地基GPS大气水汽反演技术研究与资料应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GPS气象学为GPS探测大气水汽奠定了理论基础,地基GPS大气水汽监测网和GPS综合应用网正在为获取高空水汽资料提供了绝好的条件,当前的GPS气象学正从技术研究阶段步入业务化应用阶段。研究的目标是提出和改进基于高密度GPS资料获取高精度的水汽产品的技术,并将资料有效应用于暴雨预报和其他气象服务。研究内容包括:改进与本地化GPS水汽可降水总量反演技术、提出新的基于探空和地面观测约束的GPS三维水析层析算法、开发与建立准实时地基GPS大气水汽自动解算系统、发挥GPS大气水汽探测资料在临近预报、同化和区域气候分析中的应用。方法与结果如下:
     1.结合两年探空和微波辐射计资料,通过回归建模,建立了适合于长江中游地区的静力延迟模型,修订后的三种静力模型皆对PWV (Precipitable Water Vapor)反演精度有提高,GPS/PWV与探空观测的偏差减小了4-8mm。利用9个探空站数据回归建模,建立了长江中游地区的大气加权平均温度本地化模型。经双重优化后PWV与探空观测的偏差减小了6-10mrn。
     2.针对层析算法中方程个数少于未知量个数(即缺秩)问题,提出并实现了高斯水平约束、探空观测作为垂直约束的三维层析算法、和低层观测楔入法。基于各种观测的约束条件的层析算法不仅可以较好地给出区域水汽湿折射度的空间三维分布,并能给出区域水汽密度的三维空间分布。水汽密度平均偏差-0.63g/m3,标准偏差1.22g/m3,与探空相关系数为0.98。通过低层观测楔入法加入低层的水汽观测后,对整个区域、甚至是区域低层和区域边缘的三维水汽密度的层析精度都有改进。
     3.基于上述技术,研发出准实时地基GPS大气水汽自动解算系统。实现每30分钟更新一次高精度水汽解算图像产品和数据。具备定时启动、下载快速IGS星历、GPS跟踪站网数据和气象数据功能,提供产品包括湖北省境内59个单站的天顶可降水汽总量时间序列和单站的斜路径水汽分布;提供鄂东22个GPS站加密网0.5-10km高度的三维水汽分布。
     4.GPS资料在LAPS系统同化实验证明:新型的GPS水汽观测资料对改善降水区域和降水强度预报有正作用,同化后的湿度场中心区域和地面降水实际发生区域有很好的一致性;GPS水汽的同化改善了对流层中高层500hPa以上的温度场及湿度场,对暴雨以及以上量级的强降水预报有好的表现。
     5.统计2006-2008年多站点GPS水汽观测资料,发现大气可降水总量PWV变化不仅与单站雨量变化,也与面雨量变化有较好的一致性;PWV的变化对梅雨的开始有指示意义;初步得出长江中游地区不同季节产生降水和强降水的PWV阈值,其中初夏(梅雨期前期)降水的GPS/PWV阈值为35mm,强降水的GPS/PWV阈值为50mm;梅雨期降水的GPS/PWV阈值为48mm,强降水的GPS/PWV阈值为55mm;盛夏期间降水的阈值与强降水阈值接近。经检验强降水阈值0—-24小时预警临界成功指数CSI平均为22.7%,已略高于目前的暴雨预报准确率20%,该阈值对于江淮梅雨期的暴雨预报具有较好的参考价值。
     6.基于三峡库区GPS观测网2000-2004年资料,对比分析了库区蓄水前后区域水汽变化,特征如下:在2003年蓄水后PWV的峰值比蓄水前提高3-5mm,在2003年冬季和2004年春季(1-4月)PWV变化出现异常;日变化显示蓄水后水汽变化较以前稳定,变化起伏小。但蓄水后PWV平均比蓄水前PWV值高出6mm。数值模式模拟也反映出下垫面水体的扩大对区域的水汽增长,降水增强有促进作用。
GPS meteorology theory has made it possible to detect the atmospheric water vapor by the Gorund based GPS, whose network provides the good conditions for the high-altitude atmospheric observations. GPS meteorology is stepping into the operational application stage from the research. The purpose of this paper is to provide the new methods and improve the methods to obtain the high-precision water vapor products by the high resolution GPS observations and use them effectively in the rainstorm forecasting and other meteorological services. The study is composed of the GPS PWV (Precipitable Water Vapor) retrieval technique improvement and localization, one new tomography algorithm of the GPS3D water vapor by the oberservations constraint, the quasi-real-time ground-based GPS atmospheric water vapor automatic calculation system development and the application of GPS observations in nowcasting, assimilation and regional climate analysis. The methods and results follow:
     1. The hydrostatic delay calculation models suiting for the PWV calculated in the middle reaches of the Yangtze River area is improved from the three traditional hydrostatic delay models with the regression algorithm based on radiosonde, microwave radiometer data in2years. The PWV bias between by GPS and radiosonde (RS) decreased4-8mm. The atmospheric weighted mean temperature in this area has been localized by9radiosonde stations data with the regression algorithm too. The PWV bias between GPS and RS decased6-10mm by using the above optimization methods.
     2. Gaussian horizontal restriction and sounding vertical restriction are used in the tomography algorithm as well as the observations at the ground to increase the condtions for solving the lack rank equations of3D water vapor. Not only the wet refraction but the regional water vapor density can be retrieved by the above algorithms. The density average bias of water vapor by GPS is-0.63g/m3and the standard bias1.22g/m3, and the correlation coefficient0.98in comparison to that by RS. With the the observation at the ground, the three-dimensional water vapor density accuracy has been improved in the total space, even in the lower layer and the edge area.
     3. Based on the above algorithms, the quasi-real-time automatic calculation system for the ground-based GPS atmospheric water vapor has been established and can output the products per30minutes. System functions contains the timing start, the downloading data including rapid IGS ephemeris, GPS network data and meteorological data, providing the products of precipitable water vapor, slant water vapor in Hubei province with59GPS stations and three-dimensional water vapor distribution in easten Hubei area with22GPS stations.
     4. The tests of GPS data assimilation in LAPS system show that GPS water vapor observations improve the precipitation forecast quality of precipitation area and intensity. The humidity central area of precipitation is agreed with the actual rain area by the GPS assimilation. GPS water vapor assimilation improves the troposphere moisture and temperature field above the500hPa, and has a good performance on the heavy rain forecast.
     5. According to the statistics of the GPS water vapor observations in2006-2008, the characteristics of PWV varations are in approximate agreement with that of site's rainfall but also the reginal ones. PWV threshold in the middle reaches of the Yangtze River for rain and heavy rain has been provided, such as that the precipitation PWV threshold is35mm, heavy precipitation PWV threshold50mm before the Meiyu season, precipitation threshold48mm, heavy precipitation55mm in the Meiyu season. The threshold values of precipitation are closer to the heavy precipitation thresholds in summer than in winter. Tests show that the threshold values is useful to rainfall prediction, the average critical success index of thresholds in24hours precipitation forecasting, which is22.7%, is even better than the index of comprehensive forecasting22%.
     6. Based on the observations in2000-2004by GPS network in the Three Gorges Reservoir, the regional water vapor changes before and after impoundment of reservoir follow:PWV peak in2003after the impoundment is more than that before impoundment with3-5mm, the PWV changes abnormally in the winter of2003and spring (January-April2004); diurnal variation shows that the water vapor changes become more stable than before. After the impoundment, PWV average is6mm more than the value before impoundment. The numerical model simulations also show that the growth of the underlying surface water bodies enhanced the regional water vapor and precipitation.
引文
Albers S., J. McGinley, D. Birkenheuer, and J. Smart. The Local nalysis and Prediction System (LAPS):Analyses of clouds, precipitation, and temperature. Weather and Forecasting,1996, 11:273-287.
    Alber C, Ware R, Rocken C et al, Obtaining single phase delay from GPS double differences, Geophys Res Lett,2000 27:2661-2664
    Bevis M, Businger S, Herring T A, et al. GPS meteorology:Remote sensing of atmospheric water vapor using the Global Positioning System [J], J. Geophys. Res.1992.,97: 15,787-15,801.
    Bevis M, Businger S, Chiswell S R, et al. GPS meteorology:Mapping zenith wet delays onto precipitable water [J]. J Appl Meteor,1994,33:379-386.
    毕研盟,毛节泰,刘晓阳等.应用地基GPS遥感倾斜路径方向大气水汽含量.地球物理学报,2006,49(2):335—342
    Birkenheuer, D. The effect of using digital satellite imagery in the LAPS moisture analysis. Published in Wea. Forecasting,1999,14:pp 782-788.
    Birkenheuer, D. Progress in applying GOES-derived data in local data assimilation,10th Conf. on Satellite Meteorology and Oceanography, Amer. Meteor. Soc., Long Beach, CA,2000, 70-73.
    Birkenheuer, D. Utilizing variational methods to incorporate a variety of satellite data in the LAPS moisture analysis, Preprints,11th Conf. on Satellite Meteorology and Oceanography,2001, Madison, WI, Amer. Meteor. Soc.
    Black H D, Eisner A. Correcting satellite Doppler data for tropospheric effects [J]. J Geophys Res,1984,89(D2):2616-2626.
    Boehm J, Schuh H.2004. Vienna Mapping Functions in VLBI analyses [J], Geophys. Res. Lett. 31 (1):L01603, DOI:10.1029/2003GL018984
    Boehm J, Werl B, Schuh H.2006a. Troposphere mapping functions for GPS and VLBI from ECMWF operational analysis data[J]. Journal of Geophysical Research,111(B02406):35
    Boehm J, Niell A, Tregoning P, et al.2006b. Global Mapping Function (GMF):A new empirical mapping function based on numerical weather model data[J]. Geophysical Research Letters, 33(L07304).
    Boehm J, Heinkelmann R, Schuh H.2007a. Short Note:A global model of pressure and temperature for geodetic applications[J], Journal of Geodesy, doi:10.1007/s00190-007-0135-3.
    Boehm J, Mendes Cerveira P J, Schuh H, et al.2007b. The impact of mapping functions for the neutral atmosphere based on numerical weather models in GPS data analysis[J], IAG Symposium Series,130:837-843.
    Braun J. Rocken C, Ware R. Val idation of line of sight water vapor measurements with GPS. Radio Sci,2001,36:459-472
    Braun J., Rocken C..Liljegren J.. Comparisons of line-of-sight water vapor observations using the Global Positioning System and a pointing microwave radiometer. J. Atmos. Oceanic Technol.,2003.20:606-612
    曹云昌,方宗义,夏青:GPS遥感的大气可降水量与局地降水关系的初步分析应用气象学报February 2005 Vol.16, No. 1;54-59
    曹云昌,方宗义,夏青等.中国地基GPS气象应用站网建设展望[J].气象.2006年11期:42-47.
    曹云昌,陈永奇等,利用地基6PS测量大气水汽廓线的方法,气象科技,2006,34(3),241-245
    陈锦冠,露点温度计算公式和计算程序的介绍,广东气象,1993, 第2期46
    Cucurull L, Vandenberghe F, Barker D. Three-dimensional variational data assimilation of ground-based GPS ZTD and meteorological observation during the 14 December 2001 storm event over the western mediterranean sea[J]. Mon Wea Rev,2004,132(3):749-763.
    Daniel E. Wolfe, Developing an Operational, Surface-Based, GPS, Water Vapor Observing System for NOAA:Network Design and Results, Journal of atmospheric and oceanic technology/American Meteorological Society.2000,17(4).-426-440.
    Davis J L, Herring T A, Shapiro I I, et al. Geodesy by radio interferometry:Effects of atmospheric modeling errors on estimates of baseline length[J]. Radio Science, 1985.20:1593-1607.
    董佩明,赵思雄,边界层过程对“98·7”长江流域暴雨预报影响的数值试验研究,气候与环境研究,vol(8)No.2
    Duan J, Bevis M, Fang Peng, GPS meteorology:Direct estimation of the absolute value of precipitable water. J Appl Meteorol,1996 35:830-838.
    Elgered G. Davis J L. Herring T A, et al. Geodesy by radio interferometry:water vapor radiometry for estimation of the wet delay. T Geophys. Res.,1991,96:6541-6555
    Fang, P., M. Bevis, Y. Bock, S. Gutman, and D. Wolfe, GPS meteorology:Reducing systematic errors in geodetic estimates for zenith delay, Geophys. Res. Lett.,1998,25,3583-3586
    Flores A, Ruffini G, Rius A.4D tropospheric tomography using GPS slant wet delays[J]. Annales Geophys-icae,2000.18(2):223-234.
    Fredrick Stuart Solheim, Use of pointed water vapor radiometer observations to improve vertical GPS surveying accuracy,1993, Colorado university PhD. thesis,38.
    GAMIT Release10.4,2010. http://www-gpsg.mit.edu/~simon/gtgk/index.htm
    谷晓平,王长耀,王汶等:GPS水汽遥感中的大气干延迟局地订正模型研究,JOURNAL OF TROPICAL METEOROLOGY,2004年12月.No.6,697-703
    谷晓平,王长耀,吴登秀等,GPS水汽遥感中的大气加权平均温度的变化特征及局地算式研究,气象科学,2005,25(1):79-83
    Guo Y R, Kuo Y H, Dudhia J, et al. Four-dimensional variational data assimilation of heterogeneous mesoscale observations for a strong case[J], Mon Wea Rev,2000,128(3): 619-642.
    Gradinarsky L G. Sensing Atmospheric Water Vapor Using Radio Waves[D], Ph.D. thesis, Chalmers. University of Technology, Technical report 2002a. No.436.
    Herring T A.1992. Modeling atmospheric delays in the analysis of space geodetic data, in Symposium on Refraction of Transatmospheric Signals in Geodesy, J. C. DeMunk and T. A. Spoelstra, eds., Netherlands Geodetic Commission,36:157-164.
    何平,徐宝祥,周秀骥,等.地基GPS反演大气水汽总量的初步试验[J].应用气象学报,2002,13(2):179-183.
    Hopfield H S. Tropospheric effect on electromagnetically measured range:Prediction from surface weather data [J]. Radio Sci,1971,6(3):357-367.
    J. M. Ortega,张丽君等译,数值分析,高等教育出版社,1984.
    李成才,毛节泰,李建国等,全球定位系统遥感水汽总量,科学通报.1999.44(Ⅲ):1041-1045.
    李成才,毛节泰:GPS地基遥感大气水汽总量的分析.应用气象学报,1998,9(4):470-477.
    梁丰,李成才,王迎春,毛节泰,方宗义等:应用区域地基全球定位系统观测分析北京地区大气总水汽量,大气科学,2003,Vol.27.No.2236-244.
    刘红燕,王迎春,王京丽等.由地基微波辐射计测量得到的北京地区水汽特性的初步分析LJ].大气科学,2009.33(2):388—39
    Lubomir P GRADINARSKY.2002. Sensing Atmospheric Water Vapor Using Radio Waves (PhD). Department of Radio and Space Science; School of Electrical Engineering, CHALMERS UNIVERSITY OF TECHNOLOGY
    罗哲贤.植被覆盖度对干旱气候影响的数值试验。地理研究,1985,4(2):1-8.
    MacDonald, A. E., Y. Xie, and R. H. Ware, Diagnosis of Three-Dimensional Water Vapor Using a GPS Network, Mon. Wea. Rev.,2002,130,386-397.
    McGinley, J. A., S. Albers, and P. Stamus. Validation of a composite convective index as defined by a real-time local analysis system. Wea. Forecasting,1991,6:337-356.
    毛节泰,GPS的气象应用,气象科技.19934:4-49
    毛辉,毛节泰,毕研盟,刘晓阳,李成才,遥感GPS倾斜路径信号构筑水汽时空分布图,中国科学D辑地球科学2006,36(12):1177-118
    Niell A E. Global mapping functions for the atmosphere delay at radio wavelengths[J]. J.Geophys. Res.,1996.100:3227-3246.
    Niell A E. Preliminary evaluation of atmospheric mapping functions based on Numerical Weather Models[J]. Phys Chem Earth (A),2001.26(6/8):475-480
    Niell A, Petrov L. Using a Numerical Weather Model to improve geodesy [C]. The State of GPS Vertical Positioning Precision:Separation of Earth Processes by Space Geo desy, Lux embo ur g,2003
    吕世华,陈玉春。西北植被覆盖对我国区域气候变化影响的数值模拟。高原气象,1999,18(3):416-424
    Ohtani R. Detection of water vapor variations driven by thermally-induced local circulations using the Japanese continuous GPS array[J]. Geophys Res Lett,2001,28(1):151-154.
    彭治班,吴宝俊.提高小概率事件预报成功率的一条途径。气象,2000,26(2):3-5.
    气象局业务发展与天气司,天预报业务规定(试行)1998年6月
    钱永甫.气候变化中下垫面作用的数值模拟.大气科学,1993,17(3):283-293高原气象,1999,18(4):649-658
    曲建光等:在高海拔地区Saastamoinen与Hopfield模型推算水汽含量差异的研究,武汉大学学报·信息科学版Vol.28 No.4 Aug.2003 397-399
    Rocken C. VanHove, T. Tohsno J., et al. GPS/STORM_GPS sensing of atmospheric water vapour for meteorology. J. Atmos. Ocean. Technology,,1995:12,468-478
    Rothacher M., and Coauthors, Bernese GPS software version 4.0. Available from Astronomical Institute, University of Berne, Switzerland.1996:416-418.
    Rueger J M. Refractive index formulae for radio waves[C]. FIG XXII International Congress, 19-26 April 2002, Washington, D. C., USA.
    Saastamoinen J. Contributions to the theory of atmospheric refraction [J]. Bull Geod,1973, 107:13-34.
    盛裴轩,毛节泰等.大气物理学[M].北京,大学出版社,2003,21
    宋淑丽,朱文耀,程宗颐等.GPS信号斜路径方向水汽含量的计算方法.天文学报,2004,45(3):338—345
    宋淑丽,朱文耀,丁金才,彭军还,上海GPS网层析水汽三维分布改善数值预报湿度场,科学通报,2005,50(20),2271-2277.
    Saastamoinen J. Contributions to the theory of atmospheric refract ion [J]. Bull Geod,1973, 107:13-34.
    Seko H, Shimada S, Nakamura H, et al. Three-dimensional distribution of water vapor estimated from tropospheric delay of GPS data in a mesoscale precipitation system of the Baiu front [J]. Earth Planets Space,2000.52,927-933.
    Smith E K, Weintraub S. The constants in the equation for atmospheric refractive index at radio frequencies [J]. Proc IRE,1953,41,1035-1037.
    Snook J. S., P. A. Stamus, J. Edwards, Z. Christidis, and J. A. McGinley. Local-domain mesoscale analysis and forecast model support for the 1996 Summer Olympic Games. Wea. Forecasting,1998,13:138-150.
    Spilker, J. T.,1980:Signal structure and performance characteristics. Global Positioning System,1980, Vol.1, The Institute of Navigation,246.
    Stevens, M., Optimal climate signal detection in four dimensions, J. Geophys. Res.,1999, 104,4089-4099.
    孙继广,矩阵扰动分析,科学出版社,1987.
    Thayer D. An improved equation for the radio refractive index of air. Radio Sci,1974, 9:803-807.
    Tomasi C.1981. Determination of the total precipitable water by varying the intercept in Reitian'S relationship. J. Appl. Meteor,20:1058-1069
    Tomonori Sato. Fujio Kimura, A Two-Dimensional Numerical Study on Diurnal Cycle of Mountain Lee Precipitation, Journal of the Atmospheric Sciences,2002,60 (16):1992-2003.
    T Ragne Emardson, Henrico J P Derks, On the relation between the wet delay and the integrated precipitable water vapour in the European atmosphere, Meterorological applications/Royal Meterorological Society.2000,7(1).-61-68。
    王尊正,数值分析基本教程,哈尔滨工业大学出版社,1993
    徐裕华等,三峡工程对库周气候的影响,长江三峡工程对生态与环境影响及其对策研究论文集,科学出版社,1987年7月。
    X. Zou, Bin Wang and Hui Liu et al, Use of GPS/MET Refraction Angles in 3D-Var Analysis, Q. J. R. Meteorol. Soc.,2000,126 (570):3013-3040.
    Yu. Rucong, B. Wang, and T. Zhou, Climate effects of the deep continental stratus clouds generated by Tibetan Plateau. Accepted by J. Climate,2004.
    Yuan, L., R. A. Anthes, R. H. Ware, C. Rocken, W. Bonner, M. Bevis et al.1993:Sensing climate change using the global positioning system. J. Geophys. Res.,98(D8),14925-14937.
    杨凤翔、陆君良,数值分析,天津大学出版社,1985.
    杨光林,刘晶淼,毛节泰:西藏地区水汽GPS遥感分析,气象科技,2002,30,266-272.
    杨红梅,何平,徐宝祥:利用GPS资料分析华南暴雨的水汽特征,气象,2002,28(5),17-21.
    袁招洪,顾松山,丁金才.数值模式预报延迟量与GPS测量的比较研究.南京气象学院
    袁招洪,丁金才,陈永林:中尺度数值预报模式预报与GPS观测的比较研究,大气科学, 2004,Vol.28.No.3 433-440。
    曾庆存,宇如聪,彭贵康,柴复新,1994,“雅安天漏”研究Ⅲ:特征、物理量结构及其形成机制,大气科学,第18卷第6期,649-659。
    张朝林,季崇萍,Kuo Y H,等.地形对“00.7”北京特大暴雨过程影响的数值研究[J].自然科学进展,2006,15(5):572-578.
    张双成,叶世榕,万蓉等.基于Kalman滤波的断层扫描初步层析水汽湿折射率分布.武汉大学学报:信息科学版,2008.33(8):797-799

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700