松原市龙坑水源地水量水质演化特征及预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水资源是水资源中的重要组成部分,特别是在干旱半干旱地区的北方城市,地下水成为人们生产生活中不可或缺的资源。随着社会经济的迅速发展,近年来地下水资源的开采量也相应增加,导致水量的减少和水质的恶化,随之产生的各种生态环境问题也越来越严重。
     针对上述问题,本文以松原市龙坑水源地及其周边地区为研究对象,通过野外调查、抽水试验和室内试验等工作,大量收集研究区现有钻探、抽水试验、地下水动态等相关资料。在分析了大量的地质、水文地质资料、抽水试验资料的基础上,采用抽水试验法、泉流量反推法、地下水动态推求法、室内试验等方法确定了研究区的各水文地质参数;采用同位素法、水化学动力学法计算了地下水可更新能力,确定了地下水的循环特征;结合地下水长期观测资料和野外调查取样测试分析资料对研究区地下水水质演化特征进行了分析;采用内梅罗指数法、投影寻踪法、物元可拓法分析评价了地下水水质类型;确定了研究区地下水中的特征污染物,采用室内实验法等手段对特征污染物的迁移转化规律进行了研究;提出并采用累积水量均衡法计算了地下水资源量和可开采资源量;采用多年长系列资料进行识别和验证建立了地下水水量水质模拟模型,对不同开采方案下研究区地下水流场进行预测预报,得到在将来可能的水资源规划的前提下地下水水量水质演化状态。在此基础上,确定了地下水水量水质演化的影响因子,建立了地下水水量水质演化的评价指标体系,并利用该体系对研究区的地下水水量水质演化方向及趋势进行了分区评价。
     通过对松原市龙坑水源地下水水量水质演化的分析和评价,为松原市地下水的合理开发利用提供了可靠依据,对地下水的整体调度具有重要的意义,也为松原市社会经济的平稳发展提供了保障。
Songyuan City located in the arid and semi-arid area of China with poor precipitation and high evaporation. It is an ecological fragile region of Jilin Province. The local development of society and economy has been affected by water sources shortage. Longkeng Water Source is one of the most important water sources in Songyuan City. With the increase of groundwater explotation water supply of Longkeng Water Source decreased year by year. In additioin, sacles of fertilization has caused non-point pollution in groundwater.
     In order to protect the water source to confirm the sustainable utilization of groundwater, the characteristics of groundwater circulation and its evolution regulation has been study in this thesis. The appraise system of groundwater quantity and quality evolution is built and applied in the study area. It is of great significance for social stability and sustainable development in Songyuan City.
     Based on the collection of geologic and hydrogeologic data, quantitave and qualitative analysis are combined. Field investigation and indoor experiments are applied in the study and predication of groundwater quantity and quality evolutioin characteristics. Which include the next five parts.
     1. According to field investigation and collection of numbers of drilling data, pumping test data and groundwater dynamic data, the aquifer of study area is confirmed to be the late Pleistocene sand-gravel prous aquifer. The hydrogeological cross sections are ploted according to the drill to analysis the distribution of aquifer in space. Connected with the groundwater flow field the water sheld is confirmed correctly. It is a unclosed basin. The watersheld of groundwater is about six to ten kilometers south to the landsurface.
     2. based on the analysis of corresponded data, pumping tests, spring discharge inverse method, groundwater dynamic method, indoor experiment are applied to confirm hydrologic and hydrogeologic parameters. Isotope and groundwater dynamic method are applied to calculate the renewability of groundwater.
     The results of isotope method show that the test result along the direction of groundwater flow is steady. There is no obvious difference of 8D between groundwater and precipitation. The value of theδ18 increase from recharge area to discharge area. It shows that the recharge of groundwater is alomt from precipitation. Groundwater discharge in the north boundary of bench terrace. The rate of ciculation is 0.1466km/a.
     On the other hand, the outcome of hydrogeochemistry and hydrochemical dynamics along three flow lines show that the deposit and solution of calcite, dolomite, gypsum and halite are the main factors of chemical constitution in groundwater. It will spend 112 years for groundwater move from recharge area to discharge area. The results the two methods are generally the same.
     3. Cumulative water balance method is proposed to get the quantity of groundwater resource and exploitable amount. According to this method, the mean annual groundwater recharge source is 88.305 million m3. the exploitable amount is 75.059 million m3. and the amount of spring discharge is 27.23 million m3. Groundwater system is in the burden equilibrium status on average condition. It is high flow year in 2008. The amount of groundwater recharge is 120.65 million m3. The exploitation amount is 55.65 million m3. The discharge of springs is 26.66 million m3. The amount of groundwater flow from the boundary is 16.32 million m3. The amount of recharge is large than discharge. So it was in the positive balance in 2008.
     Based on the appraise of groundwater resource the numerical model of groundwater quantity is built to forecast the evolution of groundwater quantity. The results of cumulative water balance method and groundwater model shows that it is in the burden equilibrium for groundwater in this area.
     As groundwater are mostly exploited for irrigation, it is in low demand of quality. After Hadashan hydro-junction being put into service. The scheme of exchange groundwater exploitation by surface water is proposed. According to groundwater quantity model, five different exploitation schemes are palyed and the fifth scheme is confirmed to be the best one.
     4. Nemerow index method, Projection Pursuit Method and Matter-Element Extension Method are applied in the appraise of groundwater quality type. The results show that the water quality type is generally the first class. The chemical types of groundwater in study area are generally HCO3-Ca and HCO3-Na·Ca. The specific pollutant is 3-nitrogen.
     The transfer rule of specific pollutant is studied by indoor experiments. The results show that the adsorption of NH4+in soil balanced in 60 minutes. The maxmuim adsorb quantity of NH4- is 19.58mg/kg which takes 39.2% to 78.3%NH4- in the solution. The adsorb rate is fast at first. After 30 minutes the rate slow down to less than 00.1mg/kg. The adsorption stops after 90 minutes. The desorption rate of NH4+is fast at first. It became steady in 10 hours. The desorption of NO3- vary fast in the first 7 hours. The desorption bacome equilibuim in 10 hours. The maximum desorption quantity is from 77.34 mg/kg to 175.64mg/kg. the leaching experiments show the adsorption quantity of NH4+takes 82.21%of the total in solution. NO2- is 45.82%and NO3- 45.82%. As N4+can be easily adsorbed by soil. So the adsorption ratio is the largest. NO2+ is the intermediate which can be easily transformed. So the adsorption ratios of NH4+and NO2-are correspondly more.
     Based on groundwater quantity numerical model, groundwater quality numerical model is built. The 3-nitrogen and TDS are chosen to be the simulation factors. The predicting result shows the slow increase of them in groundwater in future.
     5. the appraise system of groundwater quantity and quality is proposed. And the main factors of groundwater quantity and quality evolution are confirmed. Take Longkeng Water Source as an example, the main factors of groundwater quantity and quality in this area are filtered. And the weight of each factors are confirmed too. The evolution of groundwater quantity and quality in typical year 2000,2008 and 2015 are appraised by fuzzy comprehensive evaluation method. The result shows that the tendency of groundwater evolution by time is "poor"→"good"→"poor". The main reason is that the precipitation in 2000 is little (353.20mm) and large in 2008 (621.8mm). So it is well recharged by infiltration of rainfall in 2008. But with the increase of groundwater exploitation in future, the main trendency of groundwater quantity and quality evolution is still poor.
     According to the appraise result, groundwater quantity and quality will generally maintain the status quo in terrace in 2015. Groundwater level decrease in Wangfu Terrace section (Ⅲ-4 and I1) in the east of terrace. Groundwater quality will develop in the poor direction. With scales of groundwater exploitation for irrigation and fertilizer utilization, groundwater level will decline and the spring will decrease. The chemical elements in groundwater will increase further. In the slightly inclined plain in the west groundwater will keep the status quo in future.
引文
[1]赵宝峰.干旱区水资源特征及其合理开发模式研究[D].长安大学.2010年.
    [2]万力,曹文炳,胡伏生等.生态水文地质学[M].地质出版社.2005年.
    [3]松原市城市供水规划[R].吉林省水电勘测设计研究院.1992年.
    [4]松原市水资源公报[M].松原市水政水资源管理办公室.2006年.
    [5]Chatterjee, Rana, Gupta, et al. Dynamic groundwater resources of National Capital Territory, Delhi assessment, development and management optioins. Environmental Earth Sciences.2009, 59(3):669-686.
    [6]Igor Jemcov. Water supply potential and optimal exploitation capacity of karst aquifer systems. Environmental Geology.2007,51(5):767-773.
    [7]Belousova A.P., A concept of forming a structure of ecological indicators and indexes for regional sustainable development[J]. Environmental geology,2000,39(11):1227-1236.
    [8]Babu Rao P., Subrahmanyam K, Dhar R.L.Geoenvironmental effects of groundwater regime in andhra pradesh, India[J]. Environmental Geology,2001,40(4-5):632-642.
    [9]Villarroya F.,Aldwell C.R.,Sustainable development and groundwater resources exploitation[J]. Environmental Geology,1998.34(2/3).111-115.
    [10]陈葆仁.重视人类活动对地下水的影响[J].地球科学进展,1996,11(5):469-471.
    [11]韩再生.从区域到流域尺度认识地下水流一第33届国际水文地质大会综述[J].水文地质工程地质,2005,2:119-121.
    [12]张永波.水T环研究的现状与趋势[M].北京:地质出版社,2001.
    [13]张瑞怡.黄河流域地下水资源的合理开发利用[J].人民黄河.1993,(7):5-8.
    [14]陈德华,秦毅苏,工昭.黄河流域地下水资源开发利用与潜力分析[J].地理学与国土研究.2000,16(2):48-52.
    [15]林学钰,廖资生,苏小四等.黄河流域地下水资源及其开发利用对策[J].吉林大学学报(地球科学版).2006.36(5):35-42.
    [16]工浩,贾仰文,王建华等.人类活动影响下的黄河流域水资源演化规律初探[J].自然资源学报.2005,20(2):157-161.
    [17]姚秀菊,安永会,李旭峰等.基于GIS的黄河三角洲地区浅层地下水开发潜力评价[J].勘察科学技术.2005.(4):38-41.
    [18]张建伟.松原市地下水资源与环境综合信息模拟管理研究[D].吉林大学.2004年.
    [19]杨虹.锦州市大、小凌河扇地水源地地下水水量与水位预测[J].辽宁城乡环境科技.2004,24 (3):19-22.
    [20]郭占荣.与西北内陆盆地地下水可利用量密切相关的若干问题[J].地下水.1996,18(2):47-48.
    [21]潘世兵,王忠静,邢卫国.河流-含水层系统数值模拟方法探讨[J].水文.2002,22(4):19-21.
    [22]邵新民.中国西北内陆干旱盆地地下水资源评估与开发[J].水文地质工程地质.2002,(3):20-23.
    [23]Emilio Custodio,Aquifer overexploitation:what does it mean?[J]. Hydrogeology Journal,2002 (10): 254-277.
    [24]Tang Chang-yuan, Sakura, Yasuo. The characteristics of geochemistry in a headwater wetland, Chiba, Japan[J]. IAHS-AISH Publication.2005,294:167-175.
    [25]Serhal H, Bernard D. Impact of fertilizer application and urban wastes on the quality of groundwater in the Cambrai Chalk aquifer. Northern France[J]. Environmental Geology.2009.57(7):1579-1592.
    [26]W.M. Edmunds.J.J. Carrillo-Rivera. Geochemical evolution of groundwater beneath Mexico City[J]. Journal of Hydrology.2002.258(1-4).1-24.
    [27]Q.Mei Yu.Chanpin Li etc. Effects of groundwater and harvest intensity on alkaline grassland ecosystem dynamics-A Simulation Study[J]. Plant Ecology.1998.135:165-176.
    [28]殷跃平.澳大利亚水文地质研究新进展[J].水文地质工程地质,1990,(3):61.
    [29]张丽君编译.美国《区域和全国尺度地下水系统调查》[J].国十资源,2002,(1):52-53.
    [30]Evgenii V. Pinneke A Recent concept of hydrogeology and its ecological problems[J]. Earth Science Frontiers (China University of Geo-sciences, Beijing)1996,3(1-2):49-56.
    [31]曹玉清,胡宽瑢,李振拴.地下水化学动力学与生态环境区划分[M].北京,科学出版社.2009年.
    [32]张宗祜,施德鸿,沈照理等.应积极开展人类活动影响下地下水环境的演化及发展的研究[J].水文地质工程地质.1992.19(5):12.
    [33]黎涛,杨俊仓,余家懿等.甘肃昌宁盆地下游区地下水环境研究[J].甘肃地质.2007.16(3):66-70.
    [34]姜滨.大沽河中下游水源地水质演化及预测[D].青岛大学.2007年.
    [35]牛文明,李舟.国内地下水水质演化规律研究综述[J].山西建筑.2009,35(29):84-86.
    [36]刘文生.京津以南河平原地下水水质演化机制的探讨[J].勘察科学技术.1999,(3):36-39.
    [37]徐冠立,孙传敏,孙遥.成都平原微承压地下水成因机制及水质分析[J].四川地质学报.2008,28(4):319-323.
    [38]左止金,罗文金,工献坤等.淮河流域沙颍河段浅层地下水水质演化特征[J].地质灾害与环境保护.2007.18(3):67-71.
    [39]邓晓颖,贾杰华,牛树敏等.郑州沿黄区浅层地下水水质演化趋势分析[J].人民黄河.2006,28(7):78-79.
    [40]段磊,王文科,白小满等.西安市饮用水源地地下水环境演化及可持续利用研究[J].安全与环境学 报.2008,8(5):80-83.
    [41]付金花,熊黑钢.人类活动对奇台县地下水变化的影响[J].水资源与水工程学报.2007,18(2):12-15.
    [42]邢立亭,周瑞,刘莉等.清泥沟水源地地下水水环境演化及其控制研究[J].中国农村水利水电.2008,(9): 14-16.
    [43代述勇,雷加强,赵景峰等.塔里木盆地南苑策勒绿洲区地下水TDS空间变异及水化学特征分析[J].中国沙漠.2010,30(3):722-729.
    [44]张宗祜,施德鸿,沈照理等.人类活动影响下华北平原地下水环境的演化与发展[J].地球学报.1997.18(4):337-344.
    [45]张宗祜,沈照理,薛禹群等.华北平原地下水环境演化[M].北京:地质出版社,2000年.
    [46]张宗祜,张光辉,任福弘等.区域地下水演化过程及其与相邻圈层的相互作用[M].北京:地质出版社,2006年.
    [47]海河973项目办公室.国家973项目“海河流域水循环演变机理与水资源高效利用”介绍[J].水力学报.2007,38(7):893-894.
    [48]刘方,罗海波,刘鸿雁等.土地利用方式对喀斯特浅层地下水质量的影响[J].矿物学报.2007,27(3-4):540-544.
    [49]曲焕林,程莉蓉等.人类生存的地质环境问题[C].地质出版社,1998年.
    [50]张光辉,聂振龙,陈宗宇.全新世以来华北平原层圈间水循环演化过程与区域地下水演变周期性[J].地球学报,2001,22(4):293-297.
    [51]林学钰,王金生等.黄河流域地下水资源及其可更新能力研究[M].郑州:黄河水利出版社,2006年.
    [52]张光辉,刘少玉,谢悦波等.西北内陆黑河流域水循环与地下水形成演化模式[M].北京:地质出版社,2005年.
    [53]王文科,王雁林,段磊.关中盆地地下水环境演化与可再生维持途径[M].郑州:黄河水利出版社,2006年.
    [54]郭清海.山西太原盆地孔隙地下水系统演化与相关环境问题成因分析[D].中国地质大学,2005年.
    [55]钱家忠,吴剑锋,朱学愚等.地下水资源评价与管理数学模型的研究进展[J].科学通报.2001,,4(2):99-103.
    [56]何庆成.全球地下水资源的战略性选择及优先领域研讨会在巴黎召开[J].地质通报.2004,23(5-6):443.
    [57]施雅风,范建华.中国中纬度地带气候暖干化对水资源的影响[J].水科学进展.1991.2(4):217-223.
    [58]何新林,郭生练.气候变化对新疆玛纳斯河流域水文水资源的影响[J].水科学进展.1998.9(1): 77-83.
    [59]朱延华,刘淑芬,郭永海.河北平原地下水动力环境演化规律及影响因素[J].地球科学(中国地质大学学报).1995,20(4):433-437.
    [60]马金珠,朱中华,李吉均.塔克拉玛干沙漠南缘地下水在脆弱生态环境中的作用[J].兰州大学学报(自然科学版).2000,36(4):88-95.
    [61]徐恒力,肖国强,李红.人为活动条件下河北平原第四系地下水系统的演变[J].地质科技情报.2002,21,(1):7-13.
    [62]贾金生,刘昌明.华北平原地下水动态及其对不同开采量相应的计算——以河北省栾城县为例[J].地理学报.2002,57(2):201-209.
    [63]袁玉江.阿勒泰地区气候-人类活动-环境变化相互关系初探[J].新疆大学学报.1989,6(3):68-73.
    [64]苏里坦,宋郁东,张展羽.近40a天山北坡气候与生态环境对全球变暖的响应[J].干旱区地理.2005,28(3):342-346.
    [65]冯波.下辽河平原地下水可更新能力及水量实时预报模型研究[D].吉林大学.2010年.
    [66孙自永,马瑞,周爱国.中国西北地区内陆河流域面向生态环境的水资源开发模式研究[J].干旱区资源与环境.2003,17(1):28-31.
    [67]工雁林,王文科,杨泽元等.渭河流域而向生态的水资源合理配置与调控模式探讨[J].干旱区资源与环境.2005,19(1):14-21.
    [68]陈崇希.“防止模拟失真,提高防震性”是数值模拟的核心[J].水文地质工程地质.2003,(2):1-5.
    [69]姚磊华.地下水模型的Neumann展开Monte-Carlo随机有限元法[J].煤田地质与勘探.1997,25(4):31-34.
    [70]姚磊华.地下水水流模型的Taylor展开随机有限元法[J].煤炭学报.1996,21(6):566-570.
    [71]蒋任飞,白丹,阮本清等.石嘴山市地下水流模型及其数值模拟[J].地下水.2005,27(6):447-451.
    [72]叶勇,迟宝明,施枫芝等.物元可拓法在地下水环境质量评价中的应用[J].水土保持研究.2007,14(2):52-54.
    [73]汤洁,李艳梅,卞建民等.物元可拓法在地下水水质评价中的应用[J].水文地质工程地质.2005,(5):1-5.
    [74]谭永明,李森焱.改进的物元可拓法在水质评价中的应用[J].技术与应用.2008,(4):34-36.
    [75]张云龙,曹升乐.物元可拓法在黄河水质评价中的改进及应用[J].2007,37(6):91-94.
    [76]工顺久,杨志峰,丁晶.关中平原地下水资源城承载力综合评价的投影寻踪方法[J].资源科学.2004.26(6):104-110.
    [77]刘中培.农业活动对区域地下水变化影响研究——以石家庄平原区为例[D].中国地质科学院.2010年
    [78]叶浩,钱家忠,黄夕川等.投影寻踪模型在地下水水质评价中的应用[J].水文地质工程地质.2005,(5):9-12.
    [79]FENG Bo, XIAO Changlai, ZHOU Yubo. Groundwater Level Forecast and Prediction of Songnen Plain in Jilin Province [P] Flow in Porous Media--From Phenomena to Engineering and Beyond Conference Paper from 2009 International Forum on Porous Flow and Applications, Sydney Australia:Orient Academic Forum,993-997.
    [80]DU Chao, XIAO Chang-lai, LIANG Xiu-juan. Groundwater Numeric Simulation in the Water Source Site of Shuangcheng City [P]. Flow in Porous Media--From Phenomena to Engineering and Beyond Conference Paper from 2009 International Forum on Porous Flow and Applications, Sydney Australia: Orient Academic Forum,794-798.
    [81]方樟,肖长来,马喆等.大型基坑降水工程弱透水层参数的计算[J].工程勘察.2010,38(4):39-43.
    [82]方樟,肖长来,姚淑荣等.黑龙江宝清露天煤矿首采区多层含水层地下水数值模拟研究[J].吉林大学学报(地球科学版).2010,40(3):6]0-616.
    [83]杜超,肖长来,王益良等.GMS在双城市城区地下水资源评价中的应用[J].水文地质工程地质.2009,36(6):32-36.
    [84]王大纯,张人权,史毅虹,等.水文地质学基础[M].北京:地质出版社,1995年
    [85]Zhang Fang, Chang-lai Xiao and Xiu-juan Liang. Experimental Study on Nitrogen Migration and Transformation of Longkeng Water Source in Songyuan Province[P]. EMEM2010:367.
    [86]FANG Zhang, XIAO Chang-lai, MA Zhe, HUANG Shuang. Experimental Research on Purification Capability of Different Media to the Water of Yitong River. The 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2010. Chengdu), ISBN 978-1-4244-4713-8.
    [87]冯波,肖长来,梁秀娟等.吉林西部水—岩相互作用反响模拟[J].水资源保护,2009,25(6):1-3,7.
    [88]范伟,肖长来,熊启华等.吉林省平原区地下水功能可持续性评价[J].水资源保护.2009,25(3):4-17.
    [89]张冬冬,肖长来,梁秀娟等.植物修复技术在水环境污染控制中的应用[J].水资源保护.2010,26(1): 63-65.
    [90]肖长来,梁秀娟.吉林省西部水资源开发潜力及雨洪资源利用研究.变化环境下的水资源响应与可持续利用[P](中国水利学会水资源专业委员会2009学术年会论文集).大连:大连理工大学出版社,2009.11:214-218.
    [91]沈珍瑶,杨志峰.黄河流域水资源可再生性评价指标体系与评价方法[J].自然资源学报.2002.17(2): 188-196.
    [92]杨晓华,杨志峰,沈珍瑶等.水资源可再生能力评价的遗传投影寻踪方法[J].水科学进展,2004,15(1):73-76.
    [93]张光辉,费宇红,刘克岩,等.海河平原地下水演变与对策[M].北京:科学出版社,2004年.
    [94]林学钰, 王金生等.黄河流域地下水资源及其可更新能力研究[M].郑州:黄河水利出版社,2006:91-95.
    [95]Xue Jiang. Changlai Xiao and Xiujuan Liang. Application of Fuzzy Comprehensive Evaluation Method in Groundwater Quality Assessment in Handan City[P]. EMEM2010:513 (EI,ISI).
    [96]付意成,魏传江,工瑞年等.水量水质联合调控模型及其应用[J].水电能源科学.2009,27(2):31-35.
    [97]姜纪沂.地下水环境健康理论与评价体系的研究及应用[D].吉林大学.2007年.
    [98]李升.地下水环境健康预警研究——以黄河下游悬河段(河南)为例[D].吉林大学.2008年.
    [99]夏军.水资源安全度量:关于水资源承载力的研究于挑战(一)[J].河海水利,2002,,2(2):180-188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700