滑坡作用下埋地管线反应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震引发的滑坡是导致埋地管线破坏的重要原因之一,而埋地管线又是城市基础建设的重要组成部分,因此分析滑坡作用下埋地管线的反应规律是必要的。本论文通过对三种理想滑坡形式作用下的埋地管线进行理论分析,并与有限元数值结果进行验证,研究管线的反应规律,希望为今后埋地管线的抗震设计工作提供一些依据,主要包括以下几个方面:
     (1)在对已有研究成果总结的基础上,基于管土相互作用双线性模型,建立了轴向滑坡作用下管线的变形及应变分析模型,由有限元模型分析验证了公式的适用性,并得到一些有益的结论:土体下滑位移较大时,管线的最大轴向应变主要受滑坡长度控制;当滑坡长度较大时,管线的最大轴向应变受土体下滑位移控制。
     (2)基于理想弹塑性土体本构关系和弹性梁挠曲理论建立了埋管在有限宽横向滑坡和无限宽横向滑坡下的变形微分方程,其中考虑了管线由于大变形产生的轴向伸长对轴向应变的影响。得出管线在滑坡端5m附近的轴向应变为最大,大于20m宽度的滑坡与无限宽滑坡对管线的影响很接近。建立塑性管模型,模拟管线进入应力强化阶段时的反应,通过具体算例,定量分析了不同参数如滑坡宽度、土体下滑位移、埋深、管径等对管线反应的影响程度。根据计算结果得出管线的受力及变形的规律。
     (3)利用前面分析成果,把深层圆弧滑坡土体运动分解为轴向和横向分量,得到两分量下管线轴向应变,两者的相加值作为管线最大轴向应变的保守估计。并利用ANSYS计算出比较可靠的管线轴向应变。
     本文最后提出了埋地管线反应分析中需要进一步研究的问题和发展方向。
Buried pipelines as one of part of lifeline are widely used to transport oil, gas, water, waste and so on. The landslide due to earthquake is one of the important factors resulted in damage and destroy of buried pipelines. Therefore, it is necessary to analyze the response of buried pipelines subjected to large ground deformation. Analytical solutions to three kinds of idealized landslide pattern under landslide are derived considering the interaction between soil and pipeline. Meanwhile, finite element models are established to validate the analytical solutions. Some conclusions can be drawn as the following:
     (1) On the basis of previous studying, a bilinear relationship related to deformation and force is introduced to simulate the soil and pipeline interaction and derive the analytical solutions to buried pipeline subjected to the longitudinal landslide. Compared with FE analysis, some results are obtained. If soil movement is large, the pipe strain is controlled by the length of the landslide. If the length of landslide is large, the pipe strain is dominated by soil movement.
     (2) Based on the perfectly elastic-plastic constitutive model of soil and the theory of elastic beam, differential equation of buried pipeline under finite width and infinite width transverse landslide is established. Axial strain is composed of bending strain and longitudinal strain due to large transverse deflection of the pipeline. The maximum axial strain is at the position of about 5 meters away from the boundary. The response of pipeline under the 20 m wide slope is almost equal to that of the one under infinitely wide slope. Then plastic pipeline model is proposed to simulate the pipe at the stage of stress strengthening. The effects of the width of landslide, the displacement of soil movement, the diameter of pipe and the buried depth are analyzed through an example.
     (3) According to the results above, the resultant soil movement with deep circular sliding is decomposed into two components such as parallel and perpendicular to the pipeline. The responses of the pipeline under two soil movement components are calculated respectively, and algebratic sum of maximum strain under each of component is defined as the total peak axial strain of the buried pipeline.
     The problems and future studying are suggested in the end of the paper.
引文
[1]赵成刚,冯启民等.生命线地震工程[M].北京:地震出版社,1994.
    [2]地下管线抗震[M]侯忠良
    [3]王泸毅 输气管线在地质灾害中的力学行为研究[D]西北工业大学硕士论文.2005
    [4]史永霞,埋地管线在沉陷情况下的响应分析[D].大连理工大学.2007
    [5]赵雷,断层错动引发基岩上覆土层破裂及其对埋地管线的影响研究[D].中国地震局地球物理研究所.2004
    [6]Chen,C.C.,Ariman,T.,and Lee.Elastic Buckling Analysis of Buried Pipes under seismic loads.San Francisco[J],80-C2/PVP-76,Aug.1980
    [7]潘家华.高强度管线钢发展中的几个重要课题[J].焊管,2005,28(4):1-2.
    [8]刘冰,刘学杰,张宏.基于应变的管道设计准则[J].天然气工业,2008,28(2):129-131
    [9]刘爱文.管道抗震设计规范有关地震作用的综述[J].国际地震动态,2007,9:29-35
    [10]Francesco Calvetti,Claudio di Priscoand Roberto Nova.Experimental and Numerical Analysis of Soil - Pipe Interaction[J]2004 JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING ASCE / DECEMBER 1292-1299
    [11]O' Rourke.M.J.,Liu.x.and Flores-Berrones,R.1995.Steel Pipe Wrinkling Due to Longitudinal Permanent Ground Deformation.Journal of Transportation Engineering[C].Vol.121.5.443-451
    [12]Rajani.B.B.,Robertson.P.K.and Morgenstern.N.R.1995.Simplified design methods for pipelines subjected to transverse and longitudinal soil movements.Canadian Geotechnical Journal[C].No.32.309-323
    [13]Chan,Peter Doug Sing,M.Sc.,Soil-pipeline Interaction In Slopes[J]University of Calgary(Canada),2000
    [14]梁政,滑坡地区管线应力和位移的分析[J],天然气工业,1991.Vol.11 N0.3 55-59
    [15]张东臣,滑坡条件下埋地管道受力分析[J]石油规划设计.2001.Vol.12 No.6 1-6
    [16]Hiroshi Yatabe,Naoki Fukuda,Tomoki Masuda,Masao Toyoda 《Analytical Study of Appropriate Design for High-Grade Induction Bend Pipes Subjected to Large Ground Deformation》 Journal of Offshore Mechanics & Arctic Engineering,Nov2004[C],Vol.126 Issue 4,p376-383
    [17]Allen Jay Evans,Three-dimensional finite element analysis of longitudinal support in buried pipes,Utah State University.2004
    [18]王泸毅.输气管线在地质灾害中的力学行为研究[D]西北工业大学.2003
    [19]柳春光.林皋,李宏男等.生命线地震工程导论[M].大连理工出版社.2005
    [20]毛建猛.跨越断层地下管线反应分析[D].南京工业大学硕士论文.2005.
    [21]地震液化引起的地面大位移对工程的影响及研究现状[J]特种结构.1997.vol.14
    [22]郝文化.ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2005
    [23]刘全林,杨敏.地埋管与土相互作用分析模型及其参数确定[J].岩土力学.Vol.25 No.5
    [24]张荣,张鸿儒.弹性地基梁计算模型研究[J]山西建筑.2007.Vol.33 No.26
    [25]马立博等.Winkler与三参数弹性地基梁模型的计算比较[J]青岛理工大学学报.2008.Vol.29 No.4.
    [26]龙驭球.弹性地基梁的计算[M].北京:高等教育出版社,1983.
    [27]邓道明.横向滑坡过程中管道的内力和变形计算[J]1998油气储运Vol.17 No.7 18-22
    [28]P.D.S.Chan and R.C.K.Wong.Performance evaluation of a buried steel pipe in a moving slope[J]a case study.Canadian Geotechnical Journal,2004,Vol.41 Issue 5,894-907
    [29]刘爱文,基于壳模型的埋地管线抗震分析[D],中国地震局地球物理研究所,2002.
    [30]赵雷.断层错动引发基岩上覆土层破裂及其对埋地管线的影响研究[D].中国地震局地球物理研究所。2004
    [31]刘学杰,孙邵平.地下管道穿越断层的应变设计方法[J],特种结构.2005.Vol.22 No.2
    [32]李鹤林,李霄,吉玲康等.油气管道基于应变的设计及抗大变形管线钢的开发与应用[J].焊管,2007,Vol.30.No.5
    [33]童华.长输管线大变形设计理论研究[D].西南石油学院.2005.
    [34]李晓丽.钢质管道地震地质灾害若干问题研究[D].大庆石油学院.2007
    [35]杨勇.型钢混凝土粘结滑移基本理论及应用研究[D]西安建筑科技大学,2003.
    [35]俞茂宏,强度理论百年总结[J],力学进展,2004,Vol.34,No.4
    [36]Vesic A.B.,Beams on Elastic Subgrade and the Winkler' s Hypothesis[J],Proceedings,Fifth International Conference on Soil Mechanics and Foundation Engineering,Vol.1,1961
    [37]K.Selventhiran.Nonlinear analysis of buried restrained and unrestrained segmental pipelines subjected to permanent ground deformation[D].2002.University of Nevada,Reno
    [38]刘力伟,大面积地表荷载作用下埋地管线的应力分析[D],天津大学建筑工程学院,2005
    [39]吴专保,非线性方程几种数值解法的Marlab程序[J],宁波职业技术学院学报,2007,Vol.11,No.2
    [40]中华人民共和国石油天然气行业标准.输油(气)钢质管道抗震设计规范[C].(SY/TO450-2004).北京:中国石油天然气股份有限公司管道分公司,中国海洋大学.2004
    [41]闫超君,土质边坡滑坡机理及防治措施的研究[D].合肥工业大学.2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700