大型水电站厂房及蜗壳结构静动力分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着“西部大开发”、“西电东送”战略的实施,随着电力资源的日益短缺,一大批巨型水电工程开始陆续新建。水电站厂房结构作为水利枢纽中的重要组成部分,其安全性逐渐受到重视。本文以某大型水电站700MW级机组为工程背景,在理论分析的基础上,采用数值计算方法,对电站厂房结构的静动力非线性特性和流固耦合特性等进行了详细研究。相关的计算理论、计算方法以及结论,可为今后类似问题的研究提供技术依据和参考。论文具体包括以下几部分内容:
     (1)在详细分析现有关于直埋式蜗壳结构研究现状的基础上,建立考虑蜗壳钢衬与外围混凝土间摩擦接触的非线性数值模型,并考虑混凝土材料的拉伸软化和拉伸损伤特性。分析直埋式蜗壳结构在施加一次内水压力等静荷载作用下的受力状态;在蜗壳外围混凝土发生塑性损伤基础上,对座环柔度进行复核,并与线弹性计算结果进行对比分析。建立多个有限元计算模型,分析蜗壳上、下部结构对蜗壳外围混凝土的损伤、钢部件应力以及座环柔度值的影响。对厂房整体结构进行内水压力往复加卸载时的数值计算,分析了结构在服役期内的受力状态。
     (2)在直埋式蜗壳外围混凝土结构发生静态损伤的基础上(施加一次内水压力),对电站厂房结构进行脉动水压力荷载作用下的振动响应分析,对蜗壳外围混凝土在脉动水压力荷载作用下的损伤演化、结构典型部位的最大应力状态、钢部件的疲劳特性等内容进行研究,并依据相应建议值对厂房结构的振动响应进行评价。分析了直埋式蜗壳外围混凝土结构发生不同程度的损伤开裂后(包括假定材料为线弹性;对结构施加一次内水压力,蜗壳外围混凝土发生损伤开裂;对结构施加内水压力循环荷载,蜗壳外围混凝土发生损伤开裂),对厂房整体结构动力特性的影响。
     (3)验证了无限单元作为动力人工边界,进行地震动分析时,所采用地震动输入方法的正确性。进而对地基部分有限离散区域范围的敏感性进行分析。在上述因素明确的情况下,采用有限元与无限元耦合模型模拟水电站厂房的无穷域地基。在静力非线性计算的基础上,对电站厂房整体结构进行设计地震动作用下的动力非线性计算。主要分析了静动态荷载作用下,蜗壳外围混凝土的损伤演化、各典型部位的动应力状态以及振动位移、振动速度、振动加速度等。对电站厂房结构开展了地震动超载响应分析,并与设计地震动时的计算结果进行对比,重点从混凝土结构的损伤、钢部件的应力峰值等指标进行安全评价。
     (4)建立不同的数值计算模型,分析了蜗壳外围混凝土损伤开裂对电站厂房局部、整体结构自振特性的影响,并选取合理模型进行共振复核,从共振复核的角度对厂房的安全性进行评价。
     (5)采用ADINA软件提供的基于势的流体单元(Potential-based fluid elements)模拟水电站厂房流道系统内的水体,对结构进行自振特性和地震动作用下的动态响应计算,并与不考虑流道内水体的计算结果进行对比,分析了流道系统内流体对结构动力特性的影响。
With the shortage of the power resource day by day, and the strategy of Western Development and Power Transmission from West to East implemented, a great deal of huge hydroelectric projects have been constructed. Safety and stability of the hydro-power house, an important part of the hydroelectric project, has been paid more attention to. Static and dynamic nonlinear characteristic and fluid-structure interaction characteristic of the hydro-power house were studied through theory analysis and numerical simulation in this paper. The relevant calculation theory, methods and conclusions could provide technical support and reference for similar problems. The paper includes the following sections:
     Firstly, base on the current research, the nonlinear numerical model of directly embedded steel spiral case was made considering the elastic contact behavior occurring between the steel liner and the surrounding concrete, and the tension softening and damage characteristic of the concrete. The stress state of the spiral case was analyzed under the static loads such as internal water pressure. The flexibility of the stay rings was checked on the basis of plastic damage model of the concrete, which was compared with that of the linear elastic model. Through the resultant comparison of different FEM models, the existing influence of the super-& sub-structures of the spiral case was studied according to damage evolution of the surrounding concrete, steel liner stresses and flexibility of the stay rings. Furthermore, the stress state of the overall hydro-power house was studied through the numerical simulation under the repeated loading of internal water pressure.
     Secondly, the dynamic response of the hydro-power house under the pulsation water pressure load was studied including the fatigue characteristic of the steel liner, and the stress state and damage evolution of the surrounding concrete, after the static damage of the surrounding concrete of the spiral case appeared. The dynamic safety of the power house was evaluated according to the above analysis and the relevant rules. What's more, the influence upon the dynamic characteristic of the whole power house caused by damage or crack of the surrounding concrete of the spiral case under different degree was analyzed by the comparison of the linear elastic model, the model considering concrete damage or crack under once or repeated internal water pressure loading and so on.
     Thirdly, the ground motion input method was verified, which uses the infinite elements as dynamic artificial boundary, and the range sensitivity of the finite discrete region was analyzed. So the hydropower house infinite foundation was simulated by the coupling model of the finite and infinite element (FE-IE). After the static nonlinear analysis, the resultant data of the whole power house was obtained under the design ground motion by dynamic nonlinear simulating. The damage evolutions, dynamic stresses, vibration amplitudes, velocity and acceleration of the surrounding concrete of the spiral case were studied. Furthermore the response of the power house was analyzed under the seismic overloading conditions and compared with that of the design seismic loads conditions. The concrete damage and steel liner stresses were evaluated.
     Fourthly, different numerical models of the powerhouse, partial and overall models, were established, and the natural vibration characteristic was analyzed taking the damage or crack of the surrounding concrete of the spiral case into consideration. Following, a reasonable model was selected to check the resonance probability, and finally the security of the powerhouse was evaluated.
     In the last section, the potential-based fluid elements in ADINA software were used to simulated the fluid in the flow passage of the hydropower house. The natural vibration characteristic and seismic response are calculated by using FEM. The results were compared with those obtained by the model without the fluid, and the effect of the fluid in flow passage on the structure dynamic characteristic is analyzed.
引文
[1]金钟元,伏义淑.水电站[M].北京:中国水利水电出版社,1994.
    [2]潘家铮.中国水利建设的成就、问题和展望[J].中国工程科学,2002,4(2):42-51.
    [3]陈尊理,陈建国,马文辉.我国水电已到最佳发展期[J].四川水力发电,2002,20(1):1-5.
    [4]邹结富,杨英.我国水电产业发展趋势分析[J].2002,18(1):1-4.
    [5]陆佑楣.我国水电开发与可持续发展[J].水力发电,2005,31(2):1-4.
    [6]李吉川.我国水电事业的发展概况[J].广西电力技术,2001,4:61-63.
    [7]董毓新,李彦硕.水电站建筑物结构分析[M].大连:大连理工大学出版社,1995.
    [8]马善定,汪如泽.水电站建筑物[M].北京:中国水利水电出版社,2007.
    [9]王树人,董毓新.水电站建筑物[M].北京:清华大学出版社,1992.
    [10]吴鸿寿,黄源芳.三峡水电站水轮发电机组的选择研究[J].人民长江,1993,24(2):6-12.
    [11]大型水电站压力管道和蜗壳结构优化设计理论与工程应用[R].武汉大学,2007,4.
    [12]三峡水电站主厂房振动分析研究报告[R].大连理工大学,2003,6.
    [13]Shi Qinhua,Zhang Fuqin,Fan Shiying.Stay Vane Vibrations and Cracks Included by Vortex Shedding.5th Asian International Conference on Fluid Machinery.Seoul,Korea,1997,1:263-270.
    [14]Dorfler P..On the Role of Phase Resonance in Vibrations Caused by Blade Passage in Radial Hydraulic Turbo-machines.12th IAHR Symposium. Stirling,1984:228-241.
    [15]ChengXuemin. Recent progress inpumped strage schemes in China[J]. International Water Power and Dam Construction,1993,Vol.45(2):16-19.
    [16]Jacob T.,Prenat J.E.,Buffer G..Improving the Stability of Operation of a 90MW Francis Turbine.Hydropower into the Next Century,Barcelona,1995:124-127.
    [17]於三大,姚红兵,陈绪春.三峡工程厂房机组蜗壳及混凝土监测与计算对比分析[J].大坝与安全,2004,(4):84-86.
    [18]完全联合承载蜗壳结构形式研究[R].武汉大学,2003,9.
    [19]蒋逵超.三峡水电站厂房完全联合承载蜗壳结构研究[D].武汉:武汉大学,2007.
    [20]申艳.大型抽水蓄能电站充水保压蜗壳结构动静力分析[D].武汉:武汉大学,2007.
    [21]林绍忠,苏海东.水电站蜗壳保压浇混凝土结构的三维仿真分析.水利学报,2002(1):66-70.
    [22]李胜军,李振富,王日宣.高水头抽水蓄能电站蜗壳混凝土与钢衬联合作用应力分析方法研究[J].水利水电技术,1998,29(12):30-33.
    [23]李胜军,李振富,王日宣.设有垫层的水电站蜗壳结构联合承载分析[J].水力发电学报,1998,(04):21-29.
    [24]Nigam Prem S., Jain O. P. and Kanchi Mahesh B., Three-Dimensional Analysis of Hydroelectric Power Station, American Society of Civil Engineers, Journal of the Power Division,1976,102 (1):35-52.
    [25]Khalid Syed and Rao P. V. Finite Element Analysis of Power House Substructures. Journal of the Institution of Engineers, Part CV:Civil Engineering Division,1977,57(6):328-334.
    [26]伍鹤皋,申艳,蒋逵超等.大型水电站垫层蜗壳结构仿真分析[J].水力发电学报,2007,26(02):32-36.
    [27]周韶伟,伍鹤皋,田海平.垫层蜗壳三维非线性有限元分析[J].中国农村水利水电,2008,4:77-80.
    [28]马震岳,张运良,陈婧等.巨型水轮机蜗壳软垫层埋设方式可行性论证[J].水力发电,2006,32(1):28-32.
    [29]张运良,马震岳,程国瑞等.巨型水电站采用垫层蜗壳的分析与探讨[J].水电能源科学,200624(6):65-68.
    [30]李文富,李锦成,赵小娜.水电站充水预压蜗壳结构的应力仿真算法研究[J].水力发电,2004,30(3):52-54.
    [31]李文富.大型水电站充水预压蜗壳结构优化分析研究[D].天津:天津大学,2003.
    [32]王海军,黄津民,王日宣.充水保压钢蜗壳外围混凝土应力分析方法研究[J].中国农村水利水电,2007(6):131-133.
    [33]伍鹤皋,马善定,白建明.三峡水电站充水保压蜗壳平面非线性分析[J].水利学报,2003(5):57-61.
    [34]秦继章,马善定,伍鹤皋,等.三峡水电站“充水保压”钢蜗壳外围混凝土结构三维有限元分析[J].水利学报,2001(6):28-32.
    [35]李丹,陈坪.三峡电站蜗壳敷设软垫层浇筑外围混凝土研究[J].人民长江,2006,25(5):74-78.
    [36]陈婧,张运良,马震岳等.不同埋设方式下巨型水轮机蜗壳结构动力特性研究.大连理工大学学报,2007,47(4):593-597.
    [37]张运良,马震岳,程国瑞.水轮机蜗壳不同埋设方式的流道结构刚强度分析[J].水利学报,2006,37(10):1206-1211.
    [38]黄安录.水电站钢蜗壳与外围混凝土结构的受力特性研究[J].西安理工大学学报,1995,11(04):286-290.
    [39]H.H.Komob.萨扬舒申斯克水电站钢与钢筋混凝土联合承载蜗壳的应力状态[J].国外大机电,1979(3),88-90.
    [40]阿辛比尔格,阿尔希波夫.钢衬钢筋混凝土蜗壳研究[J].水电站设计,1993,(1):87-88.
    [41]伍鹤皋,蒋逵超,申艳,马善定.直埋式蜗壳三维非线性有限元静力计算[J].水利学报,2006,37(11):1323-1328.
    [42]张杰,兰道银,何英杰.三峡电站机组蜗壳直埋方案仿真模型试验研究[J].长江科学院院报,2007,24(1):47-50.
    [43]陈琴,林绍忠,张杰.三峡电站直埋式蜗壳结构试验模型的非线性有限元分析[J].长江科学院院报,2007,24(2):51-54.
    [44]DaiHuichao, PengPeng. Selection and Verification of the Structural Pattern of the Penstock and Spiral Case of the TGP Power-station[J]. Engineering Science,2004,6(2):34-37.
    [45]恽燕春.三峡右岸电站直埋式蜗壳配筋研究[D].南京:河海大学,2007.
    [46]张运良,马震岳,王洋,陈婧.混凝土开裂对巨型水电站主厂房动力的影响[J].水利学报,2008,39(8):982-987.
    [47]阎力.水电站钢蜗壳与钢筋混凝土联合承载结构试验研究.水利学报,1995(1):57-62.
    [48]姚栓喜,谷兆棋.垫层蜗壳与外围钢筋混凝土联合受力研究[J].压力管道学术讨论会,杭州:1992.
    [49]阎力.龙羊峡水电站钢蜗壳与钢筋混凝土联合承载试验应力浅析[J].西北水电,1991(4):40-47.
    [50]李伯芹,董哲仁.钢板—钢筋混凝土水轮机引水管道及蜗壳的研究概况与发展趋向[J].西北水电,1983,(2):65-81.
    [51]李胜军,李振富,王日宣.高水头抽水蓄能电站蜗壳混凝土与钢衬联合作用应力分析方法研究[J].水利水电技术,1998,29(12):30-33.
    [52]董毓新,鲁一晖,马震岳.钢衬和钢筋混凝土联合承载蜗壳结构分析[J].大连理工大学学报,1995,35(3):389-394.
    [53]伍鹤皋,蒋逵超,申艳,马善定.三峡水电站完全联合承载蜗壳结构研究[J].第六届全国水电站压力管道学术会议,贵阳,2006,370-380.
    [54]蒋逵超,伍鹤皋,申艳.完全联合承载蜗壳三维非线性分析[J].水利学报,2006,37(11):1323-1328.
    [55]SL/T191-96,水工混凝土结构设计规范[S].北京:中国水利水电出版社,2002.
    [56]孙万全.水电站厂房结构振动分析及动态识别[D].大连:大连理工大学,2004.
    [57]王海军.水电站厂房组合结构分析与动态识别[D].天津:天津大学,2005.
    [58]孙万泉,马震岳,赵凤遥.抽水蓄能电站振源特性分析研究[J].水电能源科学,2003,21(4):78-80.
    [59]秦亮.双排机水电站厂房结构动力分析与识别[D].天津:天津大学,2005.
    [60]张辉东.水电站厂房结构的非线性和耦联振动分析与模态参数识别[D].天津:天津大学,2006.
    [61]宋志强.水电站机组及厂房结构耦合振动特性研究[D].大连:大连理工大学,2009.
    [62]杨晓明.水电站机组振动及其与厂房的耦联振动研究[D].大连:大连理工大学,2006.
    [63]赵凤遥.水电站厂房结构及水力机械动力反分析[D].大连:大连理工大学,2006.
    [64]郑源,汪宝罗,屈波.混流式水轮机尾水管压力脉动研究综述[J].水力发电,2007,33(2):64-69.
    [65]王俊红,黄勇.广蓄二期工程地下厂房结构振动研究及减振措施[J].水力发电,2001,(11):32-34.
    [66]欧阳金惠.三峡电站厂房结构振动研究[D].北京:中国水利水电科学研究院,2005.
    [67]练继建,秦亮,王日宣等.双排机水电站厂房结构动力特性研究[J].水力发电学报,2004,23(2):55-60.
    [68]熊卫,史仁杰,毛文然.回龙抽水蓄能电站地下厂房整体结构振动研究[J].人民黄河,2004,26(7):40-43.
    [69]李炎.当前我国水电站(混流式机组)厂房结构振动的主要问题和研究现状[J].水利水运工程学报,2006,(1):74-77.
    [70]练继建,秦亮,何成连.基于原型观测的水电站厂房结构振动分析[J].天津大学学报,2006,39(2):176-180.
    [71]陈静,马震岳,刘志明,等.三峡水电站主厂房振动分析[J].水力发电学报,2004,23(5):36-39.
    [72]欧阳金惠,陈厚群,李德玉.三峡电站厂房结构振动计算与试验研究[J].水利学报,2005,36(4):484-490.
    [73]彭新民,郑伟,秦亮.水电站厂房结构振动规律探讨[J].水利水电技术,2005,36(11):62-64.
    [74]欧阳金惠,陈厚群,李德玉.三峡电站发电厂房动力特性与低水头振动问题研究[J].中国水利水电科学研究院学报,2004,2(3):215-220.
    [75]王桂平,肖明.周宁水电站地下厂房结构振动与结构形式研究[J].长江科学院院报,2004,21(1):36-39.
    [76]陈婧,马震岳,刘志明,等.水轮机压力脉动诱发厂房振动分析[J].水力发电,2004,30(5):24-27.
    [77]王洋,马震岳,张运良等.脉动水压力作用下巨型水电站流道系统的疲劳分析[J].水电能源科学,2007,25(1):98-101.
    [78]马震岳,王溢波,董毓新.红石水电站机组振动及诱发厂坝振动分析[J].水力发电,2000,(9):52-54.
    [79]Ouyang Jinhui, Chen Houqun, Li Deyu. Effect on Powerhouse Engendered by the Vibration of Water-turbine Generator Set in Large-scale Hydropower Station, The 21st international congress on large dam,Montreal,Canada,2003,6.
    [80]Ouyang Jinhui, Chen Houqun, Li Deyu. Effect on Three-Gorges Powerhouse Engendered by Vibration of Hydroturbine-Generator Set, International Conference of Hydropower 2004,Vol3,Yichang China,2004.5.
    [81]裴大雄,赵正洪.高坝州水电站3号机组振动分析及处理[J].水力发电,2002,(3):61-62.
    [82]蒋逵超,伍鹤皋,申艳,马善定.脉动压力作用下直埋式蜗壳结构非线性动力响应[J].水力发电学报,2007,26(4):104-109.
    [83]沈可.水电站厂房结构振动研究[D].南宁:广西大学,2002.
    [84]练继建,王海军,秦亮.水电站厂房结构研究[M].北京:中国水利水电出版社,2007.
    [85]欧阳金惠,陈厚群,张超然,李德玉.三峡电站15#机组厂房结构动力分析[J].中国水利水电科学研究院学报,2007,5(2):137-142.
    [86]赵仕杰,崔烨,朱银邦,阮璐.高烈度地震区河岸式水电站厂房的有限元抗震分析[J].水力发电,2009,35(4):34-37.
    [87]陈天红,刘云贺,张俊发等.水电站厂房有限元抗震分析[J].电网与水力发电进展,2008,24(5):55-58.
    [88]水工建筑物抗震设计规范(DL5073-2000).北京:中国电力出版社,2000.
    [89]李锦成.河床式水电站厂房地震荷载研究[D].天津:天津大学,2004.
    [90]刘建峰.水电站地下厂房动力特性研究及地震反应分析[D].大连:大连理工大学,2008.
    [91]马震岳,宋志强,陈婧等.小湾水电站地下厂房动力特性及抗震分析[J].水电能源科学,2007,25(6):72-74.
    [92]王海军,练继建,王日宣.水电站厂房结构地震响应非线性分析[J].水电能源科学,2008,26(3):88-91.
    [93]张辉东,王日宣,王元丰.大型电站厂房结构地震时程响应非线性数值模拟[J].水力发电学报,2007,26(4):96-102.
    [94]鹿宁.基于静力弹塑性的水电站厂房地震反应分析[D].西安:西安理工大学,2008.
    [95]Kachnov,L.M.Time of the rapture process under creep conditions, TVZ Akad Nank S.S.R.Otd, Tech Nuak,1958.8.
    [96]Yusuf Calayir,Muhammet Karaton.A continuum damage concrete model for earthquake analysis of concrete gravity dam-reservoir systems[J].Soil Dynamics and Earthquake Enginccring,2005,25,857-869.
    [97]Jeeho Lee,Gregory L.Fenves.A Plastic-Damage Concrete Model for Earthquake Analysis of Dams[J]. Earthquake Engineering and Structural Dynamics,1998,27,937-956.
    [98]邱战洪,张我华,任廷鸿.地震荷载作用下大坝系统的非线性动力损伤分析[J].水利学报,2005,5:629-636.
    [99]刑景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997,27(1):19-38.
    [100]Zienkiew icz O C, Bettess P. Fluid-structure dynamic interaction and wave forces, an introduction to numerical treatmeng. Int. J. Num. Meth. Engrg.,1978,13(1):1-16.
    [101]Fung Y C. An Introduction to the Theory of Aeroelasticity. J. Wiley and Sons, Inc., New York(1955).中译本:管德,冯仲越译.空气弹性力学引论.国防工业出版社,北京(1963).
    [102]Forsching H W. Groundlagen der Aeroelastik. Springer-Verlag, Berlin(1974).
    [103]李遇春,楼梦麟.渡槽中流体非线性晃动的边界元模拟[J].地震工程与工程振动,2000,20(2):5-56.
    [104]邵岩.考虑水体作用的渡槽动力响应计算[D].南京:河海大学,2006.
    [105]徐建国.大型渡槽结构抗震分析方法及其应用[D].大连:大连理工大学,2005.
    [106]何建涛,刘云贺,孙蓉莉.附加质量模型在渡槽抗震计算中的实用性研究[J].西安理工大学学报,2007,23(1):52-55.
    [107]何建涛.大型渡槽流体与固体的动力耦合作用[D].西安:西安理工大学,2007.
    [108]李遇春,楼梦麟.排架式渡槽流-固耦合动力特性分析[J].水利学报,2000,12(12):31-36.
    [109]王博,陈淮,徐伟等.考虑槽身与槽内水体流固耦合的渡槽地震反应分析计算[J].水利水电科技进展,2005,25(3):5-7.
    [110]肖琴.高耸塔体结构抗震分析的动力相互作用研究[D].大连:大连理工大学,2008.
    [111]陈江,张少杰,闵兴鑫.坝体-库水相互作用的流固耦合分析[J].西南科技大学学报,2009,24(1):13-19.
    [112]宋辉东,徐晶.橡胶坝-水体耦合振动分析[J].水力发电学报,2005,24(4):124-128.
    [113]王国辉,柴军瑞,杜成伟.坝库系统流固耦合数值分析方法简述[J].水利水电科技进展,2009,29(4):89-93.
    [114]邱流潮,张立翔.地震作用下拱坝-库水耦合振动水压力分析[J].水动力学研究与进展,2000,15(1):94-103.
    [115]张辉东,周颖.大型水电站厂房结构流固耦合振动特性研究[J].水力发电学报,2007,26(5):134-137.
    [116]张辉东,王元丰,周颖.大型水电站厂房结构流固耦合振动特性数值模拟[J].数值计算与计算机应用,2007,28(4):267-274.
    [117]Westergarrd, Water Pressures on Dams During Earthquake. Trans. Amer. Soc. Civ.1933,98:418-433.
    [118]Housner G.W. Dynamic pressure on accelerated fluid containers. Bulletion of the Seismological Society of American,1957,47(1):15-35.
    [119]Lubliner J,Oliver J,Oller S,et al. A plastic-damage model for concrete[J]. International Journal of Solids and Structures,1989,(25):299-329.
    [120]Lee J,Fenves G L. Plastic-damage model for cyclic loading of concrete structures [J]. Journal of Engineering Mechanics,1998,124(8):892-900.
    [121]ABAQUS Analysis Manual.Version 6.7.ABAQUS,Inc.,Rising Sun Mills,166 Valley Street Providence,RI 02909,USA:2007.
    [122]ABAQUS Theory Manual.Version 6.7.ABAQUS,Inc.,Rising Sun Mills,166 Valley Street Providence,RI 02909,USA:2007.
    [123]王金昌,陈页开ABAQUS在土木工程中的应用[M].浙江:浙江大学出版社,2006.
    [124]Hillerborg A, Modeer M,and Petersson P E. Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements, Cement and Concrete Research, 1976,vol.6,773-782.
    [125]庄茁,张帆,岑松等.ABAQUS非线性有限元分析实例[M].北京:科学出版社,2005.
    [126]张文元.ABAQUS动力学有限元分析指南[M].香港:中国图书出版社,2005.
    [127]朱以文,蔡元奇,徐晗ABAQUS与岩土工程分析[M].香港:中国图书出版社,2005.
    [128]黄胜,陈卫忠,杨建平等.地下工程地震动力响应及抗震研究.岩石力学与工程学报,2009,28(3):483-490.
    [129]庄海洋.土-地下结构动力非线性相互作用及其大型振动台试验研究[D].南京:南京工业大学,2006.
    [130]丘庆霞.地下综合管廊地震反应分析与抗震可靠性研究[D].上海:同济大学,2007.
    [131]Chow,Y.K,et al.,Static and periodic infinite solid elements.Int.J,Num,Meth.Eng.,1981, (17):503-526,.
    [132]Zhang Chuhan,Zhao Chongbin,Coupling method of finite and infinite elements for strip foundation wave problems,Earthquake Eng. and Struct,Dyn.1987, (15):839-851.
    [133]赵崇斌,张楚汉,张光斗.地基无限域的动力模拟—有限元与无穷元耦合模型[J].水利学报,1990,6:20-26.
    [134]赵崇斌,张楚汉,张光斗.用无穷元模拟拱坝地基[J].水利学报,1987,2:27-36.
    [135]燕柳斌,李国华,夏小舟.地基基础一坝体体系动力特性及地震反应分析的有限元与无限元耦合法[J].广西大学学报(自然科学版),2003,28(3):249-253.
    [136]尚仁杰,赵国藩,黄承逵.低周循环荷载作用下混凝土轴向拉伸全曲线的试验研究[J].水利学报,1996,10(7):82-87.
    [137]Yankelevsky D Z, Reinhardt H W. Uniaxial Cyclic Behaviour of Concrete in Tension[J]. ASCE, 1989,115(SEI):169-176.
    [138]张存慧,张运良,马震岳.内水压力重复加载作用下蜗壳外围钢筋混凝土的损伤分析.水利学报,2008,39(11):1262-1266.
    [139]Bettess P. Infinite element[J].Int J Num Methods Eng,1977, (11):53-64.
    [140]Bettess P. More on infinite elements [J]. Int J Num Methods Eng,1980, (15):1613-1626.
    [141]Lysmer, Kuhlemeyer. Finite Dynamic Model for Infinite Media[J]. Engineering Mechanics,1969, 95(4):859-877.
    [142]谷音,刘晶波,杜义欣.三维一致粘弹性人工边界及等效粘弹性边界单元[J].工程力学,2007,24(12):31-37.
    [143]杜修力,赵密.基于黏弹性边界的拱坝地震反应分析方法[J].水利学报,2006,37(9):1063-1069.
    [144]张存慧,马震岳,张运良等.地震荷载作用下水电站厂房结构的振动应力分析.水电能源科学,2009,27(5):94-96.
    [145]高冲.多点激励人工波模拟及在大跨度结构中的应用.大连:大连理工大学,2008.
    [146]杨庆山,姜海鹏.基于相位差谱的时-频非平稳人造地震动的反应谱拟合[J].地震工程与工程振动,2002,22(1):32-38.
    [147]中华人们共和国水利部.水电站厂房设计规范(SL266-2001).北京:中国水利水电出版社,2001.
    [148]刘晋超.输水箱涵的抗震分析.大连:大连理工大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700