内蒙古敖汉旗奈林沟金矿床地质地球化学特征及成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
奈林沟金矿位于赤峰-开源深大断裂北部地槽区一侧,是目前正在勘探、开采的小型金矿床。由于该区中、大型金矿都位于地台区一侧,而地槽区一侧的金矿床发现甚少,规模小,因此,在金矿的找矿勘查及理论研究等方面均未引起前人的重视。由于奈林沟金矿是区内分布于侏罗系地层中唯一具有工业意义的金矿床,对其开展成因机制等方面的研究,对赤峰-开源深大断裂以北地槽区一侧的新的矿化类型及新的资源地的找矿勘探具有重要指导意义。
     在奈林沟金矿成因机制方面,前人未做过实地专题研究工作,部分学者根据该金矿赋存于侏罗系张家口组火山岩地层中,而将该矿床归属于“火山热液型”金矿;有的学者则根据区域金矿成矿规律,认为是“岩浆热液型”。
     本文通过野外地质调查及室内观测表明,矿区石英脉带共有140多条,按分布方向可分为三组:即NE向、NW向、NNE向,个别矿脉近EW或SN,控矿断裂特征表明含矿断裂性质为张性;矿石矿物组合及组构均显示出典型的低温矿床特征。
     奈林沟金矿床石英的流体包裹体均以气、液两相为主,气、液比多集中在10%~30%之间。均一温度为157.2~279.6℃,属于中-低温热液的范围。盐度变化范围5.02%~13.88wt%NaCl,平均10.37wt%NaCl;第一世代致密粒状石英包裹体的盐度变化范围大(6.92~12.61wt%NaCl),平均11.00wt%NaCl,与高温高盐度岩浆热液与低温低盐度的大气降水混合有关;第二世代粒状石英包裹体的盐度变化范围(11.36~13.88wt%NaCl),平均盐度较第一世代石英高(12.54wt%NaCl),可能与成矿流体的沸腾作用有关;第三世代梳状石英包裹体的盐度变化范围也较大(5.02-10.27wt%NaCl),平均盐度最低(7.35wt%NaCl),可能与低盐度的大气降水等混合有关。根据计算奈林沟金矿床的包裹体捕获压力在14.8~30.4Mpa,成矿的深度在1.48~3.04km左右,属于浅成的范围。
     不同世代石英流体包裹体氢、氧同位素组成变化较大,早世代石英氢、氧同位素投点靠近岩浆水一侧,晚世代石英投点更靠近雨水线一侧;同一世代投点由上向下呈线性排列,说明了早期的热液是以岩浆热液为主与大气降水的混合水,晚期是以大气降水为主的混合水。方解石的碳、氧同位素分析结果表明,δ~(13)C(‰PDB)变化范围在-4.158‰~-4.868‰之间,平均-4.54‰,与地幔δ~(13)C值-5.5‰接近;δ~(18)O(‰SMOW)值变化范围在7.025‰~8.595‰之间,均值为7.86‰,与花岗岩δ~(18)O‰的变化范围+7~+13‰相吻合,而与安山岩类δ~(18)O‰的组成具有一定的差别,为成矿流体是花岗岩体衍生的提供了有利的证据。
     与奈林沟金矿成矿有关的岩体为早白垩世克力代花岗闪长岩体,岩石化学及岩石地球化学的研究表明,该岩体为高钾钙碱性花岗岩类,属I型花岗岩;在花岗岩R1-R2构造环境判别图解上,投影点主要落入晚造山期。表明克力代花岗闪长岩体是在早白垩世区内构造活动由北西-南东向的挤压作用变为北西-南东向的伸展作用构造环境下,地壳减薄、岩石圈拆沉、地幔上涌和地壳重熔,造成壳幔混熔岩浆上侵形成的。
     上述综合研究表明,奈林沟金矿为燕山期浅成中低温岩浆热液型金矿床。
Located in the north geosynclinal side of the large and deep Chifeng-Kaiyaun fracture,Nailingou Au deposit is a small Au deposit currently explored and exploited. Since medium-and large-size Au deposits in this area are all located in the platform side, the geosynclinalside with few or small-scale Au deposits hasn’t received enough attention in terms of oreexploration and theoretical research. Moreover, as the only Jurassic deposit with industrialsignificance in this area, the Nailingou Au deposit plays an important role in studying geneticmechanism, and in exploring new types of mineralization and new areas of resources in thegeosynclinal side north the Chifeng-Kaiyuan fracture.
     In terms of its genetic mechanism, there hasn't any special field investigation. Based onthe fact that this deposit was hosted in Jurassic Zhangjiakou-Group volcano strata, someresearchers defined it as "volcano hydrothermal"; others classified it as "magmatichydrothermal", according to its metallogenic mechanism.
     Through geological field investigation and indoor observations, over140quartz-veinbelts were identified, which can be divided into three groups according to their distributionaldirections: NE, NW and NNE; some individual veins were close to EW or SN; thecharacteristics of the ore-control fracture revealed tension fracture; the mineral compositionand structural fabrics both displayed the properties of a typical low-temperature deposit.
     The fluid inclusions in the Nailingou Au deposit were dominated by gas and fluid phases,with gas/fluid ratios mainly between10%and30%. The homogenization temperatures were157.2~279.6℃, all within the range of medium and low-temperature hydrothermal fluids. Interms of salinity, it generally ranged from5.02%~13.88wt%NaCl (average10.37wt%NaCl);in G1compacted grainy-quartz inclusions, it had a wider range (6.92~12.61wt%NaCl,average11.00wt%NaCl), and was in relation to the commixture of the high-temperaturehigh-salinity magmatic hydrothermal fluids and the low-temperature low-salinity atmosphericprecipitation; in G2grainy-quartz inclusions, it ranged11.36~13.88wt%NaCl, with a largeraverage (12.54wt%NaCl) than G1, probably due to the boiling metallogenic fluids; in G3pectinate-quartz inclusions, it ranged5.02~10.27wt%NaCl, with a low average (7.35wt%NaCl), possibly because of their isothermal blending with the low-salinityatmospheric precipitation. The capture pressures of the inclusions in this deposit ranged14.8~30.4Mpa, and the metallogenic depth was1.48~3.04km, indicating hypabyssal type.
     The hydrogen and oxygen isotopic compositions varied greatly among differentgenerations of quartz fluid inclusions; the hydrogen and oxygen isotopes fell close to themagmatic water side in early generations, to the precipitation-line side in young generations;and to linear arrangement from top to down in the same generation, indicating that themixture of magmatic hydrothermal fluids and atmospheric precipitation was dominated by theformer in early generations, but by the latter in young generations. The analyses of carbon andoxygen isotopes in calcite indicate that, δ~(13)C(‰PDB) ranged between-4.158‰~-4.868‰(average-4.54‰), close to the value in mantle (-5.5‰); δ~(18)O(‰SMOW) varied between7.025‰~8.595‰(average7.86‰), consistent with the range in granite (+7~+13‰), butdifferent from andesite, and thus providing favorable evidence that the metallogenic fluidswere the derivates of granite.
     The rocks related to the formation of Nailingou Au deposit were Early CretaceousKelidai granodiorite, in petrochemistry and petrogeochemistry, were indicated high-K andhigh-Ca alkaline granite, belonging to type I; in the R1-R2tectonic discrimination diagram,the projection points mostly fell into late orogenic phase. These results indicate that theKelidai granodiorite rocks were formed under the setting of Early Cretaceous tectonicactivities turning from NW-SE extrusive action to NW-SE extensive action, and due to theupward intrusion of crust-mantle mixed magma caused by the thinning of crust, thedelamination of lithosphere, the upwelling of mantle and the remelting of crust.
     In general, our study indicated that the Nailingou Au deposit was hypabyssal Yanshanianmedium-low-temperature magmatic hydrothermal Au deposit.
引文
[1]贝晓峰,等译.花岗岩类岩石的分类方案[J].国外地质科技,1993(1):24-321.
    [2]崔文元,王长秋,张承志,张禹业.辽西—赤峰一带太古代变质岩中锆石U-Pb年龄[J].北京大学学报(自然科学版),1991(02).
    [3]曾建国,刘国春,刘永利,李国良.内蒙古赤峰红花沟金矿田矿床成因[J].地质地球化学,2002(03).
    [4]陈军强.内蒙赤峰金厂沟梁金矿床地质、地球化学特征及成因研究[D].长春:吉林大学地球科学学院,2006.
    [5]陈建林,郭原生,付善明.花岗岩研究进展-ISMA花岗岩类分类综述[J].甘肃地质学报,2004,13(1):67-73.
    [6]陈骏,王鹤年主编.地球化学[M].北京:科学技术出版社,2004,1-418.
    [7]陈衍景,郭光军,李欣喜.华北克拉通花岗绿岩地体中生代金矿床的成矿地球动力学背景[J].中国科学(D辑),1998,28:35-40.
    [8]陈毓川,李兆鼎,母瑞身等.中国金矿床及其成矿规律[M].北京:地质出版社,2001,1-465.
    [9]陈毓川,王登红,朱裕生等.中国成矿体系与区域成矿评价[M].北京:地质出版社,2007:1005.
    [10]池国祥,周义明,卢焕章.当前流体包裹体研究和应用概况[J].岩石学报,2003,19(2):201-212.
    [11]邓军,高帮飞,王庆飞等.成矿流体系统的形成与演化[J].地质科技情报,2005,24(1):49-54.
    [12]范宏瑞,谢奕汉,王英兰.流体包裹体与金矿床的成矿及勘探评价[J].地质与资源,1997,6(3):204-213.
    [13]费红彩,肖荣阁.成矿流体演化与成矿物理化学[J].矿物岩石地球化学通报,2002,21(2):139-144.
    [14]丰成友.火山岩区浅成低温热液金矿床研究进展[J].地学工程进展,1998,15(1):10-15.
    [15]胡桂明.华北陆台北缘前寒武纪基底构造与陆台演化[J].地质找矿论丛,1999,14(3):1-9.
    [16]胡朋,赫英,张义,等.浅成低温热液金矿床研究进展[J].黄金地质,2004,10(1):48-54.
    [17]黄建军,肖文进,高军辉.华北地台北缘东部地区金矿成矿地质特点及预测[J].黄金科学技术.2008(01),19-23.
    [18]娄德波,肖克炎,孙艳,雷万杉,王淼,丁建华,范华军.区域矿产评价模型-以赤峰红花沟金矿为例[J].吉林大学学报(地球科学版),2008(04).
    [19]雷万杉,王淼,张振庭,娄德波,刘亚剑.赤峰南部金地球化学块体评价[J].吉林大学学报(地球科学版),2009(02),255-261.
    [20]黎彤,袁怀雨,吴胜昔.中国花岗岩类和世界花岗岩类平均化学成分的对比研究[J].1998(1):29-34.
    [21]柳少波,王联魁,张生.热液(金)矿床中碳同位素矿源示踪综述和讨论[J].地质地球化学,1996,4:21-24.
    [22]李石磊,王文华,刘国春,庞国海.内蒙红花沟金矿控矿断裂构造[J].世界地质,2002(02).
    [23]李华芹,刘家齐,魏林.热液矿床流体包裹体年代学研究及其地质应用.北京:地质出版社,1993,1-126.
    [24]李俊建,沈保丰,骆辉等.华北地台北缘中段金矿床成矿年代学研究[J].前寒武纪研究进展,2002,25(3-4):233-239.
    [25]李伍平,李献华,路凤香等.辽西早白垩世义县组火山岩德地质特征及其构造背景[J].岩石学报,2002,18(2):193-204.
    [26]李信,龚景林,王锡华.华北地台北缘东段成矿地质背景分析[J].矿产与地质,2003(S1),273-275.
    [27]李永军,刘志武,付国民.花岗岩类I型S型分类在造山带实践中存在的问题-以西秦岭地区为例[J].华南地质与矿产,2002(2):1-7.
    [28]李信,龚景林,王锡华.华北地台北缘东段成矿地质背景分析[J].矿产与地质,2003,17(增刊):273-275.
    [29]梁俊红,金成洙,王建国等.延边地区浅成低温热液-斑岩型金矿成矿系列的氢、氧同位素特征[J].地质找矿论丛,2003,18(2):108-112.
    [30]刘斌,沈昆.流体包裹体热力学[M].北京:地质出版社,1999,1-290.
    [31]刘凤山,石准立.国外岩浆热液成矿理论研究现状与进展[J].地质科技情报,1994,13(2):75-80.
    [32]刘英俊,曹励明,李兆麟等.元素地球化学[M].北京:科学出版社,1984,50-112,283-335,336-342.
    [33]刘纲.赤峰-朝阳地区金矿成矿物理化学条件研究[J].黄金地质,1996,2(4):43-49.
    [34]卢焕章,范宏瑞,倪培等.流体包裹体[M].北京:科学技术出版社,2004,1-487.
    [35]卢焕章,李秉伦.包裹体地球化学[M].北京:地质出版社,1990,1-242.
    [36]罗镇宽,关康等编著.中国金矿床概论[M].天津:天津科学技术出版社,1993,1-308.
    [37]辽宁1∶5万金厂沟梁、小古立吐、四家子、召都巴幅区域地质调查报告[R].沈阳地质矿产研究所[R],2009.
    [38]母瑞身,韩仲文,徐庆国.中国地质科学院文集[C].1981.
    [39]母瑞身.低温浅成热液金矿若干问题探讨[J].贵金属地质,1993,2(1):47-53.
    [40]苗来成,范蔚茗,翟明国等.金厂沟梁-二道沟金矿田内花岗岩类侵入体锆石的离子探针U-Pb年代学及意义[J].岩石学报,2003,19(1):71-80.
    [41]牟保磊,阎国翰.燕辽三叠纪碱性偏碱性杂岩体地球化学特征及意义[J].地质学报,1992,66(2):108-121.
    [42]阎国翰,谭林坤,许保良,牟保磊,邵宏翔,陈廷礼,童英,任康绪,杨斌.阴山地区印支期碱性侵入岩岩石地球化学特征[J].岩石矿物学杂志,2001(03).
    [43]毛景文,谢桂青,张作衡等.中国北方中生代大规模成矿作用的期次及其地球动力学背景[J].岩石学报,2005,21(1):169-188.
    [44]马鸿文.花岗岩成因类型的判别分析[J].岩石学报,1992,8(4):341-349.
    [45]马建德,刘殿忠.辽西地区中生代火山岩型金矿成矿地质条件与找矿方向[J].2001,15(1):15-19.
    [46]彭齐鸣,许虹.成矿理论研究现状及进展[J].世界地质,1993,(3):7-11.
    [47]邱家骧.岩浆岩岩石学[M].北京:地质出版社,1985,1-340.
    [48]宋维民,邢德和,郭胜哲,彭艳东,卞雄飞.内蒙古金厂沟梁西对面沟岩体岩石地球化学特征及意义[J].地质与资源,2009,18(2):134-139.
    [49]沈渭洲.同位素地质学教程[M].北京:原子能出版社,1997:1-276.
    [50]史卜庆,吴智平,周瑶琪等.辽西地区中生代义县旋回火山活动特征分析[J].高校地质学报,1998,4(4):413-422.
    [51]孙景贵.胶东地区地质体的含金性与金成矿关系[J].地质找矿论从,1999,14(2):43-54.
    [52]孙培基,韦永福等.当代中国金矿地质[M].北京:地质出版社,1996,1-363.
    [53]王艳,王俊清,鲍巨才.辽西中生代陆相中—酸性火山岩建造与金银矿化的关系[J].有色矿冶,2000,16(4):1-5.
    [54]王义文.辽西地区金矿床稳定同位素地球化学研究[J].地质找矿论丛,1993,8(2):73-86.
    [55]王时麒,孙承志等.内蒙古赤峰地区金矿地质.呼和浩特:内蒙古人民出版社,1994.
    [56]韦永福,吕英杰等.中国金矿床[M].北京:地址出版社,1994,1-329.
    [57]魏菊英,王关玉等.同位素地球化学[M].地质出版社,1988.
    [58]魏存弟.赤峰-朝阳金矿化区远程式及近程式金矿类型的划分及其研究[D].长春:吉林大学地球科学学院,2001.
    [59]吴邦泉.福州复式岩体的组成及其演化[J].岩石学报,1991,(2):81-88.
    [60]吴福元,孙德有.中国东部中生代岩浆作用与岩石圈减薄[J].长春科技大学学报,1999,29(4):313-318.
    [61]武广,李之彤,王文武.辽西地区中侏罗世海房沟组火山岩地球化学特征及其地质意义[J].岩石矿物学杂志,2004,23(2):97-108.
    [62]肖荣阁,刘敬党,费红彩,等.岩石矿床地球化学[M].北京:地震出版社,2007.
    [63]肖荣阁,张宗恒,陈卉泉,等.地质流体自然类型与成矿流体类型[J].地学前缘,2001,8(4):245-252.
    [64]肖荣阁,彭润民,王美娟,戚开静.华北地台北缘西段主要成矿系统分析[J].地球科学,2000(04)
    [65]阎卫东.脉金矿床成矿理论研究进展[J].黄金科学技术,1995,3(5):13-16.
    [66]姚凤良,孙丰月.矿床学教程[M].北京:地质出版社,2006.
    [67]银建钊.我国金矿床成矿理论研究现状[J].地质科技情报,1994,13(2):58-62.
    [68]尹冰川,安国英.区域成矿规律研究现状及发展趋势[J].世界地质,1995,14(1):56-67.
    [69]应汉龙.浅成低温热液金矿床的全球背景[J].贵金属地质,1999,12:241-248.
    [70]袁见齐,朱上庆,翟裕生.矿床学[M].北京:地址出版社,1985,1-345.
    [71]战明国.花岗岩类分类与定位机制研究动向和进展[J].中国区域地质,1998,17(2):182-188.
    [72]张理刚,稳定同位素在地质科学中的应用[J].陕西科学技术出版社,1983.
    [73]张德会,刘伟.流体包裹体成分与成矿流体来源[J].地质科技情报,1998,17:67-71.
    [74]张文淮,陈紫英.流体包裹体地质学[M].武汉:中国地质大学出版社,1993:1-246.
    [75]张彦生,骆剑英,陈红军.内蒙古赤峰市红花沟金矿区石英脉中石英和黄铁矿的标型特征及研究意义[J].内蒙古科技与经济,2010(09),34-35.
    [76]张贻侠,寸珪,刘连登等著.中国金矿床:进展与思考[M].北京:地质出版社,1996,1-205.
    [77]赵一鸣,吴良士,白鸽,等.中国主要金属矿床成矿规律[M].北京:地质出版社,2004:411.
    [78]郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000.
    [79]郑大中,郑若锋.金银铂族元素成矿机理的新探索[J].四川地质学报,2002,22(4):210-228.
    [80]周珣若.花岗岩混合作用[J].地学前沿,1994,1(1-2):87-97.
    [81] Castro et al. H型(混染)花岗岩类:花岗岩类型分类与命名的修改意见[J].Earth-ScienceReviews1991,31:237-254.
    [82] Coleman M L,Sheppard T J, Durham J J, Rouse J E, Moore G R.1982. Reduction of waterwith zinc for hydrogen isotope analysis. Anal. Chem.,54:993-995.
    [83] Chappell B W. White A J K. Two contrasting granite types. Pacific Geol,1974,8:173-174.
    [84] Chorlton L. Regional Setting of vein style gold mineralization around the gold mine,Sandybeach lake area, Northwestern Ontario, Canadian [J]. Journal of Earth Sciences.1990, Vol.27, No.12, p.1590-1608.
    [85] Deines P,Gold D P.1973.The isotopic compostion of carbonatite and Kimberlite carbonatesand their bearing on the isotopic composition of Deep seated carbon.Geoehim.Cosmochim.Acta,37:1709-1733.
    [86] Eby G N. Chemical subdivision of the A-type granitoids: petrogenetic and tectonicimplications[J]. Geology,1992,20:641-644.
    [87] Friedman I, O’Neil JR. Compilation of stable fractionation factors of geochemicalinterest.In:Fleischer M(ed) Data of geochemistry,Chap. KK,6th edn. US Geol Survey Prof Pap440KK,1977.
    [88] Hart C. J. R., Goldfarb R J., Yumin Qiu et al. Gold deposits of the northern margin of theNorth China Craton: multiple late Paleozoic-Mesozoic mineralizing events[J]. MineraliumDeposita,2002,37:326-351.
    [89] Kesler S. E., Riciputi L. C., Zaojun Ye. Evidence for magmatic origin for Carlin-type golddeposits:isotopic composition of sulfur in the Betze-Post-Screamer Deposits, Nevada, USA [J].Mineralium Deposita,2005,40:127-136.
    [90] Loucks R R, Mavroqenes J A. Gold solubility in supercritical hydrothermal brines measuredin synthetic fluid inclusions [J]. Science,1999,284(25):2159-2163.
    [91] Oliver P.and Kreuzer. Textures, paragenesis and wall-rock alteration of lode gold deposits inthe Charters Twers district, north Queensland:implications for the conditions of ore formation [J].Mineralium Deposita,2006,40:639-663.
    [92] Pearce J A. Trace element discrimination diagram for tectonic interpretation of granitic croksJ. Petrol1984,25:656-682.
    [93] Pitcher W S. Granite type and tectonic environment. In Hsu k (ed) mountain BuildingProcesses. Academic Press. London.1983.
    [94] Richard H.Sillitoe. Iron oxide-copper-gold deposits:an Andean view [J]. Mineraliumdeposita,2003,38:787-812.
    [95] Roberts S. and Sanderson D. J. Tectonic setting and fluid evolution of auriferousquartz veinsfrom La Codeosera Area, Western Spain [J]. Economic Geology,1991,Vol.86, p.1011-1022.
    [96] Roeddr E. Fluid inclusions as samples of ore fluids. In H.LBarnes(ed) Geochemistry ofHydrothermal Ore Deposit.2nd edn, Wiley Interscience. New York.1979.684-737.
    [97] Swart P K,GradyMM,Pillniger C T,1983. A method for theidentification and elimination ofcontamination during carbon isotopic analyses of extraterrestrial samples. Meteoritics,18(2):137-154.
    [98] Tankut A, Wilson M, Yihunie T. Geochemistry and tectonic setting of Tertiary volcanism inthe Guvem area, Anatolia, Turkey[J]. Journal of Volcanology and Geothermal Research,1998,85:285-301.
    [99] Temel A, Gundogdu M N, Gourgaud A, et al. Ignimbrites of Cappadocia Central Anatolia,Turkey:petrology and geochemistry [J].Journal of Volcanology and Geothermal Research,1998,85:447-471.
    [100] Whalen J B. et al. A-type granites geochemical charcteritics,discrimination and petrogenesis.Contrib. Mineral. Petrol,1987,95:407-419.
    [101] Wu F Y, Sun D Y, Li H M, et al. A-type granites in northeastern China: age andgeochemical constraints on their petrogenesis [J]. Chemical Geology,2002,187:143-173.
    [102] Xiao L, Clemens J D. Origin of potassic (C-type) adakite magmas:experimental and fieldconstraints[J]. Lithos,2007,95:399-414.
    [103] Zhu D C, Pan G T, Mo X X, et al. Petrogenesis of volcanic rocks in the Sangxiu Formation,central segment of Tethyan Himalaya:A probable example of plume-lithosphere interaction[J].Journal of Asian Earth Sciences,2007,29:320-335.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700