头寨滑坡的工程地质特征及其演化过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
云南昭通头寨滑坡的失稳岩体主要为二叠系峨眉山无斑玄武岩。滑坡体体积达900×10~4 m~3,其中400×10~4 m~3滑离源区;滑坡后缘到前缘最远端的斜长和水平投影长度分别为3423 m和3330 m,相对高差为763 m,平均坡降13°。滑坡堆积体主要有玄武岩碎屑和粘土矿物组成,其显著特征是:级配不连续、无分选、空间变化不显著:化学风化产生的次生粘土矿物在滑坡堆积物中的比例约为9%,并主要以蒙皂石为主。滑床基岩为无斑玄武岩,滑床纵断面从上向下由倾角分别为48°、38°和15°的三段组成;其中第一段为主滑带。
     借助化学全分析、薄片鉴定及扫描电镜等测试、观察手段,对头寨滑坡主滑带杏仁状玄武岩及滑坡体玄武岩及其腐岩玄武岩腐岩的岩石化学和矿物学特征进行了描述。化学全分析结果表明新鲜玄武岩与核心石在除铁元素外,其它组分无明显的改变;核心石在转变为腐岩过程中Si、Ca、Na、Mg等元素逐渐流失,Fe、Al等逐渐富集,同时烧失量和化学蚀变指数显著增加,硅铝比逐渐减少。薄片鉴定表明主要矿物化学风化作用顺序为玻璃质、辉石、斜长石,与造岩矿物风化稳定性序列一致,腐岩中主要的次生矿物为蒙皂石及绿泥石。在扫描电镜下观察到风化前锋形态曲折,风化前锋附近矿物呈现物理裂痕,沿着解理面更易出现,风化前锋两侧的岩石矿物形态差异显著。岩体的化学-物理耦合风化作用不仅表现在宏观尺度上,而且在细观-微观的尺度上更为明显。铁元素的价态变化存在于玄武岩腐岩形成的整个过程之中并导致岩石体积增大,从而产生物理裂纹。
     对滑坡区泉水的动态监测及室内模拟试验表明:地下水主要源于降雨,其化学成分与处于非饱和带的玄武岩化学风化作用密切相关;风化层中的易溶盐、吸附阳离子、腐殖酸会进入地下水,同时雨水中的组分也会被不同程度地吸附;饱和带岩体与地下水反应规模不显著。
     风化作用破坏玄武岩晶体结构、化学键、减小离子半径、破坏电荷平衡、增加结构的孔隙度,从而削弱晶体间的联结力,使得风化程度不高的玄武岩岩石块力学强度锐减。头寨滑坡是受以杏仁状玄武岩薄层为基础发育的破劈理化层间错动带的主滑带、褶皱运动对滑体产生构造裂隙与柱状节理、物理-化学耦合风化及侧向卸荷作用共同控制作用形成的。沿结构面发生的化学风化形成的腐岩壳使岩体进一步转变为“石夹土”结构,削弱甚至切断了岩块之间的直接联系,将低岩体的力学强度及稳定性,促使岩体从固相介质向松散介质演化,加剧了坡体的时效变形并导致其最终失稳。
     坡体滑出源区碰撞解体后,来自腐岩壳、具有润滑和密封功效的以粘土矿物为主的细粒组分弥漫于核形石之间,不仅使土石集合体呈现流体特性,而且还使其在进入地效区后能够暂时封闭其下方空气,实现其在气垫上的远程滑移,因此,风化过程及其产物对滑坡的发生及滑体的高速远程滑移均起到了关键性的控制作用。
The failured rockmass of Touzhai landslide is permian system nonporphyritic basalt of emeishan basalt. Touzhai basalt landslide has a volume of 900×104 m~3, in which 400×104 m~3 of rock and soil slid away from the source area. The oblique length, its horizontal projection length and superelevation from crown to tip of the landslide are 3423 m, 3330 m and 763 m respectively. The landslide deposit is composed mainly of basalt debris and clay mineral minerals and its gradation is discontinuous. The space change of the deposit ingredient and structure is not conspicuous. Lay mineral in the giant basalt blocks account for 9% . The surface of rupture consists of three parts from the toe of surface of rupture whose dip is 48°, 38°and 15°respectively, in which the first part is main sliding zone, that is, main scarp.
     Rock chemical and mineralogical characteristics of fresh basalt and its saprolite is investigated by chemical analyses, optical observation of thin sections and SEM (scanning electron microscopic). Chemical analysis showed that components of fresh basalts and corestones has few changes except that the changes in Fe~(2+) to Fe~(3+) are most noticeable. In the course of corestones changing to saprolite elements of Si, Ca, Na and Mg and the ratio of SiO_2/Al_2O_3 decrease gradually, while elements of Fe, Al and values of LOI and CIA has a significant increase. The weathering front under SEMs is tortuous, and physical weathering cracks which are easier emergence along the cleavage plane can be observed in the vicinity of the weathering front. Weathering order of main minerals is dissolution of the glass, pyroxene and feldspar, which are in agreement with the sequence of weathering-resistant minerals. The main secondary mineral is smectite and chlorite. Rock coupling chemical weathering with physical weathering processes not only exists in the macro-scale, but also in the meso-scale and micro-scale. Changes in the valence of iron takes place in the whole formation process of basalt saprolite, and leads to a volume increases, resulting in physical cracks.
     The observations of groundwater in the landslide area and the indoor simulation experiments show that: groundwater mainly originate from rainfall and its chemical composition is closely related to the chemical weathering of basalt in unsaturated zone, the soluble salts, adsorption cation, humic acid in weathered soil layer will enter the groundwater, at the same time, the components of the rain will be adsorbed by the weathered soil; The reaction scale between basalt in saturated zone and groundwater is not significant.
     Basalt crystal structure, chemical bonding, and charge balance will be damaged and ionic radius will be decreased and the porosity of the structure will be increased during the weathering processing, thus the link between crystals will be decreased, The loss of the mechanical strength of the slightly weathered basalt rock is significant.
     A interbed sliding zone with fault-slip cleavage in an amygdaloidal basalt thin layer made up the embryo of the main sliding zone and the coupling chemical weathering with physical weathering based on lateral unloading made the interbed sliding zone get a material prone to slide finally. The Columnar joints and structural fractures from fold movement made the potential landslide body appear a fragment-mosaic structure, and the saprolited crusts from chemical weathering taking place along discontinuity surfaces made the rockmass evolve into the structure of rock sandwiching soil, which accelerated the time-dependent deformation process of the rockmass.
     After the landslide occurred, the main body knocked against the slopes of Touzhai valley at a high speed and disintegrated and fine grains, especially clay minerals, from saprolited crusts pervaded among basalt corestones and acted as lubricant and encapsulant. They made the soil-rock aggregate present fluid characteristics. On the other hand, these fine component sealed the air under the soil-rock aggregates after the aggregates dropped into ground effect region, which made the materials from main body move on the air cushion at a long distance. So, chemical weathering process and its products are important to the occurrence of Touzhai landslide and the high speed, long-distance drift of the landslide body.
引文
[1]徐则民,黄润秋,范柱国.滑坡灾害孕育-激发过程中的水-岩相互作用[J].自然灾害学报,2005,14(1):1-9
    [2]黄润秋.20世纪以来中国的大型滑坡及其发生机制[J].岩石力学与工程学报,2007,26(16):433-454
    [3]徐则民,黄润秋,杨立中.斜坡水-岩化学作用问题[J].岩石力学与工程学报,2004,23(16):2278-2787
    [4]段永侯.我国地质灾害的基本特征与发展趋势[J].第四纪研究,1999,19(3):208-216
    [5]王思敬.工程地质学的任务与未来[J].工程地质学报,1999,7(3):195-199
    [6]蔡廷贵.长江鸡扒子滑坡及其初步治理[J].人民长江,1984,5:56-60
    [7]王成华,陈永波.武隆滑坡形成机理与成灾分析[J].自然灾害学报,2002,11(1):108-112
    [8]陈永波,王成华,樊晓一.湖北省千将坪大型滑坡特征及成因分析[J].山地学报,2003,21(5):633-634
    [9]龙辉,秦四清,万志清.降雨触发滑坡的尖点突变模型[J].岩石力学与工程学报,2002,21(4):502-508
    [10]黄润秋.岩石高边坡的时效变形分析及其工程地质意义[J].工程地质学报,2000,8(2):148-1531
    [11]Forlati F.,Gioda G.,Scavia C.Finite element analysis of a deep-seated slope deformation[J].Rock Mechanics and Rock Engineering,2001,34(2):135-159
    [12]沈军辉,王兰生,王青海,等.卸荷岩体的变形破裂特征[J].岩石力学与工程学报,2003,22(12):2028-2031
    [13]Maffei A.,Martino S.,Prestin A.From the geological to the numerical model in the analysis of gravity-induced slope deformations:An example from the Central Apennines(Italy)[J].Engineering Geology,2005,78(3/4):215-236
    [14]黄润秋,邓荣贵,张倬元,等著.高边坡物质运动全过程模拟[M].成都:成都科技大学出版社,1993
    [15]Chigira M.,Nakamoto M.& Nakata E.Weathering mechanisms and their effects on the landsliding of ignimbrite subject to vapor-phase crystallization in the Shirakawa pyroclastic flow,northern Japan[J].Engineering Geology,2002,66(1/2):111-125
    [16]Jiao J.J.,Wang X.S.& Nandy S.Confined groundwater zone and slope instability in weathered igneous rocks in Hong Kong[J].Engineering Geology,2005,80(1/2):71-92
    [17]El-Kadi Aly I.& Torikai Jill D.Identifying variably saturated water-flow patterns in a steep hillslope under intermittent heavy rainfall[J].Hydrogeology Journal,2001,9:231-242
    [18]巨广宏.黄河拉西瓦水电站坝区花岗岩风化研究[J].中国地质灾害与防治学报,2006,17(1):124-129
    [19]Matsukura Y.,Hashizume K.& Oguchi C.T.Effect of microstructure and weathering on the strength anisotropy of porous rhyolite[J].Engineering Geology,2002,63(1/2):39-47
    [20]Borrelli L.,Greco R.& GulláG.Weathering grade of rock masses as a predisposing factor to slope instabilities:Reconnaissance and control procedures[J].Geomorphology,2007,87:158-175
    [21]仵彦卿.地下水与地质灾害[J].地下空间,1999,19(4):303-310,316
    [22]谢守益,徐卫平.降雨诱发滑坡机制研究[J].武汉水利电力大学学报,1999,32(1):21-23
    [23]何满潮,姚爱军,鹿粗,等.边坡岩体水力学作用的研究[J].岩石力学与工程学报,1998,17(6):662-666
    [24]李守定,李晓,董艳辉,等.重庆万州吉安滑坡特征与成因研究[J].岩石力学与工程学报,2005,24(17):3159-3164
    [25]李焯芬,陈虹.雨水渗透与香港滑坡灾害[J].水文地质工程地质,1997,4:34-38
    [26]A.Shakoor,A.J.Smithmyer.An analysis of storm-induced landslides in colluvial soils overlying mudrock sequences,southeastern Ohio,USA[J].Engineering Geology,2005,78:257-274
    [27]M.R.Islam,V.Peuraniemi,R.Aario,et al.Geochemistry and mineralogy of saprolite in Finnish Lapland[J].Applied Geochemistry,2002,17:885-902
    [28]M.A.Sequeira Braga,H.Paquet,A.Begonha.Weathering of granites in a temperate climate (NW Portugal):granitic saprolites and arenization[J].Catena,2002,49:41-56
    [29]Vicki Moon,Jayanthi Jayawardane.Geomechanical and geochemical changes during early stages of weathering of Karamu Basalt,New Zealand[J].Engineering Geology,2004,74:57-72
    [30]Duzgoren-Aydin N.S.,Aydin A.& Malpas J.Re-assessment of chemical weathering indices: case study on pyroclastic rocks of Hong Kong.Engineering Geology,2002,63(1/2):99-119
    [31]矫滨田,鲁晓兵,王淑云,等.土体降雨滑坡中细颗粒运移及效应[J].地下空间与工程学报,2005,1(6):1014-1016
    [32]Chigira M.,Nakamoto M.& Nakata E.Weathering mechanisms and their effects on the landsliding of ignimbrite subject to vapor-phase crystallization in the Shirakawa pyroclastic flow,northern Japan.Engineering Geology,2002,66(1/2):111-125
    [33]Gardner L.R.,Kheoruenromne I.& Chen H.S.Isovolumetric geochemical investigation of a buried granite saprolite near Columbia,SC,U.S.A.Geochimica et Cosmochimica Acta,1978,42(4):417-424
    [34]Taboada T.& García C.Pseudomorphic transformation of plagioclases during the weathering of granitic rocks in Galicia(NW Spain).CATENA,1999,35(2/4):291-302
    [35]Certini G.,Wilson M.J.& Hillier S.J.et al.Mineral weathering in trachydacitic-derived soils and saprolites involving formation of embryonic halloysite and gibbsite at Mt.Amiata,Central Italy.Geoderma,2006,133(3/4):173-190
    [36]Fletcher R.C.,Buss H.L.&Brantley S.L.A spheroidal weathering model coupling porewater chemistry to soil thicknesses during steady-state denudation.Earth and Planetary Science Letters,2006,244(1/2):444-457
    [37]徐则民,黄润秋,唐正光.头寨滑坡的工程地质特征及其发生机制[J].地质论评,2007,53(5):691-698
    [38]陈自生,孔纪名.1991年9月23日云南省昭通市头寨沟特大滑坡[J].山地研究,1991,9(4):265-268
    [39]唐川.昭通头寨沟特大型火害性滑坡研究[J].云南地理环境研究,19913(2):64-71
    [40]谭继中.云南头寨沟大型高速滑波运动特征探讨[J].地质灾害与环境保护,1993,4(1):37-44
    [41]邢爱国.云南头寨大型高速岩质滑坡流体动力学机理的研究[J].岩石力学与工程学报,2002,21(4):614-614
    [42]邢爱国.云南头寨大型高速岩质滑坡流体动力学机理的研究[D].西南交通大学博士学位论文,2001
    [43]赵晓彦,胡厚田,齐明柱.云南头寨沟大型岩质高速滑坡碰撞模型试验[J].自然灾害学 报,200312(3):99-103
    [44]沈军辉,王兰生,徐林生,等.峨眉山玄武岩的岩相与岩体结构[J].水文地质工程地质,2001,28(6):1-4
    [45]张倬元,王士天,_王兰生.工程地质分析原理[M].北京:地质出版社,1994.
    [46]黄润秋,林峰,陈德基,等.岩质高边坡卸荷带形成及其工程性状研究[J].工程地质学报,2001,9(3):227-232
    [47]Toth J.Groundwater as a geologic agent:An overview of the causes,processes,and manifestations[J].Hydrogeology Journal,1999,7(1):1-14
    [48]Sak P.B.,Fisher D.M.Rates of weathering rind on Costa Rican basalt[J].Geochimica et Cosmochimica,2004,68(7):1453-1472
    [49]McKaya L.D.,Driese S.G.,Smith K.H.et al.Hydrogeology and pedology of saprolite formed from sedimentary rock,eastern Tennessee[J],USA.Geoderma,2005,126(1/2):27-45
    [50]Masahiro Chigira,Osamu Yokoyama.Weathering profile of non-welded ignimbrite and the water infiltration behavior within it in relation to the generation of shallow landslides[J].Engineering Geology,2005,78(3/4):187-207
    [51]戴塔根,龚铃兰,张起钻.应用地球化学[M].长沙:中南大学出版社,2005.
    [52]孔宪立,石振明.工程地质学[M].北京:中国建筑工业出版社.2001.
    [53]郑国中,徐胜,郎煜华,等.日本富山县中田浦滑坡滑带内的黄铁矿[J].地球化学,2006,35(2):201-210
    [54]汪发武,谭周第.新滩滑坡形成机制与滑动特征[J].长江科学院院报,1998,8(3):28-34
    [55]B.-P.Wen,N.S.Duzgoren-Aydin,A.Aydin.Geochemical characteristics of the slip zones of a landslide in granitic saprolite,Hong Kong:implications for their development and microenvironments.Environmental Geology,2004,47(1):140-154
    [56]李德伦,王恩林.构造地质学[M].长春:吉林大学出版社,2001.
    [57]黄润秋,邓荣贵,张倬元,王士天.高边坡物质运动全过程模拟[M].成都:成都科技大学出版社,1993
    [58]Varnes,D.J.Landslide Types and Processes.In:Turner,A.K.,and Schuster R.L ed.Landslides:Investigation and Mitigation,Transportation Research Board Special Report 247, National Research Council.Washington,D.C.:National Academy Press,1996
    [59]L.Jing.A review of techniques,advances and outstanding issues in numerical modeling for rock mechanics and rock engineering[J].International Journal of Rock Mechanics &Mining Sciences,2003,(40):283-353
    [60]黄润秋,徐则民,许强,赵建军,吴礼舟.康定机场地基土特征及其形成机制[J].工程地质学报,200513(1):1-11
    [61]Atiye Tugrul.The effect of weathering on pore geometry and compressive strength of selected rock types from Turkey[J].Engineering Geology,2004(75):215-227
    [62]韩宝平,冯启言.兖州矿区红层砂岩中自生绿泥石的产状和成因[J].中国矿业大学学报,1999,28(1):53-56
    [63]林传仙,白正华,张哲儒.矿物及有关化合物热力学数据手册[M].北京:科学出版社,1985
    [64]Andri Stefansson.Dissolution of primary minerals of basalt in natural waters I.Calculation of mineral solubilities from 0℃ to 350℃[J].Chemical Geology,2001,172:225-250
    [65]申林方,徐则民.低渗透岩石结构体风化初期的水气分子扩散[J].地球与环境,2007,35(2):103-110
    [66]徐则民,黄润秋,唐正光,等.岩体化学风化的非连续性及其科学意义[J].地球科学进展,2006,21(7):706-712
    [67]徐则民,唐正光.石灰岩腐岩的基本特征及其形成机制[J].地质论评,2007,53(3):421-427
    [68]A.S.Gupta,K.Seshagiri Rao.Weathering effects on the strength and deformational behaviour of crystalline rocks under uniaxial compression state[J].Engineering Geology,2000,56:257-274
    [69]Luis M.O.Sousa,Luis M.Suárez del Río,Lope Calleja,et al.Influence of microfractures and porosity on the physico-mechanical properties and weathering of ornamental granites[J].Engineering Geology,2005,77:153-168
    [70]巫锡勇,魏有仪,罗健.湘西地区陡山沱组黑色岩石风化与物理力学性质的变化特征[J].水文地质工程地质,2003,1:9-16,17
    [71]A.Tugrul,I.H.Zarif.Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey[J].Engineering Geology 1999,51:303-317
    [72]潘兆橹 主编.结晶学及矿物学(下册)(第三版)[M].北京:地质出版社,2001
    [73]杨岫青,孙杉.中国新生代玄武岩含硅酸重碳酸型水的分布及形成机制[J].石家庄经济学院学报,1988,11(1):45-58
    [74]H.X.Lan,R.L.Hu,Z.Q.Yue,et al.Engineering and geological characteristics of granite weathering profiles in South China[J].Journal of Asian Earth Sciences,2003,21:353-364
    [75]GB/T50266-99.工程岩体试验方法标准[S].
    [76]沈军辉.川西南玄武岩岩体结构的浅表生改造与水电工程[D].成都理工学院博士学位论文,2000
    [77]蔡美峰 主编,何满潮,刘东燕 副主编.岩石力学与岩石工程[M].北京:科学出版社,2002
    [78]杜时贵.岩体结构面的工程性质[M].北京:地震出版社,1999
    [79]Judy Ehlen.Some effects of weathering on joints in granitic rocks[J].Catena,2002,49:91-109
    [80]S.S.Augustithis.球状结构构造图册及其成因意义[M].北京:地质出版社,1989
    [81]Willy A.Lacerda.Landslide initiation in saprolite and colluvium in southern Brazil:Field and laboratory observations[J].Geomorphology,2007,87:104-119
    [82]Beven K.Micro-,meso,macroporosity and channeling flow phenomena in soils.Soil Science Society American Journal.1981,45:1245
    [83]Germann P.Preferential flow and generation of runoff,1,boundary layer flow theory.Water Resource Research,1990,26:3055-3063
    [84]Steven G.driese,Larry D.Mckay & Clint P.Penfield.Lithologic and pedogenic influences on porosity distribution and groundwater flow in fractured sedimentary saprolite:a new application of environmental sedimentology.Journal of sedimentary research,2001,71(5):843-857
    [85]Tsuyoshi Wakatsuki,Yukiya Tanakab,Yukinori Matsukura.Soil slips on weathering-limited slopes underlain by coarse-grained granite or fine-grained gneiss near Seoul,Republic of Korea[J].Catena,2005,60:181-203
    [86]Tsuyoshi Wakatsuki,Yukinori Matsukura.Lithological effects in soil formation and soil slips on weathering-limited slopes underlain by granitic bedrocks in Japan[J].Catena,2008,72:153-168
    [87]Y.Matsukura.The role of the degree of weathering and groundwater fluctuation in landslide movement in a colluvium of weathered hornblende-gabbro[J].Catena,1996,27:63-78
    [88]Godt J.W.,Coe J.A.Alpine debris flows triggered by a 28 July 1999 thunderstorm in the central Front Range,Colorado.Geomorphology,2007,84(1/2):80-97
    [89]Reid M.E.,Nielsen H.P.,Dreiss S.J.Hydraulic Factors Triggering a Shallow Hillslope Failure.Bulletin of the association of engineering geologists,1988,25(3):349-361
    [90]Montgomery D.R.,Dietrich W.E.,Tortes R.et al.Hydrologic response of a steep unchanneled valley to natural and applied rainfall.Water Resources Research,1997,33(1):91-109
    [91]John Douglass,Ronald I.Dorn & Brian Gootee.A large landslide on the urban fringe of metropolitan Phoenix,Arizona.Geomorphology,2005,65:321-336
    [92]王恭先.滑坡防治研究的回顾与展望[J].中国铁路,1995年第7期:18-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700