胶东地区钼—铜—铅锌多金属矿成矿作用及成矿模式
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胶东地区是我国重要的金成矿区,已探明金资源储量约占全国的1/4。另外,胶东地区还分布有铜、钼、铅锌、银等有色金属矿产。前人对金矿的研究较全面深入,但对其它有色金属矿的研究较少,对有色金属矿产之间是否存在成因联系的综合研究更少。
     胶东钼矿、铜矿、铅锌矿、银矿等有色金属矿产主要分布在胶东中东部,均是与花岗岩有关的金属矿床,其产出的空间部位明显受中生代花岗岩侵位的制约,成矿物质来源有同源特征,成矿时代为中生代白垩纪,因此,构成了在时间上、空间上和成因上有密切联系的成矿系列。在中生代中国东部发生大规模地壳减薄的背景下,胶东地区岩浆活动频繁,早白垩世伟德山花岗岩分布面积大、范围广,其产生的热量造成了强烈的流体活动及成矿物质的大范围活化、迁移、富集,不同元素选择在不同的构造有利部位成矿。
     本文在认真分析胶东中东部有色金属矿成矿规律和控矿因素的基础上,选择近年勘查的代表性矿床——尚家庄钼矿床、大邓格多金属矿床作为研究对象,进行深入剖析,重点对其成矿物质来源、成矿的物理化学条件、成矿时代和成矿机理进行了分析,得出钼矿、铜矿、铅锌多金属矿是与中生代伟德山岩体有关的一个成矿系列。
     针对胶东地区金矿主成矿时代与伟德山花岗岩主成岩时代一致,以及近年来有人提出的胶东地区金成矿与伟德山花岗岩有关的观点,选择了近年勘查的代表性矿床——焦家深部金矿床作为研究对象,对深部矿床岩石化学、矿石及围岩的石英、黄铁矿单矿物稀土微量元素地球化学、稳定同位素组成及特征、流体包裹体成分等做了深入分析,研究表明金矿与伟德山花岗岩在成矿物质来源上有一定的渊源。伟德山花岗岩是一个复式岩体,经历了多期多阶段的演化,究竟是哪一期、哪一阶段与金矿成矿有关,尚需继续深入研究。
     本次研究主要取得如下认识:
     (1)对矿石中的石英稀土元素配分模式研究和微量元素聚类分析发现:尚家庄钼矿床成矿物质主要直接来源于伟德山花岗岩;大邓格多金属矿床成矿物质来源大致可以分为两类,Pb、Zn以壳源为主,Au、Cu、Mo、Ag主要与深部幔源物质有关,特别是与中生代伟德山花岗岩的侵位密切相关。
     (2)尚家庄钼矿床硫同位素组成为4.5‰,大邓格多金属矿床硫同位素组成为δ~(34)S_(CDT)=7.0~7.1‰,平均7.05‰,可见两个矿床的硫来源均为混合来源,尚家庄钼矿床硫同位素组成相对较低,说明成矿时的深度较深,且在成矿后未受到明显的混染。
     (3)尚家庄和大邓格矿床矿石的铅同位素组成投点均落在地幔演化线附近,部分靠近下地壳演化线,部分靠近造山带演化线,说明铅的来源为混合源,尚家庄钼矿床铅可能来源于壳幔混合成因的伟德山花岗岩,大邓格多金属矿床铅可能来源于赋矿地层荣成片麻岩套,铅的模式年龄显示其为古老的异常铅。
     (4)采用辉钼矿Re-Os同位素定年法精确厘定了尚家庄钼矿床3件辉钼矿样品的同位素年龄,为115.5±1.6~117.6±1.6Ma,与伟德山花岗岩形成时代一致,与胶东金矿大规模成矿时代也一致。Re同位素含量显示成矿物质来源于壳幔混合型花岗岩—伟德山花岗岩,以壳源为主,Re含量有往深部增高的趋势,说明最终来源应为幔源物质,说明矿床的形成与伟德山花岗岩有密切的成因联系。
     (5)鉴于胶东中东部地区钼、铜、铅锌矿围绕伟德山花岗岩呈规律性分布,且成矿、成岩时代一致,成矿、成岩有明显的渊源关系,提出胶东中东部地区钼、铜、铅锌矿是与伟德山花岗岩有关的矿床成矿系列,具有斑岩型矿床的成矿特点。
     (6)提出了胶东中东部地区铜、铅锌、钼矿空间分布模式。铜矿主要产出于伟德山花岗岩外接触带的荆山群层间构造中;铅锌等多金属矿主要分布于伟德山花岗岩与围岩接触带附近;钼矿则产出于伟德山花岗岩中。受不同的构造型式制约而呈现出不同类型。
     (7)建立了胶东中东部地区钼—铜—铅锌矿成矿模式。伟德山花岗岩(壳幔混合型)演化产生的热液流体在运移过程中不断与围岩进行交代反应,萃取围岩中的成矿物质,形成成矿流体。成矿流体携带大量成矿物质由深部向浅部运移,当运移至地壳浅表部时,由于断裂等构造使得深部体系与外界连通,深部的封闭体系变为浅部的近开放体系,温度和压力不断降低,物理化学条件发生显著变化,加之大气降水的加入,使得成矿流体的成分和性质都发生了改变,从而卸载成矿物质在适宜的部位成矿。不同矿种的成矿位置受离成矿岩体距离及其所引起的温度变化制约,在岩体内部,温度较高,适合钼成矿;在岩体附近,温度中等,适合铅锌、铜等成矿。
     (8)焦家深部金矿床矿石中的黄铁矿、石英稀土元素配分型式与伟德山花岗岩的稀土配分型式相似,指示伟德山花岗岩提供了部分成矿物质(含矿流体);金矿床矿石硫同位素组成δ34SCDT=7.5~9.8‰,平均8.6‰,为混合硫,比焦家浅部金矿床硫同位素组成(平均10.06‰)低,表现出在垂向上由浅到深δ34S呈递减的变化特点,即幔源硫的比例增加,说明深部成矿作用可能有幔源物质的参与;金矿床铅同位素组成投点均落在地幔演化线和造山带演化线之间,与浅部相差不大,分布更集中,显示深部与浅部矿床的铅为相同来源,可能直接来自陆壳重熔形成的玲珑花岗岩,铅的模式年龄显示其为古老的异常铅,说明前寒武纪胶东变质岩群提供了部分成矿物质;对焦家深部矿石、围岩岩石化学参数研究发现:部分围岩铝饱和指数(A/NKC)小于1.1,表现出非S型花岗岩的特点,说明随着深度增大幔源物质可能直接参与了金的成矿。
     (9)对比胶东金矿和钼矿、铜矿、铅锌矿的成矿时代以及伟德山花岗岩的成岩时代发现,它们具有广泛的一致性,都主要发生在中生代白垩纪,与这一时期中国东部强烈的岩石圈减薄和大规模的岩浆侵入活动有关。伟德山花岗岩形成和侵位的时间较长,跨越了金矿、钼矿的主要成矿期,为成矿提供了持续、充足的热源,也直接或间接的提供了成矿物质。由此分析,伟德山花岗岩不但与胶东地区的钼、铜、铅锌等多金属矿成矿密切相关,与金的成矿也有一定的联系,鉴于目前所做的工作,还不能判断其演化到哪个阶段与金成矿有关。
Jiaodong is one of the most important gold mining areas in China, with provengold reserves of about1/4of the whole national gold production. In addition, there aremany other nonferrous metals such as copper, molybdenum, lead, zinc, silver, etc.deposits in the region. However, little work has been done about these deposits, andthe relationship between the gold deposits and the nonferrous metal deposits remainsunclear so far.
     The nonferrous metal deposits including molybdenum, copper, lead, zinc andsilver distribute in the middle and eastern Jiaodong region, and are associated closelywith Weideshan granite. The mineralogenetic epoch is Mesozoic Cretaceous period,thus they should belong to a mineralogenetic series with consanguineous relation ofepoch, space, and genesis. On the background of the lithosphere thinning in theeastern China during Mesozoic, large-scale magmatic activities occurred in Jiaodongarea, among which the Weideshan granite formed in early Cretaceous as the largestintrusive body. It produces much heat resulting in strong liquid activity, ore-formingmaterials activation, transfer, and enrichment. At last different elements deposited toform different styles of deposits.
     This paper analyzing ore formation rules and ore-controlling factors ofnonferrous metal deposits in Jiaodong area, and then selects two typical depositswhich were explored in recent years—Shangjiazhuang molybdenum deposit, andDadengge complex deposit to do some researches at depth. The main target is to findthe origin of the ore materials, physicochemical condition, mineralization age, and themineralizing mechanism. Based on the analysis above, we conclude that themolybdenum, copper, lead and zinc complex deposit is a metallogenic series which isassociated strongly to the Weideshan granite
     We find the mineralization age of gold deposits in Jiaodong region is consistentwith the diagenesis epoch of Weideshan granite. Some researchers pointed out that thegranite body has consanguineous relationship with the gold deposits formation.Therefore, we select a typical deposits, which was explored in recent years—Jiaojiagold deposit, to do some researches at depth. We analyzed the geochemicalcomposition of bulk rock, REE and trace elements, stable isotopes, fluid inclusions ofore rocks, and then pointed out the gold metallization is related to the Weideshangranite. However, Weideshan is a very complicated granite body, it is difficult to findout which phase of magmatic activity bring gold.
     The main conclusions are as following:
     (1) The REE Chondrite-normalized patterns and the trace elements clusteranalysis of quartzes of ores in Shangjiazhuang molybdenum deposit and Dadenggecomplex deposit show that: the ore-forming materials of Shangjiazhuangmolybdenum deposit root directly in Weideshan granite, the ore-forming materials ofDadengge complex deposit have two origins: the lead and zinc deposits root insupracrust, and the gold, copper, molybdenum, and silver deposits derive fromWeideshan granite.
     (2) δ34SCDT=4.5‰in Shangjiazhuang molybdenum deposit, and δ34SCDT=7.0~7.1‰in Dadengge complex deposit, the average value is7.05‰, we suggested thatboth of the sulfur isotopes came from mixed origin. The sulphur isotopes ofShangjiazhuang molybdenum deposit is lower, which means it may originate fromdeeper magma chamber and didn’t be contaminated by sequent geological events.
     (3) The lead isotopes of Shangjiazhuang molybdenum deposit and Dadenggecomplex deposit are all near the earth mantle’s value, some near crust evolvement line,and some near fold belt evolvement line. We suggested the lead is from mixed origin.They are all old abnormal lead. The lead of Shangjiazhuang molybdenum deposit rootin Weideshan granite and the lead of Dadengge complex deposit root in supracrust.
     (4) The Re-Os isotopic dating of3molybdenite samples from Shangjiazhuangmolybdenum deposit has yielded a precise age of115.5±1.6~117.6±1.6Ma, andalmost at the same time of the formation of the Weideshan granite. The Re isotopecomposition shows the ore-forming materials originate from Weideshan granite. Thusthe molybdenum deposit is associated closely with the Weideshan granite.
     (5) Whereas the copper deposits, lead and zinc deposits, molybdenum depositsdistributearound the Weideshan granite, the mineralization age is consistent withdiagenesis, the ore-forming materials is directly or indirectly originated from this granite. Therefore, we suggested that the molybdenum, copper, lead and zinc complexmetal deposits in Jiaodong area are a metallogenic series, which is related to theWeideshan granite, and have the feature of porphyritic deposits.
     (6) We do some researches on the distribution model of the copper deposits,lead and zinc deposits, molybdenum deposits in Jiaodong area. The copper depositsare mainly located in the interlayered structures of Jingshan Group around theWeideshan granite; the lead and zinc deposits are mainly in the outside contact zoneof the Weideshan granite; the molybdenum deposits are within the Weideshan granite,and they were controlled by various structures.
     (7) We build the metallogenic model of the molybdenum, copper, lead and zinccomplex metal deposits. The hydrothermal fluids from the Earth mantle exchangedand extracted the metallic materials from the country rocks to be ore-forming fluids.As the fluids ascending, the temperature and pressure drop down. When the fluidarrives near the earth surface, the system becomes open. With the involvement ofatmospheric water the ore-forming fluid decomposes and forms various styles ofmetallic deposits. The locations of different deposits are strictly restricted by thedistance from the Weideshan granite. Within the granite, the temperature is higher andis suitable for Mo deposition, and the temperature near the granite is moderate,suitable for copper, lead, and zinc deposits formation.
     (8) Research on gold metallization of Jiaojia gold deposit shows that: the REEChondrite-normalized patterns of pyrites and quartzes of ores in Jiaojia gold deposit atdepth are similar to the REE patterns of Weideshan granite. This indicates thatWeideshan granite provide certain ore-forming materials for mineralization. δ34SCDT=7.5~9.8‰, the mean value is8.6‰in deep portion of the Jiaojia deposit, lowerthan the shallow parts of the deposit (the average value of10.06‰). This indicatesthat the δ34S is descending from shallow to deep, implying the material from Earthmantle. The lead isotopes of Jiaojia gold deposit at depth are between the Earthmantle evolvement line and fold belt evolvement line, thus we think the lead is frommixed origin. They are all old abnormal lead. The lead of Jiaojia gold deposit at depthroot in Linglong granite, and the Precambrian metamorphic rocks also provide somematerials.
     (9) Our results showed that the mineralogenetic epoch of gold deposit andmolybdenum, copper, lead and zinc complex metal deposits are consistent, alsoaccord to the diagenesis epoch of Weideshan granite. They are all associated stronglyto the lithosphere thinnng and large-scale magmata intrusions in the Cretaceous period. The Weideshan granite didn’t only offer materials for molybdenum, copper, lead andzinc complex metal deposits, but also offer energy and certain material for golddeposits. But we are not sure which evolvement phase of Weideshan granite bringsgold metallization based on the existing research.
引文
[1]李士先,刘长春,安郁宏,等.胶东金矿地质[M].北京:地质出版社,2007.
    [2]宋明春,崔书学,伊丕厚,等.胶西北金矿集中区深部大型-超大型金矿找矿与成矿模式[M].北京:地质出版社,2010.
    [3]宋明春,杨承海,焦秀美.山东省金矿成矿区带划分及找矿方向探讨[J].地质找矿论丛,2007,22(4):248-253.
    [4]叶天竺,薛建玲.金属矿床深部找矿中的地质研究[J].中国地质,2007,34(5):855-869.
    [5]李宏骥.胶北地区内生金矿成矿规律[J].山东地质,2002,18(3-4):72-77.
    [6]王世称,刘玉强,伊丕厚,等.山东省金矿床及金矿密集区综合信息成矿预测[M].北京:地质出版社,2003.
    [7]杨敏之,吕古贤.胶东绿岩带金矿地质地球化学[M].北京:地质出版社,1996.
    [8]刘玉强,李洪奎,黄太岭,等.山东省金、铁、煤矿床成矿系列及成矿预测[M].北京:地质出版社,2004.
    [9]邓军,王庆飞,杨立强,等.胶西北金矿集区成矿作用发生的地质背景[J].地学前缘,2004,11(4):527-533.
    [10]张连昌,沈远超,李厚民,等.胶东地区金矿床流体包裹体的He、Ar同位素组成及成矿流体来源示踪[J].岩石学报,2002,18(4):559-565.
    [11]顾留成,万国普,段林祥.胶东破碎带蚀变岩型金矿床的地质-地球物理-地球化学模型及评价指标研究.见:山东省地质矿产局主编,山东地质矿产研究文集.济南:山东科学技术出版社,1996,178-193.
    [12]黄德业.胶东金矿成矿系列硫同位素研究[J].矿床地质,1994,13(1):75-87.
    [13]李厚民,沈远超,毛景文,等.焦家式金矿构造-流体成矿作用特征--以胶西北金城金矿床为例[J].大地构造与成矿学,2002,26(4):396-403.
    [14]翟明国,杨进辉,刘文军.胶东大型黄金矿集区及大规模成矿作用[J].中国科学(D缉),2001,31(7):545-552.
    [15]邹为雷,沈远超,张连昌,等.平度市大庄子金矿控矿构造特征及金矿赋存规律初步探讨[J].地质与勘探,2001,37(1):44-47.
    [16]张连昌,曾庆栋,沈远超,等.胶西北红布金矿地质特征及构造解析[J].地质与勘探,2002,38(3):18-22.
    [17]赵宏光,孙景贵,凌洪飞,等.胶东金矿成矿流体性质及其地质意义[J].地质与勘探,2005,41(5):27-33.
    [18]李惠,张国义,禹斌.金矿区深部盲矿预测的构造叠加晕模型及找矿效果[M].北京:地质出版社,2006.
    [19]李兆龙,杨敏之.胶东金矿床地质地球化学[M].天津:天津科学技术出版社,1993.
    [20]杨进辉,周新华,陈立辉.胶东地区破碎带蚀变岩型金矿时代的测定及其地质意义[J].岩石学报,2000,16(3):454-458.
    [21]卢焕章,袁万春,张国平.玲珑-焦家地区主要金矿床稳定同位素及同位素年代学[J].桂林工学院学报,1999,19(1):1-8.
    [22]姚凤良,刘连登,孔庆存,等.招掖金矿带的稳定同位素地质及金矿床成因[J].长春地质学院学报,1983,(4):7-18.
    [23]翟明国,范宏瑞,杨进辉,等.非造山带型金矿—胶东型金矿的陆内成矿作用[J].地学前缘,2004,11(1):85-98.
    [24]罗镇宽,关康,余和勇,等.胶东招莱地区大—超大型金矿床形成的几个关键因素[J].地质找矿论丛,2003,18(2):95-102.
    [25]毛景文,王志良.中国东部大规模成矿时限及其动力学背景的初步探讨[J].矿床地质,2000,19(4):289-296.
    [26]侯明兰,蒋少涌,沈昆,等.胶东蓬莱金矿区流体包裹体和氢氧同位素地球化学研究[J].岩石学报,2007,23(9):2241-2256.
    [27]沈昆,胡受奚,孙景贵,等.山东招远大尹格庄金矿成矿流体特征[J].岩石学报,2000,16(4):542-550.
    [28]沈远超,李厚民,刘铁兵,等.胶西北焦家式金矿化类型及其研究意义[J].地质与勘探,2001,37(1):48-51.
    [29]宋明春,崔书学,杨之利,等.山东焦家金矿带深部找矿的重大突破及其意义[J].地质与勘探,2008,44(1):1-8.
    [30]李华芹,刘家齐,魏琳.热液矿床流体包裹体年代学研究及其地质应用[M].北京:地质出版社,1993,126.
    [31]孙景贵.胶东地区地质体的含金性与金矿成矿关系[J].地质找矿论丛,1999,14(2):43-54.
    [32]杨忠芳,徐景奎,赵伦山.胶东区域地壳演化与金矿成矿作用地球化学[J].北京:地质出版社,1998,101.
    [33]徐贵忠,周瑞,闫臻,等.论胶东地区中生代岩石圈减薄的证据及其动力学机制[J].大地构造与成矿学,2001,25(1):368-380.
    [34]翟明国.华北克拉通的形成演化与成矿作用[J].矿床地质,2010,29(1):24-36.
    [35] Mao J W,Wang Y T,Zhang Z H,et al.. Goedynamic settings of Mesozioc large-scalemineralization in North China and ajacent areas(Implication from the highlyprecise and accurate ages of metal deposits). Sci. China Ser. D,2003,46:838-851.
    [36] Yang J H,Wu F Y,Wilde S A.. A review of the geodynamic setting of large-scalelate Mesozoic gold mineralization in the North China craton:an association withlithospheric thining. Ore Geol. Rev.,2003,23:123-152.
    [37] Zhai M G,Yang J H,Fan H R,et al.. A large-scale cluster of gold deposits andmetalloginisis in the eastern China cration. International Geol. Rev.,2002,44:458-476.
    [38] Zhang L C,Shen Y C,Liu T B,et al..40Ar/39Ar and Rb-Sr isochron dating of thegold deposits on northern margin of the Jiaolai Basin,Shandong,China. Sci. ChinaSer. D,2003,46(7):708-718.
    [39]宋明春,崔书学,周明岭,等.山东省焦家矿区深部超大型金矿床及其对“焦家式”金矿的启示[J].地质学报,2010,84(9):1349-1357.
    [40]宋明春,宋英昕,崔书学,等.胶东焦家特大型金矿床深、浅部矿体特征对比[J].矿床地质,2011,30(5):923-932.
    [41]宋明春,崔书学,姜洪利.山东胶西北矿集区和焦家金矿田成矿构造系统[J].地质通报,2011,30(4):573-578.
    [42]陈衍景,富士谷.豫西金矿成矿规律[M].北京:地震出版社,1992,234.
    [43]陈衍景.中国绿岩带型金矿[M].见:中国金矿研究新进展第一卷上册.北京:地震出版社,1994,4-29.
    [44]卢焕章, Guy Acambault,李院生,等.山东玲珑—焦家地区形变类型与金矿的关系[J].地质学报,1999,73(2):174-188.
    [45]毛景文,华仁民,李晓波.浅议大规模成矿作用与大型矿集区[J].矿床地质,1999,18(4):291-298.
    [46]毛景文,张作衡,余立金,等.华北及邻区大规模成矿的地球动力学背景:从金属矿床年龄精测得到的启示[J].中国科学(D辑),2003,33:289-299.
    [47]翟明国,樊祺诚,张宏福,等.华北东部岩石圈减薄中的下地壳过程:岩浆底侵、置换与拆沉作用[J].岩石学报,2005,21(6):1509-1526.
    [48] Zhai M G,Yang J H,Liu W J. Large clusters of gold deposits and large-scalemetalloginisis in the Jiaodong peninsula[J],eastern China. Sci. China Ser.D,2001,44:758-768.
    [49] Zhai M G,Yang J H,Fan H R,et al.. A large-scale cluster of gold deposits andmetalloginisis in the eastern China cration[J]. International Geol.Rev.,2002,44:458-476.
    [50]陈衍景,陈华勇,刘玉琳,等.碰撞造山过程内生矿床成矿作用的研究历史和进展[J].科学通报,1999,44(16):1681-1689.
    [51]陈衍景,翟明国,蒋少涌.华北大陆边缘造山过程与成矿研究的重要进展和问题[J].岩石学报,2009,25(11):2695-2726.
    [52]陈衍景.造山型矿床、成矿模式及找矿潜力[J].中国地质,2006,33:1181-1196.
    [53]王奎峰.胶东栖霞香夼铅锌多金属矿床地质特征及成因[J].地质调查与研究,2008,31(2):89-96.
    [54]李建威,毕诗健, Vasconcelos Paulo.胶东苏鲁地体范家埠金矿成矿作用与矿床成因浅析:兼与胶北地体金矿对比[J].高校地质学报,2010,16(2):125-142.
    [55]胡芳芳,范宏瑞,杨进辉,等.胶东乳山含金石英脉型金矿的成矿年龄:热液锆石SHRIMP法U-Pb测定[J].科学通报,2004,49(12):1191-1198.
    [56]骆万成,伍勤生.应用蚀变矿物测定胶东金矿的成矿年龄[J].科学通报,1987,32(16):1245-1248.
    [57]张振海,张景鑫,叶素芝.胶东金矿同位素年龄的厘定[M].北京:地震出版社,1994.
    [58]李厚民,毛景文,沈远超,等.胶东北东季金矿钾长石和石英的Ar-Ar年龄及其意义[J].矿床地质,2003,22(1):72-77.
    [59]宋明春,王沛成,梁帮启,等.山东省区域地质[M].济南:山东省地图出版社,2003.
    [60]苗来成,罗镇宽,关康,等.玲珑花岗岩中锆石的离子质谱U-Pb年龄及其岩石学意义[J].岩石学报,1998,14(2):198-206.
    [61] Wang L G, Qiu Y M, McNaugmton N J,et al.. Constraints on crust evolution andgold metallogeny in the northwestern Jiaodong peninsula,China,from SHRIMP U-Pbzircon studies of granitoids[J]. Ore Geol Rev.1998,13:275-291.
    [62]罗镇宽,苗来成.胶东招莱地区花岗岩和金矿床[M].北京:冶金工业出版社,2002.
    [63]陈衍景, Franco P,赖勇,等.胶东矿集区大规模成矿时间和构造环境[J].岩石学报,2004,20(4):907-922.
    [64] Cathles L M,Erendi A H J and Barrie T. How long can a hydrothermal system besustained by a single intrusive event?[J]. Economic Geology,1997,92:766-771.
    [65]施俊法,唐金荣,周平,等.世界找矿模型与矿产勘查[M].北京:地质出版社,2010.3-11.
    [66]程裕淇,陈毓川,赵一鸣.初论矿床成矿系列问题[J].中国地质科学院院报,1979,1(1):33-38.
    [67]陈毓川,王登红,朱裕生,等.中国区域成矿体系与区域成矿评价[M].北京:地质出版社,2007.
    [68]吴承栋.世界不同地区矿床模型的建立和应用[M].中国地质矿产信息研究院1992.
    [69]陈毓川,朱裕生.中国矿床成矿模式[M].北京:地质出版社,1993.
    [70]梅燕雄,叶锦华.成矿模式研究与矿床分类问题[J].中国地质科学院562综合大队集刊,1994,11-12期:237-241.
    [71]裴荣富.中国矿床模式[M].北京:地质出版社,1995.
    [72]邹光华,欧阳宗圻,李惠,等.中国主要类型金矿床找矿模型[M].北京:地质出版社,1996.
    [73]吴承烈,徐外生,刘崇民.中国主要类型铜矿勘查地球化学模型[M].北京:地质出版社,1998.
    [74]陈毓川,李兆鼐,毋瑞身,等.中国金矿床及其成矿规律[M].北京:地质出版社,2001.
    [75]姚敬金,张素兰,曹洛华,等.中国主要大型有色、贵金属矿床综合找矿信息模型[M].北京:地质出版社,2002.
    [76]赵元艺,王金生,李德先,等.矿床地质环境模型与环境评价[M].北京:地质出版社,2007.
    [77]王登红,唐菊兴,应丽娟,等.“五层楼+地下室”找矿模型的适用性及其对深部找矿的意义[J].吉林大学学报,2010,40(4):733-738.
    [78]陈衍景,张静,刘丛强,等.论中国陆相油气侧向源—碰撞造山成岩成矿模式的拓展和运用[J].地质论评,2001,47(3):161-171.
    [79]侯增谦,吕庆田,王安建,等.初论陆-陆碰撞与成矿作用-以青藏高原造山带为例[J].矿床地质,2003,22(4):319-333.
    [80]孙景贵,胡受奚,赵懿英,等.初论胶东地区金矿成矿模式[J].矿床地质,2000,19(1):26-35.
    [81]丁正江,孙丰月,刘殿浩,等.烟台福山北部地区金及多金属矿成矿系列[J].山东国土资源,2011,27(1):1-6.
    [82]孙丰月,丁正江,刘殿浩,等.初论胶东福山北部地区斑岩成矿系统[J].黄金,2011,32(1):14-19.
    [83]邱检生,徐夕生,罗清华.鲁西富钾火山岩和煌斑岩的39Ar-40Ar定年及源区示踪[J].科学通报,2001,46(18):1500-1508.
    [84]邱检生,王德滋,周金城,等.山东中生代橄榄安粗岩系火山岩的地质、地球化学特征及岩石成因[J].地球科学,1996,21(5):546-552.
    [85]邱检生,王德滋,罗清华,等.鲁东胶莱盆地青山组火山岩的39Ar-40Ar定年—以分岭山火山机构为例[J].高校地质学报,2001,7(3):351-355.
    [86]凌文黎,谢先军,柳小明,等.鲁东中生代标准剖面青山群火山岩锆石U-Pb年龄及其构造意义.中国科学(D辑,地球科学),2006,36(5):401-411.
    [87]宋明春.山东省大地构造单元组成、背景和演化[J].地质调查与研究,2008,31(3):165-175.
    [88]施性明,赵元进,赵希瀓,等.山东招远一带花岗质岩石基本特征及其实验研究[J].吉林大学学报(地球科学版),1981,1.
    [89]王吉珺.玲珑花岗岩成因探讨[J].地质找矿论丛,2000,15(4):289-298.
    [90]裘有守.山东招—掖金成矿区重熔型(滦家河型)花岗岩研究,金矿地质论文集[M].地质出版社.1988.
    [91]王鹤年,陈骏,汪耀,等.胶东金矿含金建造的地球化学研究[J].地球化学,1988,3:195-208.
    [92]文子中.玲珑花岗岩同位素年代学问题讨论[J].山东地质,1985,1(2):1-9.
    [93]余汉茂.胶东西北部地区岩石同位素地质年代学研究.山东地质,1987,3(1):75-88.
    [94]李兆龙,杨敏之.胶东金矿床地质地球化学.天津:天津科学技术出版社,1993.
    [95]徐金芳,沈步云,牛良柱,等.胶北地块与金矿有关的花岗岩类研究.山东地质,1989,5(2):1-125.
    [96] Guo Jinghui,Chen Fukun,Wolfgang Siebel,Cong Boling. Melting of the once deeplysubducted continental slab:revealed by SHRIMP zircon ages of post-collisionalgranites from SuLu UHP zone,eastern China[J]. Terra Nova,2003.
    [97]张华锋,翟明国,童英,等.胶东半岛三佛山高Ba-Sr花岗岩成因[J].地质论评,2006,52(1):43-53.
    [98]赵广涛,王德滋.崂山花岗岩岩石地球化学与成因[J].高校地质学报,1997,3(1):1-15.
    [99]周建波,郑永飞,赵子福.山东五莲中生代岩浆岩的锆石U-Pb年龄[J].高校地质学报,2003,9(2):185-194.
    [100]郭敬辉,王松山,桑海清,等.变斑晶石榴石40Ar-39Ar年龄谱的含义与华北高压麻粒岩变质时代[J].岩石学报,2001,017(03):436-442.
    [101]李厚民,沈远超,毛景文,等.石英、黄铁矿及其包裹体的稀土元素特征—以胶东焦家式金矿为例[J].岩石学报,2003,19(2):267-274.
    [102]徐九华,谢玉玲,刘建明,等.玲珑—焦家式金矿床流体包裹体的稀土和微量元素特征[J].岩石学报,2005,21(5):1389-1394.
    [103]刘显凡,金景福,倪师军.滇黔桂微细浸染型金矿深部物源的稀土元素证据[J],成都理工学院学报,1996,23(4):25-30.
    [104]邱士东,王葆华,徐九华,等.陕西汉阴黄龙金矿稀土元素地球化学特征[J],中国稀土学报,2009,27(1):145-150.
    [105]王中刚,于学元,赵振华,等.稀土元素地球化学[M].北京,科学出版社,1989.
    [106] Sun and McDonough. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes [M]. Geological Society,London, Special Publications.1989:313-345.
    [107]路远发. GeoKit:一个用VBA构建的地球化学工具软件包.地球化学,2004,33(5):459-464.
    [108]韩吟文,马振东.地球化学[M].北京:地质出版社,2004.189-201,246-267.
    [109]刘英俊,曹励明.元素地球化学导论[M].北京,地质出版社,1986.28-243.
    [110] Doe B R, Zartman R E. Plumbotectonics [A]. Barnes H L. The Phanerozoic,Geochemistry of Hyrothermal Ore Deposits [C]. New York: Jone Wiley and Sons Inc,1979.
    [111]宋明春.山东省大地构造格局和地质构造演化[D].中国地质科学院,2008.
    [112] Hattori Y, Suzuki K, Honda M, etal. Re-Os isotope systematics of the Taklimakandesert sands, moraines and river sediments around the Taklimakan desert, andof Tibetan soils [J]. Geochimica et Cosmochimica Acta,2003,67(6):1195-1205.
    [113] Williams G A,Turekian K K. The glacial—interglacial variation of seawaterosmium isotopes as recorded in Santa Barbara basin [J]. Earth and PlanetaryScience Letters,2004,2(28):379-389.
    [114] Williams G A, Turekian K K. Atmospheric supply of osmium to the oceans [J].Geochimica et Cosmochimica Acta,2002,66(21):3789-3791.
    [115] Walker R J, Horan M F, Morgan J W, etal. Comparative187Re-187Os systematics ofch on drites: Implications regarding early solar system processes [J].Geochimica et Cosmochimica Acta,2002,66(23):4187-4201.
    [116]杨红梅,凌文黎. Re-Os同位素组成测试方法及其应用进展[J].地球科学进展,2006,21(10):1014-1024.
    [117] Andao Du, Shuqi Wu, Dezhong Sun, Shuxian Wang, Wenjun Qu, Richard Markey HollyStein, John Morgan and Dmitry Malinovskiy, Preparation and Certification ofRe-Os Dating Reference Materials: Molybdenite HLP and JDC, Geostandard andGeoanalytical Research,2004,28(1):41-52
    [118]杜安道,赵敦敏,王淑贤,等. Carius管溶样和负离子热表面电离质谱准确测定辉钼矿铼—锇同位素地质年龄[J].岩矿测试,2001,20(4):247-252.
    [119]杜安道,屈文俊,王登红,等.辉钼矿亚晶粒范围内Re和187Os的失耦现象[J].矿床地质,2007,26(5):572-580.
    [120]屈文俊,杜安道.高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼-锇地质年龄[J].岩矿测试,2003,22(4):254-262.
    [121]王辉,任云生,赵华雷,等.吉林安图刘生店钼矿床辉钼矿Re-Os同位素定年及其地质意义[J].地球学报,2011,32(6):707-715.
    [122] MAO Jing-wen, ZHANG Zhao-chong, ZHANG Zuo-heng, DU An-dao.1999. Re-Osisotopic dating of molybdenites in the Xiaoliugou W(Mo) deposit in the northernQilian mountains and its geological significance[J]. Geochim Cosmochim Acta,63(11-12):1815-1818.
    [123]王虹,张俊波,陈莉,等.威海东部地区金及多金属矿成矿规律及找矿方向[J].山东冶金,2006,28(6):44-46.
    [124]张文钊,葛良胜,肖力,等.中国斑岩型金矿床[M].北京:地质出版社,2009,170-218.
    [125]侯增谦.斑岩Cu、Mo、Au矿床:新认识与新进展[J].地学前缘,2004,11(1):131-143.
    [126]胡受奚,胡志宏,郭继春,等.中国东部花岗岩类的成岩和成矿及其与构造环境的关系[J].矿床地质,1991,10(3):97-106.
    [127]蒋少涌,戴宝章,姜耀辉,等.胶东和小秦岭:两类不同构造环境中的造山型金矿省[J].岩石学报,2009,25(11):2727-2738.
    [128]张旗,王焰,钱青,等.中国东部中生代埃达克岩的特征及其构造—成矿意义[J].岩石学报,2001,17(2):236-244.
    [129]张旗,钱青,王二七,等.燕山中晚期的中国东部高原:埃达克岩的启示[J].地质科学,2001,36(2):248-255.
    [130]杨明桂,黄水保,楼法生,等.中国东南陆区岩石圈结构与大规模成矿作用[J].中国地质,2009,36(3):528-543.
    [131]肖庆辉,邱瑞照,伍光英,等.中国东部中生代软流圈上涌造山作用[J].中国地质,2007,34(4):730-749.
    [132]邓晋福,赵海玲,莫宣学,等.中国大陆根—柱构造—大陆动力学的钥匙[M].北京:地质出版社,1995.
    [133]孙卫东,凌明星,汪方跃,等.太平洋板块俯冲与中国东部中生代地质事件[J].矿物岩石地球化学通报,2008,27(3):218-225.
    [134]翟明国,范宏瑞,杨进辉,等.非造山带型金矿—鲁东型金矿的陆内成矿作用[J].地学前缘,2004,11(4):85-94.
    [135]李印,凌明星,丁兴,等.中国东部埃达克岩及成矿作用[J].大地构造与成矿学,2009,33(3):448-464.
    [136]杨进辉.胶东地区金矿床成矿时代及其成矿地球化学动力学背景:兼论壳幔相互作用与成岩成矿[M].北京:中国科学院地质与地球物理研究所,2000,1-133.
    [137]张华峰,翟明国,何中甫,等.胶东昆嵛山杂岩中高锶花岗岩地球化学成因及其意义[J].岩石学报,2004,20(3):369-380.
    [138]单伟,张增奇,程光锁,等.胶东金矿成矿系统分析[J].山东国土资源,2011,27(10):7-15.
    [139]侯明兰,蒋少涌,姜耀辉,等.胶东蓬莱金成矿区S-Pb同位素地球化学和Rb-Sr同位素年代学研究[J].岩石学报,2006,22(10):2525-2533.
    [140]李洪奎,李逸凡,耿科,等.山东鲁东碰撞造山型金矿成矿作用探讨[J].大地构造与成矿学,2011,35(4):533-542.
    [141]孙丰月,石准立,冯本智.胶东金矿地质及幔源C-H-O流体分异成矿[M].长春:吉林人民出版社,1995.
    [142]吕古贤,韦昌山,郭涛,等.胶东矿集区金矿成矿地质事件研究初探[J].黄金地质,2004,10(2):1-7.
    [143]侯增谦,杨志明.中国大陆环境斑岩型矿床:基本地质特征、岩浆热液系统和成矿概念模型[J].地质学报,2009,83(12):1779-2017.
    [144] B.W. Chappell&A. J.R.White, Two Contrasting Granite Types, Tokai Univ.Pr.,Japan,1974.
    [145] Rickwood P C. Boundary lines within petrologic diagrams which use oxides ofmajor and minor elements[J]. Lithos,1989,22(4):247-263.
    [146]林文蔚,赵一鸣,赵国红,等.胶东金矿铅同位素地质特征及成矿年代讨论[J].长春科技大学学报,1999,29(2):116-121.
    [147]张理刚,陈振胜,刘敬秀,等.焦家式金矿水-岩交换作用—成矿流体氢氧同位素组成研究[J].矿床地质,1994,13(3):193-200.
    [148]卢焕章, J.Guha,方保根,等.山东玲珑金矿的成矿流体特征[J].地球化学,1999,28(5):421-437.
    [149]范宏瑞,胡芳芳,杨进辉,等.胶东中生代构造体制转折过程中流体演化和金的大规模成矿[J].岩石学报,2005,21(5):1317-1328.
    [150]范宏瑞,郭敬辉,胡芳芳,等.苏鲁造山带超高压变质岩的差异性折返:流体包裹体证据[J].科学通报,2005,50(10):1007-1015.
    [151]毛景文,李晓峰,张作衡,等.中国东部中生代浅成热液金矿的类型、特征及其地球动力学背景[J].高校地质学报,2003,9(4):620-637.
    [152]毛景文,赫英,丁悌平.胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据[J].矿床地质,2002,21(2):121-128.
    [153]毛景文,李厚民,王义天,等.地幔流体参与胶东金矿成矿作用的氧氢碳硫同位素证据[J].地质学报,2005,79(6):839-857.
    [154]孟良义.花岗岩与有关矿床的关系[J].中国科学(B辑),1995,25(9):963-967.
    [155]庞绪成.山东焦家金矿床地球化学特征及深部矿体预测研究[D].成都理工大学,2005.
    [156]张德全,徐洪林,孙桂英.山东邓格庄金矿与昆嵛山花岗岩的定位时代及其地质意义[J].地质论评,1995,41(5):415-425.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700