应用海洋冷量的区域性空调的机理及构建研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源和环保是当今社会特别关注的两大现实问题。利用地下含水层这一天然通道,将吸收了海洋冷量的冷媒水从沿海地区输运至用冷区域,以构建大规模区域性空调系统,可以充分利用蕴藏量丰富、环境友好的海洋冷量,达到利用新能源和保护环境的目的。
     本学位论文提出了一种应用海洋冷量的区域空调技术。以与大气环境相隔绝的、具有良好透水性富水性的、互相连通的水文地质结构作为输水通道,借助注水井将吸收了海洋冷量的冷媒水注入地下含水层,以实现人工灌注;冷媒水在自然水力梯度和人工水力梯度共同作用下不断流动,与原地下水不断换热、换质以冷却、淡化原地下水,在用冷区域设置大流量大扬程的抽水井用以抽取冷却、淡化后的地下水,作为区域性空调的冷源使用。本学位论文主要对冷媒水在多孔介质运移过程中涉及的流动、换热和传质等特性进行研究。
     本学位论文首先建立人工强迫径流下冷媒水的流动模型,探究了流量及含水层参数对冷媒水流动范围的影响;根据实际问题进行合理的简化和假设,建立结合流动过程的冷媒水热量运移模型;应用控制容积法和交替方向隐式求解方法进行数值模拟;分析了热动力弥散系数、岩层热容以及水力传导系数对热量运移过程的影响;针对实际中因注入水与原含水层存在矿化度差异的情况,建立结合水流运动方程和水动力弥散作用的二维溶质运移模型;利用有限单元法进行数值模拟,并研究了分子扩散作用和水力传导系数对水质淡化过程的影响程度。研究表明,该方案可以有效地降低含水层中的地下水温度;同时达到淡化水质的目的;借助大流量大扬程抽水井将冷媒水过量注入地下,以有效控制地面沉降,并促成已沉降地面的微量回升。最后,从能源利用和地质灾害发生的角度对该方案进行了讨论和整体评估,证明该技术符合可持续发展的目标与原则。
     本学位论文验证了利用地下含水层输运海洋冷量的大规模区域空调供冷系统的构想,突破了常规的含水层“储能”的利用模式,从一个全新的角度开拓了含水层的作用。该方案是一种经济、技术可行的区域性空调技术,具有节约能源、保护环境的积极意义,是适合可持续发展的循环经济模式。
At present, the energy-saving and the environmental protection issues have become two important problems concerned all over the world. Large-scale regional energy-saving air-conditioning system for district heating and cooling could be established by transferring the chilled water carrying cooling capacity of seawater to the cities nearby through underground aquifer, which will make full use of environmental-friendly cooling capacity of seawater on the aim of softening power shortage, exploiting new energy source (cooling capacity of seawater) and protecting ecological environment.
     In this thesis, a new technology of the regional air-conditioning system was put forward, in which the cooling capacity of seawater was used as a new kind of cooling source. According to the appropriate hydro-geological structure with good permeability and water bearing ability, which is also insulated from the open air, the chilled water was injected excessively into underground aquifer through injecting wells. Basing on the effect of pressure difference caused by interaction of the natural hydraulic gradient and the artificial one, the chilled water mixed with groundwater through the movement of fluid-flowing, heat-transferring and mass-exchanging was taken out by pump wells with large-flowing and high-lifting. As a result, the mixed chilled water could be used for air-conditioners in refrigeration consumption areas. In this thesis, the characteristics of flow movement, heat exchange and salinity change concerning chilled water transferring in porous media were mainly studied.
     Firstly, the flowing model of chilled water on the condition of forced flow was created. The injecting water volume and the geological parameters of underground aquifer, which have effect on the flow of chilled water, were studied. Secondly, the coolant transportation model combined with the seepage flow process was simplified appropriately and assumed according to realistic condition. Applying two-step calculation methods, control volume method (CVM) and alternating direction implicit method (ADI), the numerical simulation variations of heat during the migration process was analyzed. On the other hand, the influence of the thermal dispersion coefficient, the rock heat capacity and the hydraulic conductivity were predicted. Thirdly, concerning the salinity difference between the initial water located in aquifer and injected chilled water, the finite element method was used to simulate the two-dimension solute transport model, which combined the flow movement with the hydrodynamic dispersion. Besides, the molecular diffusion coefficient and the hydraulic conductivity on the salinity changing process were investigated. The results indicated that the temperature and the salinity of groundwater could be decreased effectively. The chilled water injected excessively into underground aquifer through large-flowing and high-lifting pumping wells could control the land subsidence effectively so that the subsided land would lift to a certain extent. Finally, this technology of transferring the chilled water carrying cooling capacity of the seawater through underground aquifer was proved to comply with sustainable development in views of energy utilization and geological disaster prevention.
     The conception of making chilled water for large-scale regional energy-saving air-conditioning system by exchanging heat with the seawater and using the underground aquifer as a natural passage was proved feasible. Aquifer is always used for thermal energy storage but it would play a different role in this brand-new technology. Generally speaking, the regional air-conditioning scheme is proved economic, effective and energy-saving, and also accordant with sustainable development and circular economic mode.
引文
[1]赵欣,高山.美国电力市场中的需求响应与高级计量[J].电力需求侧管理,2007,29(04):68-71.
    [2]入冬后全国用电量再次攀升[J],东北电力技术,2007,(01):8-8.
    [3]段华铭.温室效应下的写字楼市场对策[J].上海商业,2007,(08):15-15.
    [4]侯艳声,郑铣鑫,应玉飞.中国沿海地区可持续发展战略与地面沉降系统防治[J].中国地质灾害与防治学报,2000,11(02):30-33,50.
    [5]寿青云,陈汝东.借鉴国外经验积极发展我国的区域供冷供热[J].流体机械,2003,31(11):47-50
    [6]王刚.瑞典区域供冷技术对中国的启示[J].建筑热能通风空调,2004 ,23(03):24-29,60.
    [7]惠荣娜,徐奇,李德英,等.我国区域供冷的现状及发展[J].建筑节能,2007 ,35(03):47-50.
    [8] Young-hak Song, etc. Effects of utilizing seawater as a cooling source system in a commercial complex [J].Energy and Buildings, 2007, 39(10):1080-1087.
    [9] S. Harada, T. Watanabe, Y. Akashi,et al.Utilization of seawater for building HVAC&R system[A].Part 3. Outline of the system and the results of measurement 2001, in:Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan [C], 2002:1175-1176
    [10]赵建成,牛利敏,张志毅.低温区域供冷技术的实例与研究分析[J].《北京工业大学学报》,2006,32(10):922-924.
    [11]戴通涌,刘安田,张素云,等.重庆市应用区域供冷的可行性分析[J].制冷与空调(四川),2005,(z1):57-59.
    [12]邱东.广州大学城区域供冷系统[J].制冷空调与电力机械,2007,28(04):76-79.
    [13]曾梅香,高宝珠,黎雪梅,等.浅源异层采灌井群循环开发利用技术--以天津市海河商贸区古文化街供热制冷项目为例[J].地质调查与研究,2007,30(02):128-133.
    [14]顾勇,寿青云,杨涌泉,等.以天然气为区域供冷供热系统能源的经济性分析[J].上海煤气,2008,(01):30-33.
    [15]鲍劲松.城市住宅区区域供冷供热分析[J],工程建设与档案,2005,19(06):514-515.
    [16]杜乐乐,马捷.一种提取次表层海水冷量的新型换热方案[J],太阳能学报,2008,29(09):1057-1062.
    [17]刘畅.地源热泵技术在中国的发展与前景展望[J].中国建设信息:供热制冷,2008,(09):16-17
    [18] Tingsheng Xu.现代地源热泵先锋.中国建设信息:供热制冷,2008,(10):42-42
    [19]张明杰,王景刚,鲍玲玲.我国地源热泵的发展现状及国外热泵推广策略[J].河北工程大学学报(自然科学版),2008,25(02):25-28.
    [20]李良.节能环保的地源热泵[J].科技视野,2005,(05X):29-29.
    [21]罗迎宾,梁路军,季柳金.地源热泵在建筑节能领域的应用[J].建筑节能,2008,(09):56-58
    [22]王艳霞,蒋绿林,高伟.地源热泵长期运行对生态环境的影响[J].安徽农业科学,2008,36(24):10571—10672,10691
    [23]余红海,周亚素,雷鸣.浅谈地源热泵空调系统的分类及其优越性[J].节能技术,2006,24(05):441-445
    [24]美国:地源热泵是目前效率最高供热系统[J].水务世界,2008,(02):54-54
    [25]夏崇清.美国地源热泵产业步入“黄金时代”[J].中国建设信息:供热制冷:2008,(10):44-44
    [26]中国地理学会,中国海洋地理,科学出版社[M],1996.9
    [27] John Andrepont . Integration of energy storage with seawater air conditioning (SWAC) systems[C].In:The Proceedings of the Innovative Energy Systems Workshop. Honolulu,2003:6-12
    [28] Toronto City Council. Deep Lake Water Cooling-Old City Hall.Policy and Finance Committee, Report 5, Clause 33. June 27, 28 and 29, 2006
    [29] G.. C. Nihous, M. A. Syed. A financing strategy for small OTEC plants [J]. Energy Conversion and Management, 1997(3):201-211
    [30] P. Tim, W.S. Joyce. Lake-source cooling, ASHRAE Journal 44 (4) (2002):37-39
    [31] Enwave Announces Maple Leaf Square will connect to Deep Lake Water Cooling[N]. Enwave News, May 25, 2007
    [32] Middle East Company News Wire,Copyright 2005 AME Info FX, LLC. All Rights Reserved December 6, 2005 Tuesday 1:39 PM GMT
    [33] Li Zhen, D.M. Lin, H.W. Shu, et al.District cooling and heating with seawater as heat source and sink in Dalian, China[J].Renewable Energy, 2007.15:2603-2616
    [34]李晓明.地下水,都可以永续利用吗?——访国际地质科学联合会主席张宏仁[J],山东国土资源,2007,23(04):54-55
    [35]田中.地下水在呻吟[J].沿海环境, 2002,(05):22-23.
    [36]魏子新,杨桂芳,俞俊.上海市承压含水层系统应力_应变特征及地面沉降防治对策[J].中国地质灾害与防治学报,2005,16(01):5-8.
    [37]王锦程,万曼影,马捷.地下含水层储能技术的应用条件及其关键科学问题[J].能源研究与信息, 2003,19(04):229-235.
    [38]崔俊奎,赵军,李新国,等.跨季节蓄热地源热泵地下蓄热特性的理论研究[J]. 2008,29(08):920-926
    [39]马捷,王明育,戴斌.地下含水层的储能和过程特性的分析[J].华北电力大学学报, 2004,31(06):58-60.
    [40]张学文.宁夏地下水可持续利用与保护[J].地下水,2007,29(05)::12-13,107.
    [41]罗富绪(编译).国外地下储气库发展综述[J],油气储运, 1998,17(03):58-59
    [42]陈鸿汉,等著.沿海地区地下水环境系统动力学方法研究[M].地质出版社,2002年02月
    [43]方生,陈秀玲.地下水开发引起的环境问题与治理[J].地下水,2001(01):8-11
    [44] Frederick Bloetscher, P.E., President.“How Much Do We Really Know About How Aquifer Storage and Recovery Works in the Long Term?”. ASCE Conf. Proc. 2001,(72):111
    [45]郑铣鑫,武强,侯艳声,等.关于城市地面沉降研究的几个前沿问题[J].地球学报2002,23(03):279-282.
    [46]曹德福;叶丹;李云峰.地下水源地开发对农业生产的环境地质影响[J].地下水, Groundwater, 2004,26(04):281-284
    [47]何庆成.日本地面沉降灾害监测研究及借鉴[J].国土资源情报,2004(05):4-7
    [48]段永侯.我国地面沉降研究现状与21世纪可持续发展[J].中国地质灾害与防治学报, 1998.9(02):1-5.
    [49]刘杜娟.中国沿海地区海水入侵现状与分析[J].地质灾害与环境保护,2004,15(01):31-36.
    [50]何星海,马世豪.再生水补充地下水水质指标及控制技术[J].环境科学,2004,25(05):61-64
    [51]薛禹群,张云,叶淑君,等.中国地面沉降及其需要解决的几个问题[J].第四纪研究,2003,23(06):585-593
    [52]潘国营,武亚遵,唐常源,等.大型水源地开采地下水导致的盐分迁移和污染[J].水文地质工程地质,2007,34(05)59-62
    [53]刘毅.地面沉降加重了1998年中国大洪灾[J].中国地质,1999,(01):30-32.
    [54]杜新强,齐素文,廖资生,等.人工补给对含水层水质的影响[J],吉林大学学报(地球科学版), 2007,37(02):293-297.
    [55]殷跃平,张作辰,张开军.我国地面沉降现状及防治对策研究[J].中国地质灾害与防治学报,2005,16(02):1-8.
    [56]刘青勇,张保祥,张欣,王明森.山东半岛地下水库建设与研究进展[M].地下水,Groundwater,2007,29(05):33-36.
    [57] Qianyu Li,Pinxian Wang,Quanhong Zhao,etc . Paleoceanography of the mid-Pleistocene South China Sea[J]. Quaternary Science Reviews, Volume 27, Issues 11-12, June 2008, Pages 1217-1233.
    [58]周燕遐,李炳兰,张义钧,巴兰春.世界大洋冬夏季温度跃层特征[J].海洋通报,2002,21(01):16-22.
    [59]杜乐乐,马捷,王俊雄.水上和水下提取次表层海水冷量的对比和分析[J].节能技术,2007,25(05):387-390,465
    [60]马捷,夏冬莺.沿海地下含水层传递海洋冷量的地区性建筑空调系统[P],中国,200710037312.X,2007年02月08日.
    [61]邓真全,马捷,戴斌,等.含水层储能系统参数的综合分析和优化[J].华北电力大学学报,2006, 34(02):27-30.
    [62]杜乐乐.利用次表层海水作城市区域空调冷源的机理研究[D] .上海:上海交通大学硕士论文.
    [63]施明恒.多孔介质传热传质研究的进展与展望,中国科学基金, 1995(01):29-31
    [64]陆志坚.上海地区水文地质条件简介[J].上海地质,1980,(02):1-9.
    [65]侯建,王玉斗,陈月明.复杂边界条件下渗流场流线分布研究[J].计算力学学报,2003,20(03) : 335-338,345.
    [66]张志辉,薛禹,谢春红,等.含水层热量运移中自然热对流作用的数值模拟[J].水科学进展,1995,07(02):99-104
    [67]张志辉,吴吉春,薛禹群.在井流影响下的对流一弥散问题研究[J].水利学报,1995,(02):60-66
    [68]金为芝,史文仪.供水水文地质学[M].上海:同济大学出版社,1989年.
    [69]张志辉,薛禹,谢春红,等.含水层热量运移中自然热对流和水-岩热交换作用的研究[J].工程地质学报,1997,(03):269-275
    [70]陶文铨.数值传热学(第2版)[M].出版社:西安交通大学出版社,2001年05月
    [71]中华人民共和国地质矿产部部标准.www.gzdzhj.com/UploadFile/2006-4/
    [72]张卫,覃小群,易连兴,等.上海地区地下水系统及地下水资源特征[J].中国岩溶,1999,18(04):343-351
    [73]上海市地质矿产志.第四篇水文、工程地质,http://www.shtong.gov.cn
    [74]孔详谦.有限单元法在传热学中的应用(第二版)[M].科学出版社,1986.
    [75]陶文铨.计算流体力学与传热学[M].中国建筑工业出版社,1991.
    [76]付庆云,兰月.美国能源政策转向影响美国和世界能源走势[J].国土资源情报,2008,(06):27-28,29,30,38.
    [77]李广信,周晓杰.土的渗透破坏及其工程问题[J].工程勘察,2004,(05):10-13,52
    [78]借鉴瑞典免费制冷技术发展我国集中供冷事业,高沛峻,建设科技,2002,(03):26-28
    [79]张欣.供水工程管道水头损失计算[J].水利水电技术,2007,38(5):65-66
    [80]谷广伟.供水管道水头损失产生原因及计算[J].科技资讯,2006,27:76-76
    [81]中华人民共和国水利行业标准. http://www.mwr.gov.cn/xxh/ /20061201
    [82] S. Harada, T. Watanabe, Y. Akashi et al.Utilization of seawater for building HVAC&R system [A].Part 3. Outline of the system and the results of measurement 2001, in:Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan [C],2002:1175-1176
    [83]赵云福,张立楠.管涌和流土的工程防护措施及抢护办法[J].黑龙江水利科技,2004,32(02):170-170,172
    [84]《岩土工程手册》编写委员会.岩土工程手册.北京:中国建筑工业出版社,1994.
    [85]蒋严,蒋欢.土体渗透稳定性的填充系数分析计算方法[J].岩土工程学报,2006,28(03):372-376
    [86]赵正信,陈建生,陈亮,叶合欣。无黏性土管涌的临界流速[J].水利水电科技进展,2008,28(02):13-15
    [87]孙剑.堤防管涌整险加固的环境地质条件分析[J].资源环境与工程,2007,21(02):43-46
    [88]马宏建.深基坑工程管涌灾害的治理[J].都市快轨交通,2008,21(01):72-75
    [89]《工程地质手册》编写委员会.工程地质手册(第二版).北京:中国建筑工业出版社,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700