共同沟管道隔震分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共同沟属于生命线地震工程基础设施的一部分,一般指设置于道路之下,可以容纳2种以上的公用设施管线的构造物。随着社会经济的发展和城镇化水平的迅速提高,我国许多大中型城市陆续开始了共同沟的建设,与共同沟相关的科学研究工作也日益得到重视,其中,共同沟体系的抗震设计理论和方法就是当今研究热点之一。本文从近代世界各国的共同沟震害特性分析入手,结合课题组已完成的试验和理论研究成果,以共同沟内部管道的抗震设计方法为研究对象,利用有限元数值模拟方法分析了多种工况条件下沟内管道的地震反应规律和多种隔振装置的减震效果,提出了适用于我国共同沟特点的沟内管道系统的隔振减震设计方法。
     首先,共同沟内部的管道与一般直埋式管道在受力方式及破坏形式上有很大不同。文中列举了通常管道的破坏情况,参考了地上支座管道的隔震方法,探讨了共同沟管道在地震中的影响因素。
     其次,参考建筑隔震方法设计出了一种适用于共同沟管道的隔震方法。
     再次,使用有限元软件进行建模,对模型进行不同影响参数的数值模拟分析。
     最后,观察模拟结果,对模拟结果数值进行分析比较,总结出不同影响参数对共同沟管道隔震的效果,并设计出一款支座隔震器。
     通过数值模拟结果对比发现:适当的埋深、管周摩擦力对于共同沟管道的地震响应有降低作用;设置隔振器后,合理的刚度和阻尼的选择搭配可以有良好的隔震效果;管道隔震器的隔震效率在不同大小的地震中不同;共同沟结构四周铺设粗颗粒砂土的隔震效果良好。
Utility tunnel belongs to one aspect of the lifeline engineering, normally refers to the structure which is built underground and contains more than 2 kinds of public facility pipelines or electronic wires, so does its attached structures. Since the economic situation is moving forward, the constructions of utility tunnels are started in many cities, and researchers are paying more and more attentions to the analyses on utility tunnels. One of the hottest topics is the work on seismic design theory and method of utility tunnel. This article started with the analysis on characteristic of seismic destruction of utility tunnels in different countries, then, based on the achievements in experiment and theory in lifeline earthquake engineering researching center in Harbin Institute of Technology(LEERC-HIT), using finite simulation program to analyze the seismic response regulation of pipeline in utility tunnel and the efficiency of seismic isolator, one seismic isolator design method which is proper for utility tunnels in China is proposed.
     Firstly, the way of load and destructive form are different between pipeline in utility tunnel and buried pipeline. In this article, normal damage of pipelines is listed, referring to isolation method of above-ground pipeline, effect factors to seismic response are discussed. Secondly, design one isolation method which is suitable to pipeline in utility tunnel.
     Thirdly, using finite element simulation program, different factors which can influence the response of pipeline in utility tunnel are analyzed.
     Lastly, comparing the results of simulation, this article concludes the efficiency of different factors, and one support seismic isolator is design.
     By analyzing the results of numerical simulation, it is shown that: earthquake response could be reduced with proper burial depth and friction force around pipe; reasonable spring stiffness with damping in the seismic isolator could bring proper isolating effects; laying fine sandy soil around structure of utility tunnel has obvious isolating effect.
引文
[1]童林旭.地下空间与城市现代化发展[M].中国建筑工业出版社,2005, 234-240.
    [2]李德强.综合管沟设计与施工[M].中国建筑工业出版社,2009.
    [3]钱七虎,陈晓强.国内外地下综合管线廊道发展的现状、问题及对策[J].地下空间与工程学报,2007,3(02):191-194.
    [4]共同沟设计指针[S].日本道路协会.昭和61年(1986年).
    [5] Gideon S Golany & Toshio Ojima. Geo-Space Urban Design[M]. 2005
    [6]胡敏华,蔺宏.论市政共同沟的发展史及其意义[J].基建优化,2004,25(03):7-10.
    [7]程慧伊.上海浦东新区“张杨路共同沟”简述[C]//中国土木工程学会第七届年会暨茅以升诞辰100周年纪念会论文集.上海:同济大学出版社,1995,162-168.
    [8]魏小林,孟悦祥.上海浦东新区张杨路地下共同沟[J].供用电,1997,14(04):6-7.
    [9]罗海兵,李有新.西大堤管线共同沟工程方案设计分析[J].中国市政工程, 1997,(04):46-50.
    [10]侯文俊,蒋海军,孙伟,等.城市地下管线共同沟建设与发展[J].市政技术,2005,23(04):229-232.
    [11]李德强.广州大学城综合管沟的施工及质量控制[J].中国给水排水,2004,20(09):98-100.
    [12]张红辉.上海市安亭新镇共同沟工程设计[J].上海电力,2006,(03): 238-242+217.
    [13]黄鹄,陈卓如.深圳大梅沙——盐田坳共同沟简介[J].市政技术,2002,(04):61-63.
    [14]赵颖,朴兰.大连保税区填海区综合管沟设计[J].中国给水排水,2008,24(04):47-50.
    [15]黄汉石,孟永.上海世博会园区综合管沟设备安装工程监理[J].建筑技术,2010,41(04):353-356.
    [16]陈卓如.深圳光侨路共同沟工程设计[J].市政技术,2011,(01):66-69+109.
    [17]李曦淳,储庆.天津滨海新区中央大道工程综合管沟的设计[J].中国给水排水,2008,24(16):59-62.
    [18]薛敏蓉,郭林,孙元慧.青岛市重庆路市政管线综合管沟规划设计[J].给水排水,2009,35(09):107-110.
    [19]高政.厦门市湖边水库市政共同沟设计[J].给水排水,2010,36(10):116-119.
    [20]陈华玉.滨湖新区城市天地综合管沟工程基坑支护方案[J].山西建筑,2011,37(09):96-97.
    [21] GB50289-98,城市工程管线综合规划规范[S].
    [22]王恒栋,薛伟辰.《上海世博会园区综合管沟工程建设标准》简介[J].特种结构,2009,26(01):102-104.
    [23] Tamura C, Okamoto S, Hamada M. Dynamic Behavior Of A Submerged Tunnel during Earthquakes[J]. Report of the Institute of Industrial Science, University Of Tokyo, 1975, Vol.24, No. 5, March.
    [24] Hashash Y M A, Hook J J, Schmidt B, et al. Seismic Design and Analysis of Underground Structures[J]. Tunneling and Underground Space Technology. 2001, (16): 247-293.
    [25]徐志英,施善云.土与地下结构动力相互作用的大型振动台试验与计算[J].岩土工程学报,1993,15(04),1-7.
    [26]廖彩凤,周顺华.浅埋暗挖地铁车站合理埋深探讨[J].地下空间,1999,19(02):121-125.
    [27]刘如山.强地震动作用下地铁结构与土脱开滑移的研究[J].地震工程与工程振动,2004,24(06):136-141.
    [28]于翔,钱七虎,赵跃堂,等.解放军理工大学学报(自然科学版)[J].2001,2(03):75-77.
    [29]周林聪,陈龙珠,宫必宁.地下结构地震模拟振动台试验研究[J].地下空间与工程学报,2005,1(02):182-187+213.
    [30]薛景宏.跨断层隔震管道分析[D].导师:张敏政.中国地震局工程力学研究所,2008.
    [31]盖丽华.大位移作用下埋地管道性能分析及隔震设计[D].导师:汤爱平.哈尔滨工业大学,2009.
    [32]钟儒宏.埋地管道灾害特征与隔震器设计[D].导师:汤爱平.哈尔滨工业大学,2010.
    [33]高田至郎.地下生命线的耐震设计.隧道译丛,1991,(7):44-51.
    [34] Cano H J J, Canto P J. Sustainable Development of Urban Underground Space for Utilities. Tunnelling and Underground Space Technology, 1999, 14(3): 335-340.
    [35] Julian C P, Jorge C E. Human Factors Engineering in Utility Tunnel Design. Tunnelling and Underground Space Technology. 2001, 16(2): 211-215.
    [36] Canto P J, Curiel E J. Risks and Potential Hazards in Utility Tunnels for Urban Areas. Proceedings of the Institute of Civil Engineering-municipal Engineering. 2003, 156(1): 51-56.
    [37] Curiel E J, Canto P J, Calvo M A. Establishing Sustainable Strategies in Urban Underground Engineering Science and Engineering Ethics. 2004, 10(3): 523-530.
    [38]李杰,岳庆霞,陈隽.地下综合管廊结构振动台模型试验与有限元分析研究[J].地震工程与工程振动,2009,29(04):41-45.
    [39]史晓军,陈隽,李杰.非一致地震激励地下综合管廊振动台模型试验研究(Ⅰ)——试验方法[J].地震工程与工程振动,2010,30(01):147-154.
    [40]陈隽,史晓军,李杰.非一致地震激励地下综合管廊振动台模型试验研究(Ⅱ)——试验结果[J].地震工程与工程振动,2010,30(02):123-130.
    [41]蒋录珍,陈隽,李杰.非一致地震激励地下综合管廊振动台模型试验研究(Ⅲ)——数值模拟[J].地震工程与工程振动,2010,30(03):45-52.
    [42]汤爱平,李志强,冯瑞成,等.共同沟结构体系振动台模型试验与分析[J].哈尔滨工业大学学报,2009,41(06):1-5.
    [43]冯瑞成.共同沟振动台模型试验与抗震性能评价[D].导师:汤爱平.哈尔滨工业大学,2007.
    [44]马积薪.能登半岛海面地震受害隧道的修复——大谷狼烟饭田线木之浦隧道[J].世界隧道,1997,(06):57–62.
    [45]格赫曼A C,扎伊涅特季诺夫X X.管道的抗震设计施工与监护[M].地震出版社,1992.
    [46]岩本启志.水道施设耐震工法指针·解说[M].日本水道协会,1979.
    [47] GB50011-2001,建筑抗震设计规范[S].
    [48]刘华北,宋二祥.埋深对地下结构地震液化响应的影响[J].清华大学学报(自然科学版),2005,45(03):301-305.
    [49] ASME B31. E-2008, Standard for the Seismic Design and Retrofit of Above - Ground Piping Systems[M]. The American Society of Mechanical Engineers (ASME), 2008.
    [50]周云.摩擦耗能减震结构设计[M].武汉理工大学出版社,2006.
    [51] Inaudi J A. Time-domain Analysis of Linear Hysteretic Damping[J]. Earthquake Engineering and Structure Dynamics, 1996, 25(6): 529-545.
    [52]周云.粘弹性阻尼减震结构设计[M].武汉理工大学出版社,2006.
    [53]周云.金属耗能减震结构设计[M].武汉理工大学出版社,2006.
    [54] Song T T, Dargush G F. Passive Energy Dissipation Systems in Structural Engineering[M]. New York: John wiley & Sons, 1997.
    [55]周云.粘滞阻尼减震结构设计[M].武汉理工大学出版社,2006.
    [56]日本建筑学会.隔震结构设计[M].地震出版社,2006.
    [57] Muir Wood A M, The circular tunnel in Elastic Ground[J]. Geotechnique, 1975, 25(l): 115–127.
    [58] Clough G W, Duncan J M, Finite element analysis of retaining wall behavior [J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1971, 97(SM12): 1657-1674.
    [59]刘学增,朱合华.上海典型土层与混凝土接触特性的试验研究[J].同济大学学报(自然科学版),2004,32(05):601-606.
    [60]张俊.考虑土——结构动态接触条件下地铁车站的抗震研究[D].导师:赵成刚.北京交通大学,2009.
    [61] Goodman R E, Taylor R L, Brekke T L. A Model For The Mechanics Of Jointed Rock[J]. Journal of Soil Mechanics and Foundations Division, ASCE, 1968, 94(3): 637-659.
    [62]郭海柱,张庆贺.土与结构接触面模型的对比研究[J].地下空间与工程学报,2009,5(06):1145-1150.
    [63]郝文化.ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2005.
    [64]廖振鹏.工程波动理论导引[M].北京:科学出版社,1996.
    [65] Alterman Z S, Karal F C J. Propagation of Elastic Waves in Layered Media by Finite-Difference Methods[J]. Bulletin of the Seismological Soeiety of America. 1968, 58: 367-398.
    [66] Lysmer J, Kulemeyer R L. Finite Dynamic Model for Infinite Media[J]. Journal of Engineering Mechanics Division, ASCE, 1969, 95(4): 759-877.
    [67] Deeks A J, Randolph M F. Axisymmetric Time-domain Transmitting Boundaries[J]. Journal of Engineering Mechanics, ASCE, 1994, 120(1): 25-42.
    [68] Kausel E. Local transmitting boundaries[J]. Journal of Engineering Mechanics, ASCE, 1988, 114(6): 1011-1027.
    [69] Wolf P J. A Comparison of Time-domain Transmitting Boundaries[J]. Earthquake Engineering and Structure Dynamics, 1986, 14: 655-673.
    [70] Kausel E, Peek R. Dynamic loads in the interior of a layered stratum: an explicit solution[J]. Bulletin of the Seismological Society of America, 1982, 72(5): 1459–1480.
    [71] SEAL S H. Dynamic loads in layered half-spaces[D]. Cambridge: Department of Civil Engineering, MIT, 1985.
    [72]刘晶波,吕彦东.结构——地基动力相互作用问题分析的一种直接方法[J].土木工程学报,1998,31(03): 55-64.
    [73]刘晶波,王振宇,杜修力,等.波动问题中的三维时域粘弹性人工边界[J].工程力学,2005,22(06):46-51.
    [74]谷音,刘晶波,杜义欣.三维一致粘弹性人工边界及等效粘弹性边界单元[J].工程力学,2007,24(12):31-37.
    [75]大崎顺彦.地震动的谱分析入门[M].地震出版社,1980.
    [76] GB 50028-2006,城镇燃气设计规范[S].
    [77]顾晓鲁.地基与基础(第三版)[M].中国建筑工业出版社.2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700