可变形离散元法及其在地下工程中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着地下空间开发和地下结构建设规模的不断加大,地下结构的抗震设计及其安全性评价的重要性、迫切性愈来愈明显。本文结合天津地铁1号线工程,针对地铁区间隧道结构和地铁车站结构的抗震问题,提出了基于可变形体模型的离散元法和相应的人工粘滞边界以及与无限元耦合的方法。对地铁区间隧道结构在人工地震波作用下的动力反应进行了分析计算,为地铁区间隧道结构设计及抗震设防提供依据;对天津地铁1号线城车站结构进行了动力分析计算。得出了地铁车站框架结构在不同地震波作用下的地震反应。本文利用可变形体模型的离散元方法,分析了刚性桩复合地基桩共同作用的承载机理。本文的主要工作如下:
     1.基于变形体动力学原理,建立了新的可变形块体单元模型。根据离散元法原理,采用边-边接触关系及动态松弛法,推导出其理论公式并编制了计算程序。通过选取适当的计算参数对典型算例进行分析计算,得到了静力平面问题的应力、位移分布及静态解的收敛过程,验证了计算程序和计算参数选取的正确性。证明了该方法用于岩工程静力计算的可行性。
     2.利用可变形体单元模型的离散元法,针对地铁区间隧道结构的震害特点,求出了地下结构在人工地震波作用下的动力反应,为地铁区间隧道结构设计及抗震设防提供依据。
     3.推导出无限元相应的理论公式并实现在边界上与离散元的耦合。采用近场体由离散元模拟,远场体由无限元模拟,进行-地下结构相互作用分析。由静力问题的收敛性,验证了计算程序和计算参数选取的正确性,给出了地下结构在地震波作用下的位移反应。
     4.依据可变形体模型的离散元方法,对刚性桩复合地基的竖向承载能力以及桩共同作用过程中桩、承担荷载比例的变化规律进行了计算分析,揭示了刚性桩复合地基桩共同作用的承载机理。
     5.针对天津地铁1号线城车站实际工程,使用可变形离散元法对地下结构-动力相互作用系统进行了分析计算。得出了地铁车站框架结构在天津波、人工波(中震)及人工波(小震)作用下的地震反应(动内力、动位移)。分析了地震反应可能对地铁车站造成的破坏,对地铁车站的结构设计提出了指导性意见。
Along with the space development and the increased construction scale of underground structure, the importance and urgency of the seismic design and the safety evaluation for the underground structure is becoming more and more obvious. In this paper, combined with the project of Tianjin Subway No.1 Line, discrete element method (DEM) which bases on deformable bodies, the corresponding artificial viscous boundary, and the coupling method for infinite element and DEM are applied to the seismic problem of the metro tunnel and station. The dynamic response of the metro tunnel in artificial waves is analyzed and calculated, which may provide a basis for the tunnel design and the seismic fortification. The Tucheng Station in Tianjin Subway No.1 Line is discussed in DEM, and the earthquake response of the station frame structure in different earthquake waves is gotten. Also DEM is applied to analyze the bearing mechanics for rigid piled compound foundation. The main work is as follows:
     1. Based on the principle of deformation dynamics, a new element model for deformable bodies is established. From the side-side contact relation and the dynamic relaxation method, theoretical formulas are derived and the corresponding calculation program is worked out according to the DEM. From the analysis on a typical example, we get not only the distribution of the stress and the displacements, but also the convergence of the static solution, verify the validity of the calculation program and the selected parameters. The feasibility of this method used in the static analysis of geotechnical engineering is proved.
     2. Considered the features of earthquake disaster, the dynamic response of underground structure in artificial wave is gotten with DEM, which may provide a basis for the metro tunnel design and the seismic fortification.
     3. The corresponding theoretical formula of infinite element was deduced and in the boundary, the discrete element- infinite element coupling ware achieved. The analysis of the soil-underground structure interaction effects was carried out when the nearby soil was described as discrete elements and the soil beyond as infinite ones. The valid of the calculating program and the selection calculating parameters were tested. The dynamic reaction of underground structure was obtained under the earthquake waves.
     4. In this paper, the bearing capacity of rigid pile composite foundation under vertical loads and the law of variation of pile-soil bearing ratio among pile-soil interaction are calculated and analyzed on the basis of DEM of the deformable body model, which describes the bearing mechanism of pile-soil interaction of rigid pile composite foundation.
     5. In this paper, based on DEM, dynamic soil-underground structure interaction system is analyzed and calculated to practical project of Tucheng station of Tianjinsubway No.1 line. Seismic responses (including dynamic internal force and dynamic displacement) of Tianjin subway station frame, under action of Tianjin wave、artificial wave (middle earthquake) and man-made wave (small earthquake), are come out. Possible damage to subway station brought about seismic response is analyzed; some instructing suggestions about structure design of subway station are also indicated in this paper.
引文
[1]Tajiri Masaru. Damage done by the great earthquake disaster of the Hanshin-Awaji district to the kobe Municipal Subway System and restoration works of the damage[J].Japanese Railway Engineering,1997,137:19-23.
    [2] Iida Hiroomi.Damage and restoration of Daikai station of Kobe Rapid Transit Railway [J]. Japanese Railway Engineering ,1997,137:24-27.
    [3] Lahti Michael A.Tranfer truss supports renovation [J].Modern Steel Construction.1996, 9:41-46.
    [4]曹炳政等,神户大开地铁车站的地震反应分析,地震工程与工程振动,2002,22(4):102-107
    [5]高峰,关宝树,深圳地铁地震反应分析,西南交通大学学报,2001,36(4) :355-359
    [6]郑永来,刘曙光,杨林德等,软中地铁区间隧道抗震设计研究,地下空间, 2003,23(2) :111-114
    [7]张玉娥,白宝鸿,张耀辉等,地铁区间隧道震害特点、震害分析方法及减震措施的探讨,振动与冲击,2003,22(1) :70-74
    [8] 高 峰 , 地 下 结 构 动 力 分 析 若 干 问 题 研 究 , 岩 石 力 学 与 工 程 学 报 , 2003,22(11) :1802
    [9]王瑞民,罗奇峰,阪神地震中地下结构和隧道的破坏现象浅析,灾害学, 1998,13(2) :63-66
    [10]于翔,地铁建设中应充分考虑抗地震作用——阪神地震破坏的启示,铁道建筑技术,2000,(6) :32-35
    [11]周德培,地铁抗震设计准则,现代隧道技术,1995,(2) :36-45
    [12]潘昌实,隧道及地下结构物抗震问题的研究概况,现代隧道技术, 1996,(5) :7-16
    [13]施仲衡,张弥,王新杰等.地下铁道设计与施工.西安:陕西科学技术出版社,1997.
    [14]上海市建设委员会科学技术委员会.地铁一号线工程.上海:上海科学技术出版社,1998.
    [15]Cundall P A A computer model for simulating progress-sive large scale movement in block rock system. Symposium ISRM,1971,Proc 2:129~136
    [16]王泳嘉,邢纪波.离散单元法及其在岩力学中的应用.沈阳:东北工学院出版社,1991.
    [17]王泳泳嘉.离散元法—一种适用于节理岩石力学分析的数值方法.见:陈祖煜编.第一届全国岩石力学数值计算及模型试验讲座会文集.江西吉安,1986 年 6 月20~27 日.江西:西南交通大学出版社,1986.32~37
    [18]徐泳,孙其诚,张凌等,颗粒离散元法研究进展.力学进展,2003,33(2):251~260
    [19]唐志平,激光辐照下充压柱壳失效的三维离散元模拟,爆炸与冲击,2001,21(1) :1~7
    [20]吴清松,胡茂杉,颗粒流的动力学模型和实验研究进展,力学进展,2002,32(2) :250~258
    [21]王泳嘉,宋文洲,赵艳娟,离散单元法软件系统 2D-block 的现代化特点.岩石力学与工程学报,2000,6(增刊) :1057~1060
    [22]王泳嘉,刘连峰,三维离散单元法软件系统 TRUDEC 的研制,岩石力学与工程学报,1996,15(4):200~210
    [23]郑文刚,刘凯欣,离散元法工程计算软件的前后处理系统,计算机工程与科学,2000,22(6) :14~17
    [24]王泳嘉,邢纪波.离散元法的基本原理及其应用.第一届计算岩力学研讨会论文集,1987.
    [25] 魏群.岩工程中散体元的基本方法与试验研究.清华大学博士学位论文,1990.
    [26]陈昌伟.离散单元法及其在岩质高边坡稳定分析中的应用.清华大学硕士学位论文.
    [27]王光纶,张楚汉,彭岗等,刚块动力试验与离散单元法动力分析参数选择的研究,岩石力学与工程学报,1994,13(2) :124-133
    [28]张楚汉,王光纶,鲁军.用离散单元法分析边坡的动力稳定.第四届全国地震工程会议论文集,1994.
    [29]李华,孔宪立.离散单元法:参数选择与讨论.第一届计算岩力学研讨会论文集,1987.
    [30]邢纪波,俞良群,张瑞丰等,离散单元法的计算参数和求解方法选择,计算力学学报,1999,16(1) :47-51
    [31]陈龙斌,胡晓军,唐志平,离散元数值模拟种查找邻居关系的改进算法,计算力学学报, 2000,17(4) :497-499
    [32]周晓青,王元汉,离散单元法与边界单元法的外部耦合计算,岩石力学与工程学报, 1996,15(3) :231-235
    [33]蒋鹏,李荣强,孔德坊,离散元法用于块石强夯过程模拟,岩石力学,1999,20(3) :29-34
    [34]张缄,郑明远.裂隙岩体变形分析的改进离散元法.第一届计算岩力学研讨会论文集,1987.
    [35]焦玉勇,姜清辉,葛修润,三维静态同步松弛的离散单元法,中国矿业大学学报,2002,31(4):338-343
    [36]焦玉勇,葛修润,刘泉声等,三维离散元法及其在滑坡分析中的应用,岩石工程学报,2000,22(1) :101-104
    [37]Tanaka H, Momozu M, Oida A, Yamazaki M. Simulation of soil deformation and resistance at penetration by the distinct element method. Journal of Terramechanics,2000,37:41~56
    [38]Herrmann H J, Luding S. Modeling Granular media on the computer. Continuum Mech. Thermodyn.,1998, 10:189~231
    [39]Tsuji Y. Activities in discrete particle simulation in Japan. Powder Technology,2000,113;278~286
    [40]Liu K, Zheng W, Gao L, Tanimura S. A numerical analysis for stress wave propagation of anisotropic solids by discrete element method. In:Chiba A. Tanimura S, Hokamoto K, eds. Proceedings of the 4th International Symposium on Im-pact Engineering. Kumamoto,Japan,2001-07-16-18. UD: Elsevier Science Ltd,2001.589~594
    [41]Sawamoto Y, Tsubota H, Kasai Y, Koshika N, Morikawa H. Analytical studies on local damage to reinforced concrete structures under impact loading by discrete elemert method. Nuclear Engineering and Design,1998,179:L157~177
    [42]Cleary, P W. Predicting charge motion, power draw,segre-gation and wear in ball mills using discrete element methods. Minerals Engineering, 1998,11:1061~1080
    [43]Dury C M,Knecht R, Ristow G H.Size segregation of gran-ular materials in a 3D rotating drum. High-Performance Computing and Networking. Lecture Notes in Computer Science,1998,1401:860~862
    [44]Antony S J, Ghadiri M.Size effects in a slowly sheared gran-ular media. Journal of Applide Mechanics-Trasactions of the Asme,2001,68(5):772~775
    [45]Kuhn M R. Structured deformation in granular materials. Mechanics of Materials,1999,31(6):407~429
    [46]Iwashita K, Oda M.Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technology,2000,109:192~205
    [47]Thornton C, Antony S J. Quasi-static shear deformation of a soft particle system. Powder Technology,2000,109(1~3):179~191
    [48]Cleary P W, Sawley M L.DEM modeling of industrial gran-ular flows:3D case studies and the effect of particle shape on hopper discharge. Applied Mathematical Modelling ,2002,26:89~111
    [49]Liu K, Gao L. The application of discrete element method in solving three dimensional impact dynamics problems. Scta Mechniaca Solida,2003,16(3):256~261
    [50]Otter J R H, Cassell A C, Hobbs R E. Dynamic relaxation. Proc Int Civ Engrs,1966,35:633~665
    [51]Stewart I J, Brown E T. A static relaxation method for the analysis of excavation in discontinuous rock design and performance of underground excavations.Cambridge,1984.149~155
    [52]Dowding C H, Dmytryshyn O, Belytschko T B. Parallel processing for a discrete element program. Computers and Geotechnics, 1999,25(4):281~285
    [53]Vaugh J W Jr., Konduri R K S. Discrete element modeling on a cluster of workstations. Engineering with Computers,2001,17:1~15
    [54]Nayroles B, Touzot G,Villon P.Generalizing the finite ele-ment method:Diffuse approximation and diffuse elements. Comput Mech,1992,10:307~318
    [55]Belytschko T: Lu Y Y, Gu L. Element-free Galerkin meth-ods. Int J Num Meth Eng, 1994,37:229~256
    [56]Liu W K, Jun S, Li S, Adee J,Belytschko T. Reproducing dernel particle methods for structural mechanics. Int J Num Meth Eng,1995,38:1665~1679
    [57]Chen J B, Pan C, Roque C,Wang H P. A lagrangian repro-ducing dernel particle method for metal forming analysis. Comput Mech,1998,22:289~307
    [58]Gunter F C, Liu W K. Implementation of borndary condi-tions for meshless methods. Comp Meth Appl Mech Eng, 1998,163:205~230
    [59]石根华,数值流形方法与非连续变形分析,裴觉民(译),北京:清华大学出版社,1997
    [60]Kuwagi K, Mikami T, Horio M. Numerical simulation of metallic solid bridging particles in a fluidized bed at high temperature. Powder Technology,2000,109:27~40
    [61]Kaneko Y, Shiojima T, Horio M. DEM simulation of flu-idized beds for gas-phase olefin polymerization. Chemical Engineering Science,1999,54:5809~5821
    [62]Cleary P W, Hoyer D. Centrifugal mill charge motion and power draw:Comparison of DEM predictions with exper-iment. International Journal of Mineral Processing ,2000,59(2):131~148
    [63]Tang Z P, Liu W Y. Dynamic multi-pore collapse response with discrete meso-element method. Theoretical and Ap-plied Fracture Mechanics,2001,35(1):39~45
    [64]Mohammadi S, Owen D R J, Peric D. A combined fi-nite/discrete element algorithm for delamination analysis of composites. Finite Elements in Analysis and Design,1998,28:321~336
    [65]Ransing R S, Gethin D T, Khoei A R, et al. Powder compaction modeling via the discrete and finite element method. Materials and Design,2000,21:263~269
    [66]Voegele,M.D.,and Fairhurst,C.A Numerical Study of Excavation Support Load in Jointed Rock Masses.Proc.23th Symp. On Rock Mechanics,Berkeley,1982.
    [67]Cundall P A,Hart.R D.Development of Generalized 2-D and 3-D Distinct Element Programs for Modeling Jointed Rock.ITASCA Consulting Group,Misc.Paper SL-85-1,U.S.Army Corp of Engineers,1985.
    [68]雷晓燕.岩工程数值计算.北京:中国铁道出版社,1999.
    [69]姜忻良,谭丁,姜南,交叉隧道地震反应三维有限元和无限元分析,天津大学学报,2004,37(4) :307-311
    [70]姜忻良,徐余,郑刚,地下隧道-体系地震反应分析的有限元与无限元耦合法,地震工程与工程振动,1999,19(3) :22-26
    [71]宋二祥,无限地基数值模拟的传输边界,工程力学,1997,(增刊):613-619
    [72]赵崇斌,用无穷元模拟半无限平面弹性地基,清华大学学报,1986(2) :57-64
    [73][日]木学会地震反应分析及实例.北京:地震出版社,1983.
    [74]龚晓南,复合地基,杭州:浙江大学出版社,1992
    [75]白晓红,葛忻声,解秀娟。两种桩体材料复合地基性状的对比研究,岩力学,1997,9(3):75-81
    [76]孔峻清,马海燕,刚性桩复合地基的原理与应用,安徽建筑,2001(1):53-54
    [77]池跃君,宋二祥,陈肇元,刚性桩复合地基沉降计算方法的探讨及应用,木工程学报,2003,36(11):19-23
    [78]池跃君,宋二祥,陈肇元,刚性桩复合地基竖向承载力特性分析,工程力学,2003,20(4):9-14
    [79]池跃君,宋二祥,陈肇元,刚性桩复合地基在不同荷载下的桩分担特征,天津大学学报,2003,36(3):359-363
    [80]张明,温立新,赵正军,刚性桩复合地基的设计及承载力评价,岩工程技术,2001(1):21-24
    [81]王立忠,柯瀚,陈云敏等,地震荷载作用下水泥搅拌桩的动力分析,振动工程学报,1998,11(4):416-423
    [82]徐自国,宋二祥。刚性桩复合地基抗震性能的有限元分析,岩力学,2004,25(2):179-184
    [83]Guoxi wu,Liam Finn W D.Dynamic nonlinear of pile foundations using finite element in the time domain [J].Canadian Geotechnical Journal,1997,34: 44-52
    [84]池跃君,宋二祥,高文新等,刚性桩复合地基承载及变形特性试验研究,中国矿业大学学报,2002,31(3):237-241
    [85]董鹏,周健,与结构相互作用下的地下建筑物动力可靠性分析,建筑结构学报,2004,25(2):124-129
    [86]钱家欢等.工原理.北京:中国水利水电出版社,1995.
    [87]王勖成,邵敏.有限单元法基本原理与数值方法.北京:清华大学出版社,1998.
    [88]刘建航、侯学渊.基坑工程手册.北京:中国建筑工业出版社,1997.
    [89]罗定安.工程结构数值分析方法程序设计. 天津:天津大学出版社,1994.
    [90]J.P.瓦尔夫.-结构动力相互作用.北京:地震出版社,1989.
    [91]地下铁道设计规范[S] GB50157-92
    [92]铁路隧道质量评定验收标准[S] TBJ417-87
    [93]地下工程施工及验收规范[S] GBJ208-83
    [94]铁路隧道设计规范[S] GBJ3-85
    [95]地下铁道工程施工及验收规范[S] GB50299-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700