 4863-4872.
    [86] Lin C F, Huang Y J, Hao O J. Ultrafiltration processes for removing humic substances: effect of molecular weight fractions and PAC treatment[J]. Water Research, 1999, 33(5) : 1252-1264.
    [87] Khan M M T, Jones W, Camper A. Powdered activated carbon and biofiltration improve MF performance: Part II[J]. Membrane Technology, 2007, 2007(6) : 7-10.
    [88] Kim J, Cai Z X, Benjamin M M. Effects of adsorbents on membrane fouling by natural organic matter[J]. Journal of Membrane Science, 2008, 310(1-2) : 356-364.
    [89]董秉直,曹达文,范瑾初,等. UF膜与混凝粉末活性炭联用处理微污染原水[J].环境科学,2001,22(1):37-40.
    [90]张颖,顾平,谭丁.膜混凝反应器处理轻度污染地表水[J].天津大学学报,2003,36(2):187-191.
    [91]张捍民,张锦,邹联沛,等.粉末活性炭与超滤膜联用去除饮用水中污染物的研究[J].哈尔滨建筑大学学报,2001,34(3):60-64.
    [92] Howe K J, Clark M M. Fouling of microfiltration and ultrafiltration membranes by natural waters[J]. Environmental Science and Technology, 2002, 36(16) : 3571-3576.
    [93] Choi Y H, Kim H S, Kweon J H. Role of hydrophobic natural organic matter flocs on the fouling in coagulation-membrane process[J]. Separation and Purification Technology, 2008, 62(3) : 531-536.
    [94] Fabris R, Lee E K, Chow C W, et al. Pre-treatment to reduce fouling of low pressure micro-filtration (MF) membrane[J]. Journal of Membrane Science, 2007, 289(1-2) : 231-240.
    [95] Verbych S, Bryk M, Zaichenko M. Water treatment by enhanced ultrafiltration[J]. Desalination, 2006, 198(1-3) : 295-302.
    [96] Jucker C, Clark M M. Adsorption of aquatic humic substances on hydrophobic ultrafiltration membranes[J]. Journal of Membrane Science, 1994, 97 : 37-52.
    [97] Elimelech M, Zhu X, Childress A E, et al. Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes[J]. Journal of Membrane Science, 1997, 127(1) : 101-109.
    [98] Sch?fer A I. Microfiltration of colloids and natural organic matter[J]. Journal of Membrane Science, 2000, 171(2) : 151-172.
    [99] Kulovaara M, Mets?muuronen S, Nystr?m M. Effects of aquatic humic substances on a hydrophobic ultrafiltration membrane[J]. Chemosphere, 1999, 38(15) : 3485-3496.
    [100] Jones K L, O’Melia C R. Protein and humic acid adsorption onto hydrophilic membrane surfaces: effects of pH and ionic strength[J]. Journal of Membrane Science, 2000, 165(1) : 31-46.
    [101] Choi H, Zhang K, Dionysiou D D, et al. Effect of permeate flux and tangential flow on membrane fouling for wastewater treatment[J]. Separation and Purification Technology, 2005, 45(1) : 68-78.
    [102] Lu Y, Ding Z W, Liu L Y, et al. The influence of bubble characteristics on the performance of submerged hollow fiber membrane module used in microfiltration[J]. Separation and Purification Technology, 2008, 61(1) : 89-95.
    [103] Mo L, Huang X. Fouling characteristic and cleaning strategies in a coagulation-microfiltration combination process for water purification[J]. Desalination, 2003, 159(1) : 1-9.
    [104] Kimura K, Yamamura H, Watanababe Y. Irreversible fouling in MF/UF membranes caused by natural organic matters (NOMs) isolated from different origins[J]. Separation Science and Technology, 2006, 41(7) : 1331-1344.
    [105] Carroll T, King S, Gray S R, et al. The fouling of microfiltration membrane by NOM after coagulation treatment[J]. Water Research, 2000, 34(11) : 2861-2868.
    [106] Kim H C, Hong J H, Lee S. Fouling of microfiltration membranes by natural organic matter after coagulation treatment: A comparison of different initial mixing conditions[J]. Journal of Membrane Science, 2006, 283(1-2) : 266-272.
    [107] Kerry J H, Mark M C. Fouling of microfiltration and ultrafiltration membranes by natural waters[J]. Enviornmental Science and Technology, 2002, 36(16) : 3571-3576.
    [108] Lee S, Kweon J H, Choi Y H, et al. Effects of flocculent aggregates on microfiltration with coagulation of high turbidity waters[J]. Water Science and Technology, 2006, 53(7) : 191-197.
    [109] Wonho S, Varadaraian R, Koel B E, et al. Nanofiltration of natural organic matter with H2O2/UV pretreatment: fouling mitigation and membrane surface characterization[J]. Journal of Membrane Science, 2004, 241(1) : 143-160.
    [110] Oh B S, Jang Y, Hwang T M. Role of ozone for reducing fouling due to pharmaceuticalsin MF (microfiltration) process[J]. Journal of Membrane Science, 2007, 289(1-2) : 178-186.
    [111] Hung M T, Liu J C. Microfiltration for separation of green algae from water[J]. Colloids and Surfaces B : Biointerfaces, 2006, 51(2) : 157-164.
    [112] Wavhal D S, Fisher E R. Modification of polysulfone ultrafiltration membranes by CO2 plasma treatment[J]. Desalination, 2005, 172(2) : 189-205.
    [113] Pieraccia J, Crivellob J V, Belfort G. Photochemical modification of 10 kDa polyethersulfone ultrafiltration membranes for reduction of biofouling[J]. Journal of Membrane Science, 1999, 156(2) : 223-240.
    [114]赵奎霞,张传义. MBR中膜污染的全过程控制方法[J].河北工程技术高等专科学校学报,2003,34(1):12-15.
    [115] Crozes G F, Jacangelo J G, Anselme C, et al. Impact of ultrafiltration operating conditions on membrane irreversible fouling[J]. Journal of Membrane Science, 1997, 124(1) : 63-76.
    [116] Xu W, Chellaman S, Clifford D A. Indirect evidence for deposit rearrangement during dead-end microfiltration of coagulated suspentions[J]. Journal of Membrane Science, 2004, 239(2) : 227-241.
    [117] Egeberg P K, Albert J. Determination of hydrophobicity of NOM by RP-HPLC, and the effect of pH and ionic strength[J]. Water Research, 2002, 36(20) : 4997-5004.
    [118] Kabsch-Korbutowicz M. Impact of pre-coagulation on ultrafiltration process performance[J]. Desalination, 2006, 194(1-3) : 232-238.
    [119]刘峰刚.混凝-微滤饮用水处理工艺的中试研究[D].天津大学,2007.
    [120] Carmen T, Octavian P, Matei M. Netural network models for ultrafiltration and backwashing[J]. Water Reserch, 2000, 34(18) : 4371-4380.
    [121] Cabassud C, Laborie S, Durand-Bourlier S, et al. Air sparging in ultrafiltration hollow fibers: relationship between flux enhancement, cake characteristics and hydrodynamic parameters[J]. Journal of Membrane Science, 2001, 181(1) : 57-69.
    [122]何文杰.安全饮用水保障技术[M].北京:中国建筑工业出版社,2006.
    [123] Bouhabila E H, A?m R B, Buisson H. Fouling characterisation in membrane bioreactors[J]. Separation and Purification Technology, 2001, 22-23 : 123-132.
    [124] Kang S K, Choo K H. Use of submerged microfiltration membranes for glass industry wastewater reclamation: pilot-scale testing and membrane cleaning[J]. Desalination, 2006, 189(1-3) : 170-180.
    [125] Kimura K, Hane Y, Watanabe Y, et al. Irreversible membrane fouling during ultrafiltration of surface water[J]. Water Research, 2004, 38(14-15) : 3431-3441.
    [126]郭晓燕,侯毅,张振家.用于自来水深度处理的MF膜污染的清洗方法研究[J].中国给水排水,2006,22(5):99-102.
    [127] Lamminen M O, Walker H W, Weavers L K. Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes[J]. Journal of Membrane Science, 2004, 237(1-2) : 213-223.
    [128]孙德智,于秀娟,冯玉杰.环境工程中的高级氧化技术[M].北京:化学工业出版社,2002.
    [129]张莉平,习晋.特殊水质处理技术[M].北京:化学工业出版社,2005.
    [130] Khanna R K, Rathore R S, Sharma C. Solar still an appropriate technology for potable water need of remote villages of desert state of India– Rajasthan[J]. Desalination, 2008, 220(1-3) : 645-653.
    [131] Msonda K W M, Masamba W R L, Fabiano E. A study of fluoride groundwater occurrence in Nathenje, Lilongwe, Malawi[J]. Physics and Chemistry of the Earth, 2007, 32(15-18) : 1178-1184.
    [132] Mjengera H, Mkongo G. Appropriate deflouridation technology for use in flourotic areas in Tanzania[J]. Physics and Chemistry of the Earth, 2003, 28(20-27) : 1097-1104.
    [133]孙玉富,于光前,赵新华.地方性氟中毒监测指标的选择[J].中国地方病学杂志,1999,18(2):157-158.
    [134] Malinowska E, Inkielewicz I, Czarnowski W, et al. Assessment of fluoride concentration and daily intake by human from tea and herbal infusions[J]. Food and Chemical Toxiclogy, 2008, 46(3) : 1055-1061.
    [135] WHO. Report: Environmental Hazardous Kill at Least 3 Million Children Aged Under 5 Every Year. 2002. Available from: .
    [136] Wang Y X, Reardon E J. Activation and regeneration of a soil sorbent for deflouridation of drinking water[J]. Applied Geochemistry, 2001, 16(5) : 531-539.
    [137] Goh E H, Neff A W. Effects of fluoride on Xenopus embryo development[J]. Food and Chemical Toxicology, 2003, 41(11) : 1501-1058.
    [138] Shivarajashankara Y M, Shivashankara A R, Gopalakrishna B P, et al. Oxidative stress in children with endemic skeletal fluorosis[J]. Fluoride, 2001, 34(2) : 103-107.
    [139] Camargo J A. Fluoride toxicology to aquatic organisms: a review[J]. Chemosphere, 2003, 50(3) : 251-264.
    [140]洪福贵,曹衍祥,杨冬,等.氟在不同环境中对儿童智力发育影响的研究[J].环境与公共卫生,2001,15(3):56-57.
    [141] Ghorai S, Pant K K. Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina[J]. Separation and Purification Technology, 2005, 42(3) : 265-271.
    [142]卢建杭,刘维屏,郑巍.铝盐混凝去除氟离子的作用机理探讨[J].环境科学学报,2000,20(6):709-713.
    [143] Vaaramaa K, Lehto J. Removal of metals and anions from drinking water by ion exchange[J]. Desalination, 2003, 155(2) : 157-170.
    [144] Kabay N, Arar ?, Samatya S, et al. Separation of fluoride from aqueous solution by electrodialysis: Effect of process parameters and other ionic species[J]. Journal of Hazardous Materials, 2008, 153(1-2) : 107-113.
    [145] Hu C Y, Lo S L, Kuan W H. Effects of co-existing anions on fluoride removal in electrocoagulation (EC) process using aluminum electrodes[J]. Water Research, 2003, 37(18) : 4513-4523.
    [146] Tahaikt M, Habbani R E, Haddou A A, et al. Fluoride removal from groundwater by nanofiltration[J]. Desalination, 2007, 212(1-3) : 46-53.
    [147] Tripathy S S, Raichur A M. Abatement of fluoride from water using manganese dioxide-coated activated alumina[J]. Journal of Hazardous materials, 2008, 153(3) : 1043-1051.
    [148]仇付国,王晓昌,王云波.活性氧化铝和骨炭除氟研究[J].西安建筑科技大学学报,2001,33(1):56-60.
    [149]王涌.饮用水骨炭除氟机理的研究[J].广州大学学报(自然科学版),2003,2(5):423-426.
    [150] Abe I, Iwasaki S, Tokimoto T, et al. Adsorption of fluoride ions onto carbonaceous materials[J]. Journal of Colloid and Interface Science, 2004, 275(1) : 35-39.
    [151]王云波,谭万春,王晓昌,等.沸石、骨炭、活性氧化铝除氟效果研究[J].西安建筑科技大学学报,2002,34(4):326-329.
    [152]黄承武,傅玉治.影响活性氧化铝和骨炭饮水除氟效能的因素[J].环境与健康杂志,1993,10(3):142-144.
    [153] E.Д.巴宾科夫.论水的混凝[M].郭连起译,北京:中国建筑工业出版社,1982.
    [154] Forbes W F, Gentleman J F, Maxwell C J. Concerning the role of aluminum in causing dementia[J]. Experimental Gerontology, 1995, 30(1) : 23-32.
    [155]梁怡婷,刘睿倩.饮用水中残余铝的危害和研究现状[J].西南给排水,2001,23(5):9-11.
    [156] Shen F, Chen X M, Gao P, et al. Electrochemical removal of fluoride ions from industrial wastewater[J]. Chemical Engineering Science, 2003, 58(3-6) : 987-993.
    [157]吴奇藩,孔庆安.半导体厂含氟废水的深度处理[J].环境工程,1994,12(6):69-72.
    [158] Pervov A G, Dudkin E V, Sidorenko O A, et al. RO and NF membrane systems for drinking water production and their maintenance techniques[J]. Desalination, 2000, 132(1-3) : 315-321.
    [159] Hu K, Dickson J M. Nanofiltration membrane performance on fluoride removal from water[J]. Journal of Membrane Science, 2006, 279(1-2) : 529-538.
    [160] Lhassani A, Rumeau M, Benjelloun D, et al. Selective demineralization of water by nanofiltration application to the defluorination of brackish water[J]. Water Research, 2001, 35(13) : 3260-3264.
    [161] Zhang G H, Gao Y, Zhang Y, et al. Removal of fluroride from drinking water by a membrane coagulation reactor (MCR)[J]. Desalination, 2005, 177(1-3) : 143-155.
    [162] Zhao Z Y, Gu J D, Fan X J, et al. Molecular size distribution of dissolved organic matter in water of the Pearl River and trihalomethane formation characteristics with chlorine and chlorine dioxide treatments[J]. Journal of Hazardous Materials B, 2006, 134 (1-3) : 60-66.
    [163]国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [164] Sundaramoorthy K, Brügger A, Panglisch S, et al. Studies on the minimisation of NOM fouling of MF/UF membranes with the help of a submerged“single”capillary membrane apparatus[J]. Desalination, 2005, 179(1-3) : 355-367.
    [165] Singer P C. Humic substances as precursors for potentially harmful disinfection by-products[J]. Water Science and Technology, 1999, 40(9) : 25-30.
    [166] Hwang C J, Sclimenti M J, Krasner S W, et al. Characterization and reactivity of hydrophilic natural organic matter (NOM) in a low-humic water[C]. Process of Water Quality Technology Conforence, 1999, 1222-1239.
    [167] Shin H S, Monsallier J M, Choppin G R. Spectroscopic and chemical characterizations of molecular size fractionated humic acid[J]. Talanta, 1999, 50(3) : 641-647.
    [168]许保玖,龙腾锐.当代给水和废水处理原理[M].北京:高等教育出版社,2000.
    [169] Lee J W, Choi S P, Thiruvenkatachari R, et al. Submerged microfiltration membrane coupled with alum coagulation/powdered activated carbon adsorption for complete decolorization of reactive dyes[J]. Water Research, 2006, 40(3) : 435-444.
    [170] Li Q, Snoeyink V L, Marinas B J, et al. Pore blockage effect of NOM on atrazine adsorption kinetics of PAC: the roles of PAC pore size distribution and NOM molecular weight[J]. Water Research, 2003, 37(20) : 4863-4872.
    [171] Humbert H, Gallard H, Suty H, et al. Natural organic matter (NOM) and pesticides removal using a combination of ion exchange resin and powdered activated carbon (PAC)[J]. Water Research, 2008, 42(1-3) : 1635-1643.
    [172] Engler J, Wiesner M R. Particle fouling of a rotating membrane disk[J]. Water Research, 2000, 34(2) : 557-565.
    [173]张凤.混凝-微滤处理滦河水的研究[D].天津:天津大学,2007.
    [174] Simpson K L, Hayes K P. Drinking water disinfection by-products: an Australian perspective[J]. Water Research, 1998, 32(5) : 1522-1528.
    [175] Krasner S W, McGuire M J, Jacangelo J G, et al. The occurrence of disinfection by-products in US drinking water[J]. Research and Technology Journal of American Water Works Association, 1989, 81(8) : 41-53.
    [176]罗虹,顾平,杨造燕.投加粉末活性炭对膜阻力的影响研究[J].中国给水排水,2001,17(2):1-4.
    [177] Glucina K, Alvarez A, La?néJ M. Assessment of an integrated membrane system for surface water treatment[J]. Desalination, 2000, 132(1-3) : 73-82.
    [178] Ho C C, Zydney A L. A combined pore blockage and cake filtration model for protein fouling during microfiltration[J]. Journal of Colloid and Interface Science, 2000, 232(2) : 389-399.
    [179] Lee E K, Chen V, Fane A G. Natural organic matter (NOM) fouling in low pressure membrane filtration-effect of membranes and operation modes[J]. Desalination, 2008, 218(1-3) : 257-270.
    [180] Yang H C, Han S K, Ji H K. Role of hydrophobic natural organic matter flocs on the fouling in coagulation-membrane processes[J]. Separation and Purification Technology, 2008, 62(3) : 529-534.
    [181] Oh H, Yu M, Takizawa S, et al. Evaluation of PAC behavior and fouling formation in an integrated PAC-UF membrane for surface water treatment[J]. Desalination, 2006, 192(1-3) : 54-56.
    [182] Choi S, Kim S, Yoon J, et al. Particle behavior in air agitation submerged membrane filtration[J]. Desalination, 2003, 158(1-3) : 181-188.
    [183] Kazpard V, Lartiges B, Frochot B C, et al. Fate of coagulant species and conformational effects during aggregation of a model of a humic substance with Al13 polycations[J]. Water Research, 2006, 40(10) : 1965-1974.
    [184]王凯雄.水化学[M].北京:化学工业出版社,2001.
    [185]王志红,崔福义,张霄宇.饮用水过滤中的除铝实验研究[J].工业用水与废水,2001,32(5):7-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700