作物生产系统水分和氮素管理的DSSAT模型模拟与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮素是作物生产的主要养分限制因子,不合理的灌溉和施肥造成资源浪费、产量和品质下降,同时还引起环境污染。因此,探讨不同水分管理和不同施氮水平对作物生长的影响,实现合理施肥,对于提高作物产量和保护生态环境具有重要理论意义和应用价值。本研究基于田间试验数据,应用农业技术转移决策支持系统(Decision Support System for Agrotechnology Transfer,简称DSSAT模型)对不同田间试验进行模拟,评估了该模型的性能和地区适用性,主要研究结果如下:
     1. 1959~2008年,在加拿大安大略省南部进行50年肥料效应长期定位试验,包括春玉米连作施肥处理(CC-F)和不施肥处理(CC-NF)。通过对模型需要输入的玉米遗传特性参数的校验研究,引入了不同玉米品种的光能利用效率(RUE)作为模型中玉米的遗传参数,以适应不同试验、不同地区的模拟状况。本研究在模拟50年的玉米产量时,把50年的玉米品种遗传参数划分为了4个阶段,每个阶段都有相应的一套玉米遗传特性参数代表不同时期的玉米遗传特性。结果表明,相比50年用一套玉米参数,用4套参数能够更好地模拟CC-F和CC-NF处理的玉米产量。
     DSSAT模型模拟的CC-F处理的产量比模拟CC-NF处理的产量更精确,CC-F处理模拟产量与实测产量之间的标准化均方根误差(n-RMSE)是39%,决定系数(R~2)为0.36;CC-NF处理的n-RMSE值为82%,R~2为0.40。虽然DSSAT模型不能精确地模拟玉米的逐年产量,但是该模型可以较好地模拟产量变化趋势。模型模拟的2008年土壤表层(0~15 cm和15~30 cm)矿质氮(NH_4-N和NO3-N)的含量与实测值也有较大差异,CC-F处理相应分析的n-RMSE值的范围是58~60%,CC-NF处理为64~89%。模型模拟的CC-F处理的1998~2000年的累计硝态氮淋失量与测量值比较一致,相应统计值n-RMSE为29%,预测效率(EF)为0.63;而对于CC-NF处理,DSSAT模型过高地估计了累计硝态氮淋失,相应的n-RMSE统计值为160%,EF为0.04。表明模型不能很好模拟长期不施肥导致土壤退化条件下氮素的状态。
     2.在加拿大安大略省西南部实施了5年(2000~2004)的玉米-大豆轮作田间试验,处理包括自由地下暗管排水(TD)和控制的地下暗管排水-地下灌溉(CDS)。模拟结果显示,DSSAT模型可以很好地模拟CDS和TD条件下玉米和大豆的产量(n-RMSE:4.3%~14.0%,d:0.985~0.998),较好地模拟0~30 cm根域土壤水含量(n-RMSE:9.9%~14.8%,d: 0.724~0.831),模拟地下暗管排水的硝态氮淋失(n-RMSE: 17.8%~25.2%,d: 0.529~0.979)效果尚可。因此,DSSAT可以作为一个很好的工具来模拟在试验所在地区或相同条件下CDS和TD处理对环境质量、作物生产力和土壤氮循环过程的短期影响(5-8年)。
     3. 2006年和2007年在中国吉林省进行了不同氮素对玉米生长、氮素吸收和产量影响的田间试验。模拟结果表明,在中国东北的黑土区雨养条件下,通过校验DSSAT模型中的玉米品种参数、RUE和土壤肥料参数(SLPF),该模型可以很好地模拟地上部生物量(如校验年份d = 0.95~0.98)和籽粒产量(n-RMSE = 4.6%~9.0%;d = 0.68~0.95),但不能精确地模拟玉米氮素吸收。通过对模型中氮胁迫参数相关的氮含量参数b的敏感性分析表明,调节b值大小可以提高玉米氮素吸收的模拟精度。校验后的DSSAT模型可以作为一个很好的决策支持工具,有助于协助决策者、研究人员和生产者优化玉米的生产管理。
Nitrogen is a major limiting factor for crop production under normal field condition. Irrational irrigation and fertilization usually lead to resources waste, yield reduction, product quality decrease, and environment pollution. Therefore, it is important to develop best management practice to improve nutrient and water managements for sustained crop production and healthy environment. In this study, based on field experiment data, Decision Support System for Agrotechnology Transfer (DSSAT) Crop System Models were used to simulate different field experiments, and then the DSSAT models simulation performance and the model adaptability to the experiment condition were evaluated. The main findings are as following:
     1. From 1959 to 2008, A 50 year long-term experiment was carried out in southern Canada with continuous maize with, with fertilization (CC-F) and without fertilization (CC-NF) treatments. Study on maize cultivar coefficients calibration in the simulation indicated that radiation use efficiency (RUE) should considered in maize cultivar coefficient calibration to be done for different cultivars, experiments and areas. In this study, 50 years experiments were divided into 4 periods. Based on the 4 periods, 4 set of maize cultivars were defined, and the cultivar coefficients were calibrated. Using these calibrated coefficients, the maize yields of CC-F and CC-NF could be better simulated, compared with that using only one set of cultivar coefficient in 50 year.
     From the simulation results, DSSAT could simulated the yields of CC-F (with n-RMSE = 39%, R~2 = 0.36) more precisely than that for CC-NF (with n-RMSE = 82%, R~2 = 0.40). The model did not provide accurate predictions for annual maize yields. However, the model can simulate the yield change trend well. For the CC-F and CC-NF treatments, there were marked differences between simulated soil mineral nitrogen content(0-15 cm and 15-30 cm)of and the actual measured data, with the n-RMSE for CC-F ranged from 58% to 60%, and that for CC-NF ranged from 64% to 89%.
     The simulated cumulative nitrate loss from CC-F treatment from 1998 to 2000 by DSSAT model was consistent with the actual measured values, with n-RMSE为29%,EF为0.63. However, For the CC-NF treatment, the DSSAT model overestimated the cumulative nitrate loss, relative to the actual measured values, with n-RMSE of 160%,EF of 0.04. This indicates that the DSSAT model could not well simulate soil nitrogen situation in the nitrogen depleted soil after long term nitrogen depletion without nitrogen fertilizer application.
     2. From 2000 to 2004, in southwestern Ontario, Canada, a 5-year field experiment was carried out to investigate the effect of regular free tile drainage (TD) and controlled tile drainage with optional subsurface irrigation (CDS) on crop yield, soil water content and nitrate loss. The simulation results showed that DSSAT model could simulate the maize and soybean yield excellently (n-RMSE:4.3%~14.0%,d:0.985~0.998); well simulate soil water content (0-30cm) in root zone (n-RMSE:9.9%~14.8%,d: 0.724~0.831);reasonably good to simulate nitrate loss from tile drainage (n-RMSE: 17.8%~25.2%,d: 0.529~0.979). Thereby, DSSAT can be a useful tool for simulating the effects of TD and CDS on environmental quality, crop productivity, and soil profile processes (5-8 years).
     3. Maize experiments were conducted on a black soil in Gongzhuling, Jilin, Northeast China during 2006 and 2007 to study the effect of different fertilizer application on maize growth, nitrogen uptake and yield. After calibrating maize cultivar coefficients, radiation use efficiency(RUE)and soil fertility factors (SLPF), the DSSAT model could simulate aboveground biomass (such as d = 0.95~0.98 in the calibrated year), yield(n-RMSE = 4.6%~9.0%;d = 0.68~0.95)very good, but it could not well simulate maize nitrogen uptake. By doing sensitive analysis on nitrogen content change coefficient, b, it showed that DSSAT model could simulate maize nitrogen uptake more precisely after b value adjustment. Therefore, The DSSAT 4.5 model is a useful decision support tool to help decision makers, scientists and farmers to optimize maize management using different fertilizer N application strategies.
引文
1.别墅,唐仕芳,涂修亮,王少华,李德华,朱艳文,雷宜武.棉花干物质累积与养分吸收的模拟模型研究[J].湖北农业科学, 1999, (03):5-9.
    2.曹宏鑫,金之庆,石春林,葛道阔,高亮之.中国作物模型系列的研究与应用[J].农业网络信息, 2006, 5:45-48, 51.
    3.曹宏鑫,孙立荣,高亮之,金之庆,张继林.长江下游地区马肝土小麦生长期土壤氮素动态的模拟[J].中国农业气象, 1999, 20(02):35-38.
    4.曹宏鑫,张春雷,李光明,张保军,赵锁劳,汪宝卿,金之庆.油菜生长发育模拟模型研究[J].作物学报, 2006, 32(10):1530-1536.
    5.曹卫星.数字农作技术研究进展与发展方向[J].作物杂志,2008, 6:3-5.
    6.常丽英,汤亮,曹卫星,朱艳.水稻地上部单位器官物质分配过程的定量模拟[J].中国农业科学, 2008, 41(04):986-993.
    7.陈杰,杨京平,王兆骞.浙北地区不同种植方式下春玉米生长发育的动态模拟[J].应用生态学报, 2001, 12(06):859-862.
    8.陈劲松,黄健熙,林珲,裴志远.基于遥感信息和作物生长模型同化的水稻估产方法研究[J].中国科学:信息科学, 2010, S1:173-183.
    9.陈学文,张兴义,隋跃宇.农田黑土玉米生长过程模拟研究[J].农业系统科学与综合研究, 2009, 25(02):163-166+171.
    10.陈振林,张建平,王春乙,郑江平.应用WOFOST模型模拟低温与干旱对玉米产量的综合影响[J].中国农业气象, 2007, 28 (4) : 440– 442.
    11.戴明宏,赵久然, Wilhelm C,王璞.基于CERES-Maize模型春玉米水分优化管理决策[J].水土保持学报, 2009, v.23:No.100(01): 187-192.
    12.杜建涛,何文清, Vinay N,严昌荣, Mobin A,刘爽,刘勤.北方旱区保护性耕作对农田土壤水分的影响[J].农业工程学报, 2008, 134(11): 25-29.
    13.范铭丰,武伟,刘洪斌.基于CERES-Maize模型的玉米遗传参数优化及验证[J].安徽农业科学, 2010, 38(06):3087-3089+3188.
    14.房全孝,于强,王建林.利用RZWQM-CERES模拟华北平原农田土壤水分动态及其对作物产量的影响[J].作物学报, 2009, 35(06):1122-1130.
    15.冯利平,高亮之,金之庆,马新明.小麦发育期动态模拟模型的研究[J].作物学报, 1997, 23(04):418-424.
    16.傅庆林,王建红,丁能飞,林义成,俞劲炎,陈英旭.水稻生产的氮肥优化模拟研究[J].浙江农业学报, 2002, 14(03):125-130.
    17.高亮之,金之庆,黄耀,陈华.作物模拟与栽培优化原理的结合-RCSODS.作物杂志, 1994, 3:4-7.
    18.高亮之,金之庆,郑国清,冯利平,张立中,石春林,葛道阔.小麦栽培模拟优化决策系统(WCSODS) [J].江苏农业学报, 2000, 2:65-72.
    19.高亮之,金之庆. RCSODS—水稻栽培计算机模拟优化决策系统[J].计算机农业应用, 1993, 3: 14-20.
    20.高如泰,陈焕伟,李保国,黄元仿.夏玉米生长期黄淮海平原土壤水氮利用效率模拟分析[J].农业工程学报, 2006, 22(06):33-38.
    21.高晓飞,谢云.用ALMANAC作物生长模型模拟冬小麦生长[J].自然资源学报, 2003, 18(4): 505-510.
    22.葛道阔,金之庆.利用CERES模拟模型制定水稻栽培决策.江苏农业科学, 1993, 05: 14-16+43.
    23.郭银巧,赵传德,孙红春,李存东.玉米肥料运筹动态知识模型研究[J].河北农业大学学报, 2008, 31(01):118-122+126.
    24.黄冲平,王爱华,胡秉民.马铃薯生育期和干物质积累的动态模拟研究[J].生物数学学报, 2003, 18(03):314-320.
    25.吉林省土壤肥料总站.吉林土壤[M ].北京:中国农业出版社, 1998.
    26.江敏,金之庆. CERES-Rice模型区域应用中遗传参数升尺度的一种方法[J].中国水稻科学, 2009, 32(02):172-178.
    27.姜海燕,朱艳,徐焕良,汤亮,花登峰,曹卫星.作物模型资源构造平台(CMRCP)的构建研究[J],农业工程学报, 2008, 24(2):10-175.
    28.姜志伟,陈仲新,周清波,任建强. CERES-Wheat作物模型参数全局敏感性分析[J].农业工程学报, 2011, 27(01):236-242.
    29.姜志伟,武雪萍,华珞,蔡典雄,逢焕成,吴会军.洛阳孟津农业技术转移决策支持系统数据库组建[J].首都师范大学学报(自然科学版), 2009, 30(03):71-76.
    30.金继运,张宁,梁鸣早,吴荣贵, Porch S.土壤养分状况系统研究法在土壤肥力研究及测土施肥中的应用[J].植物营养与肥料学报, 1996, 2(01):8-15.
    31.雷水玲.应用DSSAT3模型研究宁夏红寺堡灌区小麦生长过程及产量[J].干旱地区农业研究, 2000, 03: 98-103.
    32.李秉柏,马新明,徐立华.棉花干物质积累的模拟模型与检验[J].中国农业气象, 1998, 19(02):20-24.
    33.李军.作物生长模型ALMANAC的验证与应用初探.干旱地区农业研究[J], 1997,15(4):99-104.
    34.李军,邵明安,樊廷录,王立祥.黄土高原作物生长模型DSSAT3数据库组建[J].干旱地区农业研究, 2001, 01: 120-126.
    35.李萍萍,夏志军,胡永光,毛罕平.温室黄瓜环境管理智能决策支持系统初探[J].江苏大学学报(自然科学版), 2004, 25(01):5-8.
    36.李文娟,何萍,高强,金继运,侯云鹏,尹彩霞,张国辉.不同氮效率玉米干物质形成及氮素营养特性差异研究[J].植物营养与肥料学报, 2010, 16(01):51-57.
    37.李炎,王仰仁,迟道才.小麦生长模拟模型的研究进展[J].节水灌溉, 2008, 11:22-25.
    38.林忠辉,莫兴国,项月琴.作物生长模型研究综述[J].作物学报, 2003, 29(9):750-758.
    39.刘刚,谢云,高晓飞,冯艳杰. ALMANAC作物模型参数的敏感性分析[J].中国农业气象,2008, 29(03):259-263.
    40.刘刚,谢云,吴瑞俊,高晓飞,章文波. ALMANAC模型对黄土高原玉米、谷子和糜子产量的模拟[J].干旱地区农业研究, 2009, 27(01):78-83.
    41.刘海龙.施氮对高淀粉玉米源库特性的影响[硕士学位论文].北京:中国农业科学院, 2007.
    42.刘建栋,傅抱璞,金之庆,卢其尧,林振山.应用ARID CROP模型对中国黄淮海地区冬小麦气候生产力的数值模拟研究[J].自然资源学报, 1997, 12(03):282-287.
    43.刘升平,诸叶平.基于Agent技术的小麦生长模拟模型的建立[J].安徽农业科学, 2007, 35(20):6026-6028.
    44.刘玉兰,陈晓光,肖云清,亢艳莉,郭晓雷. CERES-Maize模型中遗传参数确定方法的研究[J].玉米科学, 2007, 15(06):127-129.
    45.柳云龙,吕军,郑丽波.土壤水分平衡与作物生长模拟模型的开发与验证[J].农业工程学报, 2007, 23(12):171-175.
    46.罗群英,林而达.农业技术转移决策支持系统(DSSAT)新进展[J].气象, 1996, 12: 10-13.
    47.罗霄,李忠武,叶芳毅,黄金权.水稻生长模型CERES-Rice的研究进展及展望[J].中国农业科技导报, 2009, 11(05):54-59.
    48.罗毅,郭伟.作物模型研究与应用中存在的问题[J].农业工程学报, 2008 ,24(5):307-312.
    49.鲁向晖,穆兴民, Nangia V.,隋艳艳,姚宇卿,王飞,高鹏. DSSAT模型对豫西冬小麦保护性耕作效应模拟效果验证[J].干旱地区农业研究, 2010, 28(3):64-70.
    50.马波,田军仓.作物生长模拟模型研究综述[J].节水灌溉, 2010, 2:1-5.
    51.马新明,张娟娟,刘合兵,席磊,高项飞.基于氮素胁迫的WCSODS模型订正与检验[J].中国农业科学, 2008, 41(2):391-396.
    52.潘铁夫,张德荣,李德明,张隐君.中国大豆发育动态的计算机模型[J].中国农业气象, 1993, 20(04):1-8.
    53.潘学标,韩湘玲,石元春. COTGROW:棉花生长发育模拟模型[J].棉花学报, 1996a, 8(4):180-188.
    54.商磊,赵军,祁广云,韩晓增,宁海龙.黑土农田大豆产量形成过程的模拟验证[J].中国生态农业学报, 2008, 16(04):869-873.
    55.尚宗波,杨继武,殷红,罗新兰,赵世勇.玉米生长生理生态学模拟模型[J].植物学报, 2000, 42(02):184-194.
    56.石春林,金之庆,陈新,葛道阔.大豆阶段发育的动态模拟模型[J].江苏农业学报, 2004, 20(04):220-224.
    57.石春林,金之庆,高亮之,葛道阔,魏秀芳. CERES-Rice在水稻氮肥管理中的应用与分析[J].江苏农业学报, 2003, 19(1):1-4.
    58.石春林,薛正平,金之庆,杨星卫,丁美花,葛道阔,高亮之.水稻栽培模拟优化决策系统(RCSODS)在N胁迫条件下的应用[J].江苏农业学报, 2002,18(3):134-138.
    59.孙芳,林而达,李剑萍,熊伟.基于DSSAT模型的宁夏马铃薯生产的适应对策[J].中国农业气象, 2008, 02: 127-129+133.
    60.孙红敏,郑萍,张继成.大豆叶片生长特征的动态模拟研究[J].东北农业大学学报, 2007,38(04):446-448.
    61.孙睿,洪佳华,曹永华.夏玉米光合生产模拟模型初探[J].中国农业气象, 1997, 18(02):20-23.
    62.孙忠富,陈人杰.温室作物模型研究基本理论与技术方法的探讨[J].中国农业科学, 2002, 3:320-324.
    63.谢云, Kiniry J.R.国外作物生长模型发展综述.作物学报[J] , 2002:190-195.
    64.熊淑萍.烟草生长发育动态模拟模型系统(Tobacco-DSMS)的研究[硕士学位论文],河南:河南农业大学, 2003.
    65.熊伟,杨婕.作物模型与气候模型的连接研究进展[J].中国生态农业学报, 2008, 16(2):511-514.
    66.徐寿军,顾小莉,王志刚,卜义霞,张宝生,刘传松,庄恒扬.我国主要作物生长模拟模型研究进展[J].内蒙古民族大学学报(自然科学版), 2005, 414-420.
    67.薛昌颖,杨晓光,陈怀亮,冯利平,王化琪, Bouman B.A.M.基于ORYZA2000模型的北京地区旱稻适宜播种期分析[J].生态学报, 2010, 30(24):6970-6979.
    68.王尔大, Wyatte Harman ,郑大玮,常欣,程序.旱作农区轮作和留茬处理方式对风蚀的影响——应用EPIC模型进行模拟和分析的武川案例[ J ] .中国农业科学, 2002 , 35(11) :1330-1336.
    69.王风,张克强,黄治平,李军幸,于丹,李晓光. RZWQM模型介绍及其应用进展[J].农业系统科学与综合研究, 2008, 24(4):501-504.
    70.王康,沈荣开,覃奇志.不同水分、氮素条件下夏玉米生长的动态模拟[J].灌溉排水学报, 2003, 22(02):9-12.
    71.王琳,郑有飞,于强,王恩利. APSIM模型对华北平原小麦-玉米连作系统的适用性[J].应用生态学报, 2007a, 18(11):2480-2486.
    72.王琳,郑有飞,于强,王恩利.农田生产系统模型(APSIM)在土地和水肥资源管理中的应用[J].农业环境与发展, 2007b, 03:27-32.
    73.王涛,吕昌河,于伯华.基于WOFOST模型的京津冀地区冬小麦生产潜力评价[J].自然资源学报, 2010, 25(03):475-487.
    74.王信理,王馥棠,裘国旺.系统优化理论在CERES-大豆模式品种参数求解中的应用[J].应用气象学报, 1995, 6(S1):49-54.
    75.王志强,方伟华,史培军,邓运员. EPIC农作物生长模型应用研究进展[J].北京师范大学学报(自然科学版) , 2008, 44(5): 533-538.
    76.王宗明,梁银丽.应用EPIC模型计算黄土塬区作物生产潜力的初步尝试[J].自然资源学报, 2002 , 17 (4) :481-487.
    77.王宗明,张柏,宋开山,段洪涛. CropSyst作物模型在松嫩平原典型黑土区的校正和验证[J].农业工程学报, 2005, 21(05):47-50.
    78.魏俊凯,温暖,郑国清.我国玉米模型的研究进展[J].玉米科学, 2009, 17(03):130-133.
    79.温美丽,高晓飞,谢云,刘宝元. ALMANAC模型对大豆产量的模拟[J].资源科学, 2005,27(4):100-105.
    80.邬定荣,欧阳竹,赵小敏,于强,罗毅.作物生长模型WOFOST在华北平原的适用性研究[J].植物生态学报, 2003, 27(5): 594-602.
    81.严力蛟,曹卫星.水稻氮模型ORYZA-0及其应用研究[J].生物数学学报, 2001, 484-490.
    82.杨勤,许吟隆,林而达,熊伟,陈晓光.应用DSSAT模型预测宁夏春小麦产量演变趋势[J].干旱地区农业研究, 2009, v.27;No.113(02): 41-48.
    83.姚运生,罗新兰,王秉昆,戴俊英.玉米植株形态生长的模拟[J].玉米科学, 2000, 8(增刊):30-32.
    84.叶芳毅,李忠武,李裕元,曾光明,彭亿,张棋,梁红玲,王亚梅.水稻生长模型发展及应用研究综述[J].安徽农业科学, 2009, 37(01):85-89.
    85.宇振荣.作物生长模拟模型研究和应用[J],生态学杂志, 1994, 13(1):69-73.
    86.袁静,许吟隆.基于CERES模型的临沂小麦生产的适应措施研究[J].中国农业气象, 2008, 29( 3): 251- 255.
    87.张敬涛,周丰锁,王谦玉,王成,赵桂范,史占忠,崔冶,赵广山,乔连成.大豆阶段发育动态模型的研究与建立[J].中国农学通报, 2005, 21(01):312-314+325.
    88.张立桢,曹卫星,张思平.棉花干物质分配和产量形成的动态模拟[J].中国农业科学, 2004, 37(11):1621-1627.
    89.张吴平,郭焱,李保国.小麦苗期根系三维生长动态模型的建立与应用[J].中国农业科学, 2006, 39(11):2261-2269.
    90.赵军. SOYGRO模型在大豆产量预测中的应用[J].大豆科学, 1999, 18(1):67-71.
    91.郑国清,高亮之.玉米发育期动态模拟模型[J].江苏农业学报, 2000, 16(01):15-21.
    92.郑国清,尹红征,段韶芬,黄静.作物模拟研究中的模型检验[J].华北农学报, 2003, 18(02):110-113.
    93.郑志明,严力蛟, Kropff M.J., VanLar H.H.灌溉水稻生长发育和潜力产量的模拟模型[J].生物数学学报, 1996, 11 (4): 139-145.
    94.郑志明.水稻氮肥管理的ORYZA-0模型之理论及验证[J].浙江农业大学学报, 1994, 20(6):611-616.
    95.诸叶平,曹永华,雪燕. CCERES作物模拟模型输入系统的开发[J].计算机农业应用, 1992, (01):16-18.
    96.诸叶平,李世娟,于向鸿.玉米数字模拟器研究[J].中国农业科技导报, 2007, 9(6):84-89.
    97.诸叶平,张建兵,孙开梦.小麦-玉米连作环境模拟与智能决策系统[J].计算机与农业, 2001, (专刊) :41~44.
    98.朱玉洁,冯利平,易鹏,杨晓光,胡跃高.紫花苜蓿光合生产与干物质积累模拟模型研究[J].作物学报, 2007, 33(10):1682-1687.
    99. Abrahamsen P., Hansen S. Daisy: an open soil-crop-atmosphere system model[J]. Environ. Modell. Softw., 2000, 15(3):313-330.
    100. Ahmed I., Rudra R., McKague K., Gharabaghi B., Ogilvie J. Evaluation of the Root Zone Water Quality Model (RZWQM) for Southern Ontario: Part II. Simulating long-term effects of nitrogen management practices on crop yield and subsurface drainage water quality[J]. Water Qual. Res. J. Can., 2007, 42:219-230.
    101. Anapalli S.S., Ma L., Nielsen D.C., Vigil M.F., Ahuja L.R. Simulating planting date effects on cornproduction using RZWQM and CERES-maize models[J]. Agron. J., 2005, 97:58-71
    102. Anothai J., Patanothai A., Jogloy S., Pannangpetch K., Boote K.J., Hoogenboom G. A sequential approach for determining the cultivar coefficients of peanut lines using end-of-season data of crop performance trials[J]. Field Crops Res., 2008a, 108(2), 169-178.
    103. Anothai J., Patanothai A., Pannangpetch K., Jogloy S., Boote K.J., Hoogenboom G. Reduction in data collection for determination of cultivar coefficients for breeding applications[J]. Agric. Syst., 2008b, 96(1-3):195-206.
    104. Apipattanavis S., Bert F., PodestáG., Rajagopalan B. Linking weather generators and crop models for assessment of climate forecast outcomes[J]. Agric. For. Meteorol., 2010, 150:166-174.
    105. Arora V.K., Singh H., Singh B. Analyzing wheat productivity responses to climatic, irrigation and fertilizer-nitrogen regimes in a semi-arid sub-tropical environment using the CERES-Wheat model[J]. Agric. Water Manage., 2007, 94(1-3):22-30.
    106. Asadi M.E., Clement R.S. Evaluation of CERES-maize of DSSAT model to simulate nitrate leaching, yield and soil moisture content under tropical conditions[J]. Food Agric. Environ., 2003, 1:270-276.
    107. Asadi M.E., Clemente R.S. Simulation of maize yield and N uptake under tropical conditions with the CERES-Maize model[J]. Tropical Agriculture, 2001, 78(4): 211-217.
    108. Bannayan M., Hoogenboom G. Using pattern recognition for estimating cultivar coefficients of a crop simulation model[J]. Field Crops Res., 2009, 111(3):290-302.
    109. Barnett V. Statistics and the long-term experiments: past achievements and future challenges. In: Leigh R.A., Johnston A.E. (ed) Long-term experiments in agricultural and ecological sciences, CAB International, Wallingford, UK, 1994, pp165-183.
    110. Banterng P., Patanothai A., Pannangpetch K., Jogloy S., Hoogenboom G. Yield stability evaluation of peanut lines: A comparison of an experimental versus a simulation approach[J]. Field Crops Res., 2006, 96(1):168-175.
    111. Bastiaanssen W.G.M., Allen R.G., Droogers P., D'Urso G., Steduto P. Twenty-five years modeling irrigated and drained soils: State of the art[J]. Agric. Water Manage., 2007, 92:111-125.
    112. Batchelor W.D., Basso B., Paz J.O. Examples of strategies to analyze spatial and temporal yield variability using crop models[J]. Eur. J. Agron., 2002, 18:141-158.
    113. Batjes N.H., Bridges E.M. Potential emissions of radiatively active gases from soil to atmosphere with special reference to methane: Development of a global database (WISE)[J]. J. Geophys. Res., 1994, 99(D8):16479-16489.
    114. Behera S.K., Panda R.K. Integrated management of irrigation water and fertilizers for wheat crop using field experiments and simulation modeling[J]. Agric. Water Manage., 2009, 96(11):1532-1540.
    115. Bernardos J.N., Viglizzo E.F., Jouvet V., Le′rtora F.A., Pordomingo A.J., Cid F.D. The use of EPIC model to study the agroecological change during 93 years of farming transformation in the Argentine pampas[J]. Agric. Syst., 2001, 69:215-234.
    116. Bert F.E., Laciana C.E., PodestáG.P., Satorre E.H., Menéndez A.N. Sensitivity of CERES-Maize simulated yields to uncertainty in soil properties and daily solar radiation[J]. Agric. Syst., 2007, 94:41-150.
    117. Bhatia V.S., Singh P., Wani S.P., Chauhan G.S., Rao A.V.R.K., Mishra A.K., Srinivas K. Analysis of potential yields and yield gaps of rainfed soybean in India using CROPGRO-Soybean model[J]. Agric. For. Meteorol., 2008, 148(8-9):1252-1265.
    118. Bolton E.F., Aylesworth J.W., Hore F.R. Nutrient losses through tile drains under three cropping systems and two fertility levels on a Brookston clay loam[J]. Can. J. Soil Sci., 1970,50:275-279.
    119. Boote K.J. Concepts for calibrating crop growth models. In: Hoogenboom G., Wilkens P.W., Tsuji G.Y. (eds) DSSAT V3, volume 4, University of Hawaii, Honolulu, Hawaii, 1999, pp 179-199.
    120. Boote K.J., Jones J.W., Batchelor W.D., Nafziger E.D., Myers O. Genetic coefficients in the CROPGRO-soybean model: Links to field performance and genomics[J]. Agron. J., 2003, 95:32-51.
    121. Boote K.J., Jones J.W., Hoogenboom G., White J.W. The role of crop systems simulation in agriculture and environment[J]. Int. J. Agric. Environ. Inf. Syst., 2010, 1:41-54.
    122. Boote K.J. 1999. Concepts for calibrating crop growth models. In: Hoogenboom G., Wilkens P.W. and Tsuji G.Y. (Eds.), DSSAT v3, Volume 4. University of Hawaii, Honolulu, Hawaii.
    123. Bouman B.A.M., van Keulen H., van Laar H.H., Rabbinge R. The `School of de Wit' crop growth simulation models: A pedigree and historical overview[J]. Agric. Syst., 1996, 52:171-198.
    124. Bouman B.A.M., van Laar H.H. Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions[J]. Agric. Syst., 2006, 87(3):249-273.
    125. Bowen W.T. The simulation of cropping sequences using DSSAT. In: Tsuj G.Y., Hoogenboom G. and Thornton P.K. (Eds.), Understanding Options for Agricultural Production, Kluwer Academic Publishers, The Netherlands. 1998, pp: 313-327.
    126. Bowen W.T., Jones J.W., Carsky R.J., Quintana J.O. Evaluation of the Nitrogen Submodel of CERES-Maize Following Legume Green Manure Incorporation[J]. Agron. J., 1993, 85:153-159.
    127. Box G.E.P. Robustness in the strategy of scientific model building. In Launer R.L. and Wilkinson G.N. (Eds.), Robustness in Statistics. New York: Academic Press. 1979, pp. 312-312.
    128. Bryant G.J., Irwin R.W., Stone J.A . Tile drain discharge under different crops[J]. Can. Agr. Eng., 1987, 29: 117-122.
    129. Cabas J., Weersink A., Olale E. Crop yield response to economic, site and climatic variables[J]. Clim. Change., 2010, 101(3):599-616.
    130. Cabrera V.E., Jagtap S.S., Hildebrand P.E. Strategies to limit (minimize) nitrogen leaching on dairy farms driven by seasonal climate forecasts[J]. Agric. Ecosyst. Environ., 2007, 122(4):479-489
    131. Chen C., Wang E., Yu Q. Modelling the effects of climate variability and water management on crop water productivity and water balance in the North China Plain[J]. Agric. Water Manage., 2010, 97(8):1175-1184.
    132. Daroub S.H., Gerakis A., Ritchie J.T., Friesen D.K., Ryan J. Development of a soil-plant phosphorus simulation model for calcareous and weathered tropical soils[J]. Agric. Syst., 2003,76:1157-1181.
    133. de Carvalho Lopes D., Steidle Neto A.J. Simulation models applied to crops with potential for biodiesel production[J]. Comput. Electronics in Agric., 2011, 75(1):1-9.
    134. DeJonge K.C., Kaleita A.L., Thorp K.R. Simulating the effects of spatially variable irrigation on corn yields, costs, and revenue in Iowa[J]. Agric. Water Manage., 2007, 92:99-109.
    135. Dhungana P., Eskridge K.M., Weiss A., Baenziger P.S. Designing crop technology for a future climate: An example using response surface methodology and the CERES-Wheat model[J]. Agric. Syst., 2006, 87(1):63-79.
    136. Drury C.F., Oloya T.O., McKenney D.J., Gregorich E.G., Tan C.S., VanLuyk C.L. Long-term effects of fertilization and rotation on denitrification and soil carbon[J]. Soil Sci. Soc. Am. J., 1998, 62:1572-1579.
    137. Drury C.F., Tan C.S. Long-term (35 years) effects of fertilization, rotation and weather on corn yields[J]. Can. J. Plant Sci., 1995, 75:355-362.
    138. Drury C.F., Tan C.S., Gaynor J.D., Oloya T.O., Welacky T.W. Water quality: Influence of controlled drainage-subirrigation on surface and tile drainage nitrate loss[J]. J. Environ. Quality., 1996. 25:317-324.
    139. Drury C.F., Tan C.S., Reynolds W.D., Welacky T.W., Oloya T.O., Gaynor J.D. Managing tile drainage, subirrigation, and nitrogen fertilization to enhance crop yields and reduce nitrate loss[J]. J. Environ. Quality., 2009. 38, 1193-1204.
    140. Dzotsi K.A., Jones J.W., Adiku S.G.K., Naab J.B., Singh U., Porter C.H., Gijsman A.J. Modeling soil and plant phosphorus within DSSAT[J]. Ecol. Modell., 2010, 221(23):2839-2849.
    141. Edmeades D.C. The long-term effects of manures and fertilisers on soil productivity and quality: A review[J]. Nutr. Cycl. Agroecosys., 2003, 66:165-180.
    142. Eitzinger J., StastnáM., Zalud Z., Dubrovsky M. A simulation study of the effect of soil water balance and water stress on winter wheat production under different climate change scenarios[J]. Agric. Water Manage., 2003, 61(3):195-217.
    143. Fang Q., Ma L., Yu Q., Ahuja L.R., Malone R.W., Hoogenboom G. Irrigation strategies to improve the water use efficiency of wheat-maize double cropping systems in North China Plain[J]. Agric. Water Manage., 2010, 97(8):1165-1174.
    144. Gao L., Jin Z., Huang Y., Zhang L. Rice clock model--a computer model to simulate rice development[J]. Agric. For. Meteorol., 1992, 60:1-16.
    145. Garcia-Sanchez A.J., Garcia-Sanchez F., Garcia-Haro J. Wireless sensor network deployment for integrating video-surveillance and data-monitoring in precision agriculture over distributed crops[J]. Comput. Electronics in Agric., 2011, 75:288-303.
    146. Garcia y Garcia A., Guerra L.C., Hoogenboom G. Water use and water use efficiency of sweet corn under different weather conditions and soil moisture regimes[J]. Agric. Water Manage., 2009, 96(10):1369-1376.
    147. Garrison M.V., Batchelor W.D., Kanwar R.S., Ritchie J.T. Evaluation of the CERES-Maize waterand nitrogen balances under tile-drained conditions[J]. Agric. Syst., 1999, 62:189-200.
    148. Gaynor J.D., Tan C.S., Drury C.F., Van Wesenbeeck I.J., Welacky T.W. Atrazine in surface and subsurface runoff as affected by cultural practices[J]. Water Qual. Res. J. Can., 1995, 30:513-531.
    149. Geerts S., Raes D., Garcia M., Taboada C., Miranda R., Cusicanqui J., Mhizha T., Vacher J. Modeling the potential for closing quinoa yield gaps under varying water availability in the Bolivian Altiplano[J]. Agric. Water Manage., 2009, 96:1652-1658.
    150. Gheysari M., Mirlatifi S.M., Homaee M., Asadi M.E., Hoogenboom G. Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates[J]. Agric. Water Manage., 2009, 96:946-954.
    151. Gijsman A.J., Hoogenboom G., Parton W.J., Kerridge P.C. Modifying DSSAT crop models for low-input agricultural systems using a soil organic matter-residue module from CENTURY[J]. Agron. J., 2002, 94:462-474.
    152. Gijsman A.J., Thornton P.K., Hoogenboom G. Using the WISE database to parameterize soil inputs for crop simulation models[J]. Comput. Electronics Agric., 2007, 56 (2):85-100.
    153. Giltrap D.L., Li C., Saggar S. DNDC: A process-based model of greenhouse gas fluxes from agricultural soils[J]. Agric., Ecosyst. Environ., 2010, 136(3-4):292-300.
    154. Godwin D.C., Singh U. Nitrogen balance and crop response to nitrogen in upland and lowland cropping systems, in: Tsuj G.Y., Hoogenboom G. and Thornton P.K. (eds), Understanding Options for Agricultural Production, Kluwer Academic Publishers, The Netherlands., 1998, pp. 55-77.
    155. Greenwald R, Bergin M.H, Xu J., Cohan D., Hoogenboom G., Chameides W.L. The influence of aerosols on crop production: A study using the CERES crop model[J]. Agric. Syst., 2006, 89: 390-413.
    156. Gregorich E.G., Drury C.F., Baldock J.A. Changes in soil carbon under long-term maize in monoculture and legume-based rotation[J]. Can. J. Soil Sci., 2001, 81:21-31.
    157. Gregorich E.G., Carter M.R., Angers D.A., Drury C.F. Using a sequential density and particle-size fractionation to evaluate carbon and nitrogen storage in the profile of tilled and no-till soils in eastern Canada[J]. Can. J. Soil Sci., 2009, 89:255-267.
    158. Gungula D.T., Kling J.G., Togun A.O. CERES-Maize predictions of maize phenology under nitrogen-stressed conditions in Nigeria[J]. Agron. J., 2003, 95:892-899.
    159. Guo R., Lin Z., Mo X., Yang C. Responses of crop yield and water use efficiency to climate change in the North China Plain[J]. Agric. Water Manage., 2010, 97(8):1185-1194.
    160. Harrison S.R., Thornton P.K., Dent J.B. The IBSNAT project and agricultural experimentation in developing countries[J]. Exp. Agric., 1990, 26:369-380.
    161. Hasegawa H., Bryant D.C., Denison R.F. Testing CERES model predictions of crop growth and N dynamics, in cropping systems with leguminous green manures in a Mediterranean climate[J]. Field Crops Res., 2000, 67:239-255.
    162. He J., Dukes M.D., Jones J.W., Graham W.D., Judge J. Applying GLUE for Estimating CERES-Maize Genetic and Soil Parameters for Sweet Corn Production[J]. Trans. ASABE., 2009a,52:1907-1921.
    163. He J., Jones J.W., Graham W.D., Dukes M.D. Influence of likelihood function choice for estimating crop model parameters using the generalized likelihood uncertainty estimation method[J]. Agric. Syst., 2010, 103(5):256-264.
    164. He P., Li S., Jin J., Wang H., Li C., Wang Y., Cui R. Performance of an optimized nutrient management system for double-cropped wheat-maize rotations in North-Central China[J]. Agron. J., 2009b, 101(6):1489-1496.
    165. Heinemann A.B., Hoogenboom G., de Faria R.T. Determination of spatial water requirements at county and regional levels using crop models and GIS: An example for the State of Parana, Brazil[J]. Agric. Water Manage., 2002, 52(3):177-196.
    166. Hirekhan M., Gupta S.K, Mishra K.L. Application of WaSim to assess performance of a subsurface drainage system under semi-arid monsoon climate[J]. Agric. Water Manage., 2007, 88:224-234.
    167. Holden N.M., Brereton A.J., Fealy R., Sweeney J.. Possible change in Irish climate and its impact on barley and potato yields[J]. Agric. For. Meteorol., 2003, 116(3-4): 181-196.
    168. Holzworth D.P., Huth N.I., de Voil P.G. Simplifying environmental model reuse[J]. Environ. Model. Software, 2010, 25(2):269-275.
    169. Hoogenboom G., Jones J.W., Porter C.H., Wilkens P.W., Boote K.J., Batchelor W.D., Hunt L.A., Tsuji G.Y. Overview. Hoogenboom G., Jones J.W., Wilkens P.W., Boote K.J., Batchelor W.D., Hunt L.A., Tsuji G.Y. (eds) Decision Support System for Agrotechnology Transfer Version 4.0, University of Hawaii, Honolulu, HI, USA. 2003.
    170. Hoogenboom G., Wilkens P.W., Tsuji G.Y. Decision Support System for Agrotechnology Transfer (DSSAT) v.3. Volumn 4. University of Hawaii. Honolulu, Hawaii. 1999.
    171. Hoogenboom G., Jones J.W., Porter C.H., Wilkens P.W., Boote K.J., Batchelor W.D., Hunt L.A., Tsuji G.Y. (Editors), Decision Support System for Agrotechnology Transfer Version 4.0. Volume 1: Overview. University of Hawaii, Honolulu, HI. 2003.
    172. Hoogenboom G., Jones J.W., Wilkens P.W., Porter C.H., Hunt L.A., Boote K.J., Singh U., Uryasev O., Lizaso J.I., Gijsman A.J., White J.W., Batchelor W.D., Tsuji G.Y., (eds.), Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.5 [CD-ROM], University of Hawaii, Honolulu, Hawaii. 2010.
    173. Huffman E.C., Yang J.Y, Gameda S., De Jong R.. Using simulation and budget models to scale-up nitrogen leaching from field to region in Canada[J]. The Scientific World Journal [electronic resource], 2001, 1 Suppl 2(699-706).
    174. Hunt L.A., White J.W., Hoogenboom G. Agronomic data: advances in documentation and protocols for exchange and use[J]. Agric. Syst., 2001, 70:477-492.
    175. Hunt L.A., Pararajasingham S., Jones J.W., Hoogenboom G., Imamura D.T., Ogoshi R.M. GENCALC: Software to facilitate the use of crop models for analyzing field experiments[J]. Agron. J., 1993, 85:1090-1094.
    176. Hunt L.A., Boote K.J. Data for model operation, calibration, and evaluation, in: Tsuj G.Y.,Hoogenboom G. and Thornton P.K. (eds.), Understanding Options for Agricultural Production, Kluwer Academic Publishers, The Netherlands. 1998. pp. 9-39.
    177. Izaurralde R.C., Williams J.R., McGill W.B., Rosenberg N.J., Jakas M.C. Simulating soil C dynamics with EPIC: Model description and testing against long-term data[J]. Ecol. Model, 2006, 192:362-384.
    178. Jagtap S.S., Mornu M., Kang B.T. Simulation of growth, development and yield of maize in the transition zone of Nigeria[J]. Agric. Syst., 1993, 41:215-229.
    179. Jamieson P.D., Porter J.R., Wilson D.R. A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand[J]. Field Crops Res., 1991, 27:337-350.
    180. Jeffrey W. White J.W., Jones J.W., Porter C., McMaster G.S., Sommer R. Issues of spatial and temporal scale in modeling the effects of field operations on soil properties[J]. Oper. Res. Int. J., 2009, DOI 10.1007/s12351-009-0067-1.
    181. Jenkinson D.S., Brandbury N.J., Colman K. How the Rothamsted classical experiments have been used to develop and test models for the turnover of carbon and nitrogen in soil. in: Leigh R.A., Johnston A.E.(eds), Long-term experiments in agricultural and ecological sciences, CAB International, Wallingford, UK. 1994, pp 117-138.
    182. Jin Z.-Q., Zhu D.-W. Impacts of Changes in Climate and Its Variability on Food Production in Northeast China[J]. Acta Agronomica Sinica, 2008, 34(9):1588-1597.
    183. Jing Q., Keulen H.V., Hengsdijk H. Modeling biomass, nitrogen and water dynamics in rice-wheat rotations[J]. Agric. Syst., 2010, 103(7):433-443.
    184. Johnston A.E. The value of long-term field experiments in agricultural, ecological, and environmental research[J]. Adv. Agron., 1997, 59:291-333.
    185. Jones J.W., Hoogenboom G., Porter C.H., Boote K.J., Batchelor W.D., Hunt L.A., Wilkens P.W., Singh U., Gijsman A.J., Ritchie J.T. The DSSAT cropping system model[J]. Eur. J. Agron., 2003a, 18:235-265.
    186. Jones P.G., Thornton P.K. The potential impacts of climate change on maize production in Africa and Latin America in 2055[J]. Global Environ. Change, 2003b, 13(1):51-59.
    187. Jones J.W., Keating B.A., Porter C.H. Approaches to modular model development[J]. Agric. Syst., 2001, 70(1-2):421-443.
    188. Jones C.A., Dyke P.T., Williams J.R., Kiniry J.R., Benson V.W., Griggs R.H. EPIC: An operational model for evaluation of agricultural sustainability[J]. Agric. Syst., 1991, 37:341-350.
    189. Jones C.A., Kiniry J.R.(eds). CERES-Maize: A Simulation Model of Maize Growth and Development. Texas A & M University press, College station, TX. 1986.
    190. Jones J.W., Hunt L.A., Hoogenboom G., Godwin D.C., Singh U., Tsuj G.Y., Pickering N.B., Thornton P., K., Bowen W.T., Boote K.J., Ritchie J.T. Input & output files, In: Tsuji G.Y., Uehara G., and Balas S. (eds). DSSAT v3. University of Hawaii, Honolulu, Hawaii. 1994, pp, 1-93.
    191. Keating B.A., Carberry P.S., Hammer G.L., Probert M.E., Robertson M.J., Holzworth D., Huth N.I., Hargreaves J.N.G., Meinke H., Hochman Z., McLean G., Verburg K., Snow V., Dimes J.P., SilburnM., Wang E., Brown S., Bristow K.L., Asseng S., Chapman S., McCown R.L., Freebairn D.M., Smith C.J. An overview of APSIM, a model designed for farming systems simulation [J]. Eur. J. Agron., 2003, 18:267-288.
    192. Kersebaum K.C., Wurbs A., de Jong R., Campbell C.A., Yang J., Zentner R.P. Long-term simulation of soil-crop interactions in semiarid southwestern Saskatchewan, Canada[J]. Eur. J. Agron., 2008, 29:1-12.
    193. Kiniry J.R., Cassida K.A., Hussey M.A., Muir J.P., Ocumpaugh W.R., Read J.C., Reed R.L., Sanderson M.A., Venuto B.C., Williams J.R. Switchgrass simulation by the ALMANAC model at diverse sites in the southern US[J]. Biomass Bioenergy, 2005, 29(6):419-425.
    194. Knorzer H., Gr?zinger H., Graeff-H?nninger S., Hartung K., Piepho H.P., Claupein W. Integrating a simple shading algorithm into CERES-wheat and CERES-maize with particular regard to a changing microclimate within a relay-intercropping system[J]. Field Crops Res., 2011, 121(2):274-285.
    195. Ko J., Piccinni G., Steglich E. Using EPIC model to manage irrigated cotton and maize[J]. Agric. Water Manage., 2009, 96(9):1323-1331.
    196. Kobayashi K., Salam M.U. Comparing simulated and measured values using mean squared deviation and its components[J]. Agron. J., 2000, 92:345-352.
    197. Koo J., Bostick W.M., Naab J.B., Jones J.W., Graham W.D., Gijsman A.J. Estimating soil carbon in agricultural systems using ensemble Kalman filter and DSSAT-CENTURY[J]. Trans. ASAE., 2007, 50: 1851-1865.
    198. Korschens M. The importance of long-term field experiments for soil science and environmental research - A review[J]. Plant. Soil Envi., 2006, 52:1-8.
    199. Krobel R., Sun Q., Ingwersen J., Chen X., Zhang F., Müller T., R?mheld V. Modelling water dynamics with DNDC and DAISY in a soil of the North China Plain: A comparative study[J]. Environ. Model. Software, 2010, 25(4):583-601.
    200. Langensiepen M., Hanus H., Schoop P., Gr?sle W. Validating CERES-wheat under North-German environmental conditions[J]. Agric. Syst., 2008, 97(1-2):34-47.
    201. Leigh R.A., Johnston A.E. Long-term experiments in agricultural and ecological sciences. Oxford University Press. 1994.
    202. Leigh R.A., Prew R.D., Johnston A.E. The management of long-term agricultural field experiments: Procedures and policies evolved from the Rothamsted classical experiments. in: Leigh R.A., Johnston A.E. (eds) Long-term experiments in agricultural and ecological sciences, Wallingford, UK. 1994, pp 253-268.
    203. Li F.Y., Johnstone P.R., Pearson A., Fletcher A., Jamieson P.D., Brown H.E., Zyskowski R.F. AmaizeN: A decision support system for optimizing nitrogen management of maize[J]. NJAS - Wageningen Journal of Life Sciences, 2009, 57(1):93-100.
    204. Link J., Graeff S., Batchelor W.D., Claupein W. Evaluating the economic and environmental impact of environmental compensation payment policy under uniform and variable-rate nitrogenmanagement[J]. Agric. Syst., 2006, 91:135-153.
    205. Liu H.L., Yang J.Y., Tan C.S., Drury C.F., Reynolds W.D., Zhang T.Q., Bai Y.L., Jin J., He P., Hoogenboom G., 2011a. Simulating water content, crop yield and nitrate-N loss under free and controlled tile drainage with subsurface irrigation using the DSSAT model[J]. Agric. Water Manage. DOI: DOI: 10.1016/j.agwat.2011.01.017.
    206. Liu H.L., Yang J.Y., Drury C.F., Reynolds W.D., Tan C.S., Bai Y.L., He P., Jin J., Hoogenboom G., 2010b. Using the DSSAT-CERES-Maize model to simulate crop yield and nitrogen cycling in fields under long-term continuous maize production[J]. Nutr. Cycl. Agroecosys. 1-16. DOI: 10.1007/s10705-010-9396-y.
    207. Liu J., Williams J.R., Zehnder A.J.B., Yang H. GEPIC - modelling wheat yield and crop water productivity with high resolution on a global scale[J]. Agric. Syst., 2007, 94(2):478-493.
    208. Liu X.B., Zhang X.Y., Wang Y.X., Sui Y.Y., Zhang S.L., Herbert S.J., Ding G., Soil degradation: A problem threatening the sustainable development of agriculture in Northeast China[J]. Plant, Soil Envi., 2010c, 56:87-97.
    209. Loague K., Green R.E. Statistical and graphical methods for evaluating solute transport models: Overview and application[J]. J. Contam. Hydrol., 1991, 7:51-73.
    210. Lobell D.B., Ortiz-Monasterio J.I. Evaluating strategies for improved water use in spring wheat with CERES[J]. Agric. Water. Manage., 2006, 84:249-258.
    211. Lu X., Nangia V., Mu X., Wang F., Sui Y., Gao P., Yao Y. Field-scale simulation of winter-wheat leaf area index, soil moisture and water-use efficiency in West Henan, China[J]. J. Environ. Hydrol., 2009, 17:1-11.
    212. Luo W., Sands G.R., Youssef M., Strock J.S., Song I., Canelon D. Modeling the impact of alternative drainage practices in the northern Corn-belt with DRAINMOD-NII[J]. Agric. Water Manage., 2010, 97(3):389-398.
    213. Ma L., Hoogenboom G., Ahuja L.R., Ascough II J.C., Saseendran S.A. Evaluation of the RZWQM-CERES-Maize hybrid model for maize production[J]. Agric. Syst., 2006, 87(3):274-295.
    214. Ma L., Malone R.W., Heilman P., Jaynes D.B., Ahuja L.R., Saseendran S.A., Kanwar R.S., Ascough Ii J.C. RZWQM simulated effects of crop rotation, tillage, and controlled drainage on crop yield and nitrate-N loss in drain flow[J]. Geoderma, 2007a, 140(3):260-271.
    215. Ma L., Ahuja L.R., Ascough J.C., Shaffer M.J., Rojas K.W., Malone R.W., Cameira M.R. Integrating system modeling with field research in agriculture: applications of the root zone water quality model (RZWQM)[J], Adv. Agron., 2001, 71:233-292.
    216. Ma L, Malone R.W., Heilman P., Karlen D.L., Kanwar R.S., Cambardella C.A., Saseendran S.A., Ahuja L.R. RZWQM simulation of long-term crop production, water and nitrogen balances in Northeast Iowa[J]. Geoderma, 2007b, 140:247-259.
    217. Maddonni G.A., Otegui M.E., Bonhomme R. Grain yield components in maize II. Postsilking growth and kernel weight[J]. Field Crops Res., 1998:56:257-264.
    218. Matthews R.B., Pilbeam C. Modelling the long-term productivity and soil fertility of maize/milletcropping systems in the mid-hills of Nepal[J]. Agric., Ecosyst. Environ., 2005, 111(1-4):119-139.
    219. McCown R.L., Hammer G.L., Hargreaves J.N.G., Holzworth D.P., Freebairn D.M. APSIM: a novel software system for model development, model testing and simulation in agricultural systems research[J]. Agric. Syst., 1996, 50(3):255-271.
    220. Meersmans J., van Wesemael B., De Ridder F., Van Molle M. Modelling the three-dimensional spatial distribution of soil organic carbon (SOC) at the regional scale (Flanders, Belgium) [J]. Geoderma., 2009, 152:43-52.
    221. Miao Y., Mulla D.J., Batchelor W.D., Paz J.O., Robert P.C., Wiebers M. Evaluating management zone optimal nitrogen rates with a crop growth model[J]. Agron. J., 2006, 98:545-553.
    222. Mitchell C.C., Delaney D.P., Balkcom K.S. A historical summary of Alabama's old rotation (circa 1896): The world's oldest, continuous cotton experiment[J]. Agron. J., 2008, 100:1493-1498.
    223. Muchow R.C. Effect of nitrogen on yield determination in irrigated maize in tropical and subtropical environments[J]. Field Crops Res., 1994, 38: 1-13.
    224. Mullen J.D., Yu Y., Hoogenboom G. Estimating the demand for irrigation water in a humid climate: A case study from the southeastern United States. Agric. Water Manage[J]., 2009, 96:1421-1428.
    225. Ng H.Y.F., Drury C.F., Serem V.K., Tan C.S., Gaynor J.D. Modeling and testing of the effect of tillage, cropping and water management practices on nitrate leaching in clay loam soil[J]. Agric. Water Manage., 2000, 43:111-131.
    226. Ng H.Y.F., Tan C.S., Drury C.F., Gaynor J.D. Controlled drainage and subirrigation influences tile nitrate loss and corn yields in a sandy loam soil in southwestern Ontario[J]. Agric. Ecosyst. Environ., 2002, 90:81-88.
    227. O'Neal M.R., Frankenberger J.R., Ess D.R. Use of CERES-Maize to study effect of spatial precipitation variability on yield[J]. Agric. Syst., 2002, 73(2):205-225.
    228. Pang X.P., Gupta S.C., Moncrief J.F., Rosen C.J., Cheng H.H. Water quality: Evaluation of nitrate leaching potential in Minnesota glacial outwash soils using the CERES-Maize model[J]. J. Environ. Qual., 1998, 27:75-85.
    229. Pang X.P., Letey J., Wu L. Yield and nitrogen uptake prediction by CERES-maize model under semiarid conditions[J]. Soil Sci. Soc. Am. J., 1997, 61:254-256.
    230. Patel N., Rajput T.B.S. Dynamics and modeling of soil water under subsurface drip irrigated onion[J]. Agric. Water Manage., 2008, 95:1335-1349.
    231. Payne R.W. New and traditional methods for the analysis of unreplicated experiments[J]. Crop Sci., 2006, 46:2476-2481.
    232. Paz J.O., Batchelor W.D., Babcock B.A., Colvin T.S., Logsdon S.D., Kaspar T.C., Karlen D.L. Model-based technique to determine variable rate nitrogen for corn[J]. Agric. Syst., 1999, 61:69-75.
    233. Persson T., Garcia y Garcia A., Paz J., Jones J., Hoogenboom G. Maize ethanol feedstock production and net energy value as affected by climate variability and crop management practices[J]. Agric. Syst., 2009, 100(1-3):11-21.
    234. Pickering N.B., Hansen J.W., Jones J.W., Wells C.M., Chan V.K., Godwin D.C. Weatherman: Autility for managing and generating daily weather data[J]. Agron. J., 1994, 86:332-337.
    235. Pinnschmidt H.O., Batchelor W.D., Teng P.S. Simulation of multiple species pest damage in rice using CERES-rice[J]. Agric. Syst., 1995, 48(2):193-222.
    236. Portch S., Hunter A. A systematic approach to soil fertility evaluation and improvement PPIC China Program, Hong Kong. 2002.
    237. Porter C., Jones J., Adiku S., Gijsman A., Gargiulo O., Naab J. Modeling organic carbon and carbon-mediated soil processes in DSSAT v4.5[J]. Oper. Res., 2010, 10:247-278.
    238. Poulton P.R. The importance of long-term trials in understanding sustainable farming systems: the Rothamsted experience[J]. Aust. J. Exp. Agric., 1995, 35:825-834.
    239. Putto C., Patanothai A., Jogloy S., Pannangpetch K., Boote K.J., Hoogenboom G. Determination of efficient test sites for evaluation of peanut breeding lines using the CSM-CROPGRO-peanut model[J]. Field Crops Res., 2009, 110(3):272-281.
    240. Rasmussen P.E., Goulding K.W.T., Brown J.R., Grace P.R., Janzen H.H., Korschens M. Long-term agroecosystem experiments: Assessing agricultural sustainability and global change[J]. Science, 1998, 282:893-896.
    241. Rinaldi M., Ventrella D., Gagliano C. Comparison of nitrogen and irrigation strategies in tomato using CROPGRO model. A case study from Southern Italy[J]. Agric. Water Manage., 2007, 87:91-105.
    242. Ritchie J.T. Cereal growth, development and yield. in: Tsuj G.Y., Hoogenboom G. and Thornton P.K. (eds.), Understanding Options for Agricultural Production, Kluwer Academic Publishers, The Netherlands., 1998a, pp, 79-98.
    243. Ritchie J.T. International consortium for agricultural systems applications (ICASA): Establishment and purpose[J]. Agric. Syst., 1995, 49(4):329-335.
    244. Ritchie J.T. Soil water balance and plant water stress. In: Tsuj, G.Y., Hoogenboom, G. and Thornton, P.K. (eds.), Understanding Options for Agricultural Production, Kluwer Academic Publishers, The Netherlands. 1998b, pp, 41-54.
    245. Ritchie J.T., Porter C.H., Judge J., Jones J.W., Suleiman A.A. Extension of an existing model for soil water evaporation and redistribution under high water content conditions[J]. Soil Sci. Soc. Am. J., 2009, 73:792-801.
    246. Robertson M.J., Sakala W., Benson T., Shamudzarira Z. Simulating response of maize to previous velvet bean (Mucuna pruriens) crop and nitrogen fertiliser in Malawi[J]. Field Crops Res., 2005, 91(1):91-105.
    247. Roloff G., De Jong R., Campbell C.A., Zentner R.P., Benson V.M. EPIC estimates of soil water, nitrogen and carbon under semiarid temperate conditions[J]. Can. J. Soil Sci., 1998, 78:551-562.
    248. Rudolph D., Goss, M., The farm groundwater quality survey, Report to agriculture Canada. Agriculture Canada, Guelph, Ontario. 1993.
    249. Sadler E.J., Gerwig B.K., Evans D.E., Busscher W.J., Bauer P.J. Site-specific modeling of corn yield in the SE coastal plain[J]. Agric. Syst., 2000, 64:189-207.
    250. Sarkar R. Use of DSSAT to model cropping systems[J]. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2009. 4 (5). DOI: 10.1079/PAVSNNR20094025.
    251. Saseendran S.A., Ma L., Malone R., Heilman P., Ahuja L.R., Kanwar R.S., Karlen D.L., Hoogenboom G. Simulating management effects on crop production, tile drainage, and water quality using RZWQM-DSSAT[J]. Geoderma, 2007, 140:297-309.
    252. Snapp S.S., Fortuna A.M. Predicting nitrogen availability in irrigated potato systems. HortTechnology., 2003, 13:598-604.
    253. Soler C.M.T., Sentelhas P.C., Hoogenboom G. Application of the CSM-CERES-Maize model for planting date evaluation and yield forecasting for maize grown off-season in a subtropical environment[J]. Eur. J. Agron., 2007, 27:165-177.
    254. Soltani A., Hoogenboom G. Assessing crop management options with crop simulation models based on generated weather data[J]. Field Crops Res., 2007, 103(3):198-207.
    255. St?ckle C.O., Donatelli M., Nelson R. CropSyst, a cropping systems simulation model[J]. Eur. J. Agron., 2003, 18:289-307.
    256. Stone J.A., McKeague J.A., Protz R. Corn root distribution in relation to long-term rotations on poorly drained clay loam soil[J]. Can. J. Plant. Sci., 1987, 67:231-234.
    257. Svt'astnáM., Zvalud Z. Sensitivity analysis of soil hydrologic parameters for two crop growth simulation models[J]. Soil & Tillage Res., 1999, 50(3-4):305-318.
    258. Suleiman A.A. Modeling daily soil water dynamics during vertical drainage using the incoming flow concept[J]. CATENA, 2008, 73(3):312-320.
    259. Setiyono T.D., Cassman K.G., Specht J.E., Dobermann A., Weiss A., Yang H., Conley S.P., Robinson A.P., Pedersen P., De Bruin J.L. Simulation of soybean growth and yield in near-optimal growth conditions[J]. Field Crops Res., 2010, 119(1):161-174.
    260. Tan C.S., Drury C.F., Reynolds W.D., Groenevelt P.H., Dadfar H. Water and nitrate loss through tiles under a clay loam soil in Ontario after 42 years of consistent fertilization and crop rotation[J]. Agric. Ecosyst. Environ., 2002, 93:121-130.
    261. Tan C.S., Reynolds W.D. Impacts of recent climate trends on agriculture in southwestern Ontario[J]. Can. Water. Resour. J., 2003, 28:87-97.
    262. Tan C.S., Drury C.F., Gaynor J.D., Welacky T.W. Integrated soil, crop and water management system to abate herbicide and nitrate contamination of the Great Lakes[J]. Water Sci. Technol., 1993, 28:497-507.
    263. Tan C.S., Drury C.F., Soultani M., Van Wesenbeeck I.J., Ng H.Y.F., Gaynor J.D., Welacky T.W. Effect of controlled drainage and tillage on soil structure and tile drainage nitrate loss at the field scale[J]. Water Sci. Technol., 1998, 38:103-110.
    264. Tan C.S., Zhang T.Q., Drury C.F., Reynolds W.D., Oloya T., Gaynor J.D. Water quality and crop production improvement using a wetland-reservoir and drainage/subsurface irrigation system[J]. Can. Water. Resour. J., 2007, 32:129-136.
    265. Tao F., Hayashi Y., Zhang Z., Sakamoto T., Yokozawa M. Global warming, rice production, and water use in China: Developing a probabilistic assessment[J]. Agric. For. Meteorol., 2008, 148(1):94-110.
    266. Thorburn P.J., Meier E.A., Probert M.E. Modelling nitrogen dynamics in sugarcane systems: Recent advances and applications[J]. Field Crops Res., 2005, 92(2-3):337-351.
    267. Thornton P.K., Wilkens P.W. Risk assessment and food security. In: Tsuj, G.Y., Hoogenboom, G. and Thornton P.K. (eds.), Understanding Options for Agricultural Production, Kluwer Academic Publishers, The Netherlands. 1998, pp, 329-345.
    268. Thorp K.R., DeJonge K.C., kaleita A.L., Batchelor W.D., Paz J.O. Methodology for the use of DSSAT models for precision agriculture decision support[J]. Comput. Electron. Agric., 2008, 64: 276-285.
    269. Timsina J., Humphreys E. Performance of CERES-Rice and CERES-Wheat models in rice-wheat systems: A review[J]. Agric. Syst. 2006, 90(1-3):5-31.
    270. Tollenaar M., Aguilera A. Radiation use efficiency of an old and a new maize hybrid[J]. Agron. J. 1992, 84:536-541.
    271. Tollenaar M., Wu J. Yield improvement in temperate maize is attributable to greater stress tolerance[J]. Crop Sci., 1999, 39:1597-1604.
    272. Trnka M., KocmánkováE., Balek J., Eitzinger J., Ruget F., Formayer H., Hlavinka P., Schaumberger A., HorákováV., Mozny M., Zalud Z. Simple snow cover model for agrometeorological applications[J]. Agric. For. Meteorol., 2010, 150(7-8):1115-1127.
    273. Tsuji G.Y., Balas S. The IBSNAT decade: Ten years of endeavor at the frontier of science and technology. The Report of IBSNAT Project from 1 September 1982 to 31, 1982.
    274. Tsuji G.Y, Uehara G., Balas S. DSSAT Version 3, a Decision Support System for Agrotechnology Transfer, University of Havaii. Honolulu, Hawaii. 1994.
    275. Uryasev O., Gijsman A.J., Jones J.W., Hoogenboom G. Chapter 3 - DSSAT v4 Soil Data Editing Program (SBUILD), in: Hoogenboom G., Jones J.W., Porter C.H., Wilkens P.W., Boote K.J., Batchelor W.D., Hunt L.A., and Tsuji G.Y. (eds), Decision Support System for Agrotechnology Transfer Version 4.0. Volume 2. DSSAT v4: Data Management and Analysis Tools. University of Hawaii, Honolulu, HI. 2004.
    276. Van der Laan M., Stirzaker R.J., Annandale J.G., Bristow K.L., Preez C.C.D. Monitoring and modelling draining and resident soil water nitrate concentrations to estimate leaching losses[J]. Agric. Water Manage., 2010, 97:1779-1786.
    277. van Ittersum M.K., Leffelaar P.A., van Keulen H., Kropff M.J., Bastiaans L., Goudriaan J. On approaches and applications of the Wageningen crop models[J]. Eur. J. Agron. 2003, 18(3-4):201-234.
    278. Verhulst N., Govaerts B., Nelissen V., Sayre K.D., Crossa J., Raes D., Deckers J. The effect of tillage, crop rotation and residue management on maize and wheat growth and development evaluated with an optical sensor[J]. Field Crops Res., 2011, 120:58-67.
    279. Wang L., Qiu J., Tang H., Li H., Li C., Van Ranst E. Modelling soil organic carbon dynamics in the major agricultural regions of China[J]. Geoderma, 2008:147:47-55.
    280. Wang Y., Wang E., Wang D., Huang S., Ma Y., Smith C.J., Wang L. Crop productivity and nutrient use efficiency as affected by long-term fertilisation in North China Plain[J]. Nutr. Cycl. Agroecosys 2009, 86:105-119.
    281. Wang H., Flerchinger G.N., Lemke R., Brandt K., Goddard T., Sprout C. Improving SHAW long-term soil moisture prediction for continuous wheat rotations, Alberta, Canada[J]. Can. J. Soil Sci., 2010, 90, 37-53.
    282. White J.W., Hoogenboom G., Stackhouse Jr P.W., Hoell J.M. Evaluation of NASA satellite- and assimilation model-derived long-term daily temperature data over the continental US[J]. Agric. For. Meteorol., 2008, 148(10):1574-1584.
    283. White J.W. Modeling and crop improvement. In:Tsuji GY, Hoogenboom G, Thornton (ed) Understanding Options for Agricultural Production, Kluwer Academic Publisher, the Netherlands, 1998, pp. 179-188.
    284. Wilkens P.W. Chapter 4 - DSSAT v4 Weather Data Editing Program (WeatherMan). 2004. In: Hoogenboom, G., Jones, J.W., Porter, C.H., Wilkens, P.W., Boote, K.J., Batchelor,W.D., Hunt, L.A., and Tsuji G.Y. (eds), Decision Support System for Agrotechnology Transfer Version 4.0. Volume 2, DSSAT v4: Data Management and Analysis Tools. University of Hawaii, Honolulu, HI. 2004.
    285. Williams J.R. The EPIC model, in: Singh V. P. (eds.), Computer Models of Watershed Hydrology, Water Res. Publ, Highlands Ranch, CO. 1995, pp. 909-1000.
    286. Willmott C.J. Some comments on the evaluation of model performance[J]. B. Am. Meteorol. Soc., 1982, 63:1309-1313.
    287. Wu W., Chen J.l., Liu H.b., Garcia y Garcia A., Hoogenboom G. Parameterizing soil and weather inputs for crop simulation models using the VEMAP database[J]. Agric. Ecosyst. Environ, 2010, 135(1-2):111-118.
    288. Xiong W., Holman I., Lin E., Conway D., Jiang J., Xu Y., Li Y. Climate change, water availability and future cereal production in China[J]. Agric. Ecosyst. Environ., 2010, 135(1-2):58-69.
    289. Xiong W., Matthews R., Holman I., Lin E., Xu Y. Modelling China's potential maize production at regional scale under climate change[J]. Clim. Change., 2007, 85(3-4):433-451.
    290. Xu R., Dai J., Luo W., Yin X., Li Y., Tai X., Han L., Chen Y., Lin L., Li G., Zou C., Du W., Diao M. A photothermal model of leaf area index for greenhouse crops[J]. Agric. For. Meteorol., 2010, 150(4):541-552.
    291. Xu X.Z., Xu Y., Chen S.C., Xu S.G., Zhang H.W. Soil loss and conservation in the Black soil region of Northeast China: a retrospective study[J]. Environ. Sci. Policy., 2010, 13:793-800.
    292. Xue Q., Weiss A., Baenziger P.S. Predicting phenological development in winter wheat[J]. Clim. Res., 2004, 25:243-252.
    293. Yang Y., Watanabe M., Zhang X., Zhang J., Wang Q., Hayashi S. Optimizing irrigation management for wheat to reduce groundwater depletion in the piedmont region of the TaihangMountains in the North China Plain[J]. Agric. Water Manage., 2006, 82(1-2):25-44.
    294. Yang J. Testing and evaluation of a nitrogen simulation model, N_ABLE, using independent field data (PhD Thesis), The University of Reading, England UK. 1999, pp 1-15.
    295. Yang Y., Yang Y., Moiwo J.P., Hu Y. Estimation of irrigation requirement for sustainable water resources reallocation in North China[J]. Agric. Water Manage., 2010, 97(11):1711-1721.
    296. Yang J., Greenwood D.J., Rowell D.L., Wadsworth G.A., Burns I.G. Statistical methods for evaluating a crop nitrogen simulation model, N_ABLE[J]. Agric. Syst., 2000, 64:37-53.
    297. Yang J., Rowell D.L., Burns I.G., Guttormsen G., Riley H., Wadsworth G.A. Modification and evaluation of the crop nitrogen model N_ABLE using Norwegian field data[J]. Agric. Syst., 2002, 72(3):241-261.
    298. Yang J.Y., Drury C.F., Johnston R., Simard M., Zavitz J., Hoogenboom G. EasyGrapher v4.5: Software for Graphical and Statistical Evaluation of DSSAT v4.5 Outputs. Poster presentation in: Annual meeting of ASA-CSSA-SSSA 2010, Lang Beach., CA. 2010.
    299. Yang J.Y., Huffman E.C. Chapter 4 Graphical Display Program (EasyGrapher). In: Jones J.W., Hoogenboom G., Wilkens P.W., Porter C.H., and Tsuji G.Y. (eds). Decision Support System for Agrotechnology Transfer Version 4.0. DSSAT v4: ICASA Tools. University of Hawaii, Honolulu, HI 2003, Volume 3.
    300. Yang J.Y., Huffman E.C. EasyGrapher: software for graphical and statistical validation of DSSAT outputs[J]. Comput. Electronics in Agric., 2004, 45:125-132.
    301. Yu Q., Saseendran S.A., Ma L., Flerchinger G.N., Green T.R., Ahuja L.R. Modeling a wheat-maize double cropping system in China using two plant growth modules in RZWQM[J]. Agric. Syst., 2006, 89(2-3):457-477.
    302. Zhang K., Yang D., Greenwood D.J., Rahn C.R., Thorup-Kristensen K. Development and critical evaluation of a generic 2-D agro-hydrological model (SMCR_N) for the responses of crop yield and nitrogen composition to nitrogen fertilizer[J]. Agric., Ecosyst. Environ., 2009, 132(1-2):160-172.
    303. Zhang K., Greenwood D.J., Spracklen W.P., Rahn C.R., Hammond J.P., White P.J., Burns I.G. A universal agro-hydrological model for water and nitrogen cycles in the soil-crop system SMCR_N: Critical update and further validation[J]. Agric. Water Manage., 2010, 97(10):1411-1422.
    304. Zhang K., Hilton H.W., Greenwood D.J., Thompson A.J. A rigorous approach of determining FAO56 dual crop coefficient using soil sensor measurements and inverse modeling techniques. Agric[J]. Water Manage. In Press, Corrected Proof. DOI: DOI: 10.1016/j.agwat.2011.02.001.
    305. Zhao B.Q., Li X.Y, Li X.P, Shi X.J, Huang S.M, Wang B.R, Zhu P., Yang X.Y., Liu H., Chen Y. Long-term fertilizer experiment network in china: Crop yields and soil nutrient trends[J]. Agron. J., 2010, 102:216-230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700