中国东北地区地壳物性分布特征及其与大地构造关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对中国东北地区地壳范围内的精细结构进行研究。通过对各种地球物理资料的选取和对比,建立了研究区内速度及品质因素等物性参数的关系,具体计算了研究区大范围物性参数分布,并经过对分布的分析研究,得到一组与松辽盆地深层油气、东北地区主要大地构造特征有关的新认识。这些认识属于东北亚区域大地构造理论的一部分,并有一定的应用价值。
    本文共分十个部分:绪论部分详细的论述了研究区内大地构造的基础和研究意义以及射线方法的发展;第一章着重介绍拟开展工作的地震学基础理论和研究区研究概况;第二章应用一种大地构造模型下的射线追踪方法,对原理进行了论述,并且给出了相应的模型分析;第三章通过对松辽盆地内部六条地震测线数据进行整理和转换,给出了该区域内的纵波速度分布特征;第四章利用满洲里-绥芬河地学断面域天然地震横波速度及广角纵波速度的分布特征,给出该断面域内的纵、横波速度比关系;第五章提出一种速度外推关系,并以此对整个中国东北地区地壳范围内的纵波速度进行求取;第六章应用转换纵波数据建立新的莫霍深度分布关系,并利用本此研究所选取的射线追踪方法对莫霍面过渡带的结构进行了研究;第七章利用重新建立的壳幔介质品质因素与纵波速度间的关系,对整个研究区内的Q值分布规律进行了分析;第八章利用各种物性参数给出整个东北地区的构造地质-地球物理新认识;本此研究的最后结论部分对全文工作进行了简要的总结。
In the theory study of solid geophysics science, the large scale cracking andmineralizing that are caused by the deep dynamic process of crust and theinteraction between crust, manthle, aureole and strata are still leading edgescientific problems, and the problems are not yet solved. The exchange of deepmatter and energy with deep dynamic process is the core of mineralizingmechanism and deep physics – chemistry process in northeast of China. The papercalculates the physical property distribution of region of interest, and gets a lot ofnew cognition about Songliao basin deep oil gas and geotectonics characteristics ofthe northeast of China through analyzing the distribution. The cognition belongs topart of geotectonics theory about northeast Asia, and there is a certain applied cost.
     Aiming at the crust of in northeast of China, the paper collects and arrangesthe all sorts of geophysics data incluing nature earthquake, near normal reflection,artificial wide-angle earthquake and gravitation. This thesis mainly studies thedistribution of P wave in Songliao basin, and the paper newly discusses thedivision of tectonic element. the paper analyzes the distributional characteristics ofvelocity about the northeast of China, and then get the distributional curves of P
    wave velocity within crust range in region of interest through a new P and S wavevelocity relationship. On the basis of the P wave distribution, the paper obtains thenew characteristics about Moho depth and Q value within crust range in entirenortheast region of China. By using ray tracing technology under geotectonicsmodels, the paper detailedly discusses the interior structure of transition zoneabout Moho. According to this study, the paper brings forward the new cognitionabout fine structure of crust in entire northeast region of Chia. All cognitionsprovide the new references for the geotectonics theory.The model structures of geotectonics models are usually easy, so the classicalray tracing methods can always trace the precise forward results, but the range ofgeotectonics model is very large, the forward data size is so big that the classicalray tracing under seismic prospecting model need plenty of time to calculate, theresult usually can be gotten. Aiming at geotectonics models, the paper applies anew ray tracing method that fits for 2D geotectonics models. Through calculatingtheory model, the method can accurately and quickly get the trace of seismic ray.Then the paper analyzes the recognition question about thin bed under basin modeland geotectonics model by using the new ray tracing method. Under basin medel,the thickness of thin bed h is the relationship about theory wavelet frequency f andthin bed velocity v: . And that under geotectonics medel, therecognition of thin bed is more complex, the thickness is affected by executionconditions, collection method and processing procedures besides seismic waveletand velocity.h ≥0.35v/fThe thesis study the velocity structure in Songliao basin, through arrangingthree near normal reflection profiles data and three long artificial seismic profilesdata, the paper sketches the the distrition relation of P wave velocity withinSongliao basin range. After qualitatively and quantificationally analyzing the Pwave velocity under different depth, the divitions of geological structure are mostcorresponding to the changement of P wave velocity. According to the results, wepresent the new geological structure cognition, which provede the reliable
    7reference for the direction of hydrocarbon prospecting.In the MANZHOULI-SUIFENHE geoscience transect, the paper analyzes thevelocity distribution characteristics about the P wave velocity of artificialwide-angle earthquake and S wave velocity of nature earthquake. By generalizingtwo data, the paper gets the velocity ratio of P wave and S wave in the geosciencetransect. The ratio provides the basic information for calculating P wave velocitywithin the entire northeast region of China. Based on the trend of geologicalstructure in northeast of China, the paper puts forward an extrapolationrelationship of velocity. By using the velocity ratio of P wave and S wave in theMANZHOULI-SUIFENHE geoscience transect and S wave velocity in the regionof interest, the paper finally obtains the P wave velocity distribution in northeast ofChina.The paper chooses the contour line whose value is 8.05km/s of P wavevelocity in northeast of China to be the botton of Moho, and describe the newdepth distribution in detail. By comparing with the Moho of nature earthquake Swave velocity and of gravity field, the new data can more detailedly depict theshape of Moho. the paper also studies the interior structure of Moho transitionzone through the ray tracing method under geotectonics model. The results showthat there are structures in the Moho transition zone, the number of earthquakephases are relative to the strata of transition zone and the inhomogeneity of Mohothickness. In essence Moho is a fluctuant transition zone with big wave impedancedifference and kinds of lithologies.In the study of strata absorption and attenuation, quality factor Q is the one ofmain parameters that can weigh the absorption and attenuation. There are too manyfactors to affect Q value, so it is very difficult to establish the relationship betweenQ values and all fators, field actual measurement is a rational method. The thesisestablishes the new relationship of crust and mantle media between Q value and Pwave velocity on the base of the relationship between the two values under basinmode. According to the distribution characteristics of P wave velocity in region ofinterest, the paper gets the distribution relation of Q value that represents the
    regulation of absorption and attenuation in northeast of China.The study analyzes the geology-geophysics characteristics in whole northeastof China by the numbers, we bring forward the oil gas prospect area according tothe six profiles in Songliao basin. Through the relationship of thirty-six P wavevelocities and Q value, we analyze the distribution characteristics of middle andupper crust. We study the area of the granite band of the Great Xingan Mountainsin northeast of China, and then discuss the attenuation mechanism of lithosphereand crust.The paper describes the physical property parameters about crust in northeastof China by establishing the relationship of physical property parameters, somenew acknowledge are obtained. It is very significative of the results to the theoryof deep oil gas potentiality and the establishment of resources assessment system.The information provide some science reference for the source regionalizationabout sustainable development of oil gas resources and strategy system of nationaloil gas resource in northeast of China.
引文
1. 保统才等.一种计算地层平均品质因数Q值的方法.石油物探,1998,37(2):99-102
    2. 蔡袁强,徐长节,吴世明.粘弹性饱水岩层中地震波的传播.地震学报,1998,20(3):250-254
    3. 邓宏钊,张先康.长白山天池火山区上地壳 Q 值结构.华北地震科学,2001,19(1):1-9
    4. 丁国瑜,蔡文伯,于品清,谢广林.中国岩石圈动力学概论,中国岩石圈动力学地图集说明书.北京:地震出版社,1991:308-315
    5. 范家参.粘弹性介质中的地震波.地震研究,2001,24(4):358-362
    6. 傅承义.大陆漂移飞海底扩张和板块构造.北京:科学出版社,1973
    7. 傅维洲,杨宝俊,刘财,С.В.КρЫЛОВ.中国满洲里-绥芬河地学断面地震学研究.长春科技大学学报,1998,28(2):206-212
    8. 傅维洲.满洲里-绥芬河地学断面及相邻地区的地震活动,见:金旭、杨宝俊,中国满洲里-绥芬河地学断面地球物理场及深部构造特征研究,124-139.北京:地震出版社,1994b
    9. 傅维洲.满洲里-绥芬河地学断面及相邻地区的现代构造应力场特征,见:金旭、杨宝俊,中国满洲里-绥芬河地学断面地球物理场及深部构造特征研究,140-148.北京:地震出版社,1994a
    10. 高尔根,徐果明,蒋先艺,罗开云,刘同庆,谢端,史进良.三维结构下逐段迭代射线追踪方法.石油地球物理勘探,2002,37(1):11-16
    11. 高尔根,徐果明,赵燚.一种任意界面的逐段迭代射线追踪方法.石油地球物理勘探,1998,33(1):54-60
    12. 高尔根,徐果明.二维速度随机分布逐步迭代射线追踪方法.地球物理学报,1996,36(增刊):302-308
    13. 高君,李占林,李勤学.松辽盆地北部深部地壳结构及盆地成因机制.大庆石油地质与开发,2002,21(1):20-23
    14. 高锐,董树文等.莫霍面地震反射图像揭露出扬子陆块深俯冲过程.地学前缘,2004,11(3):43-49
    15. 高锐等.西昆仑-塔里木-天山岩石圈深地震探测综述.地质通报,2002,21(1):11-18
    16. 何樵登.地震勘探原理和方法.北京:地质出版社,1986,342-348
    17. 洪学海,朱介寿,曹家敏,许卓群.中国大陆地壳上地幔S波品质因子三维层析成像.地球物理学报,2003,46(5):642-651
    18. 黄中玉,赵金州.矩形网格三点 Fermat 射线追踪技术.地球物理学进展,2004,19(1):201-204
    19. 吉林省地质矿产局.吉林省区域地质志.北京:地质出版社,1988
    20. 姜枚,吕庆田等.用天然地震探测青藏高原中部地壳、上地幔结构.地球物理学报,1996,39(4):470-482
    21. 金旭,杨宝俊.中国满洲里-绥芬河地学断面地球物理场及深部构造特征研究.北京:地震出版社,1994
    22. 科布特里 L·.大地构造物理学和地球动力学,孙坦译,袁学诚校.北京:地质出版社,1986
    23. 李海鸥,姜枚,魏素花,钱辉.新疆天山南北地区天然地震探测及深部构造研究.地学前缘,2004,11(3)
    24. 李庆忠.走向精确勘探的道路.北京:石油工业出版社,1994
    25. 李秋生,彭苏萍,高锐.青藏高原莫霍面的研究进展.地质评论,2004,50(6):598-612,638
    26. 李思田,路风香,林畅松.中国东部及邻区中新生代盆地演化及地球动力学背景.武汉:中国地质大学出版社,1996
    27. 李英康,董树文,张中杰,高锐,卢德源.大别造山带地壳泊松比结构与超高压变质带.地质评论,2002,48(1):15-23
    28. 梁传坤.频波谱在地震噪声分析与衰减中的应用.物探与化探,1995,19(1):34-40
    29. 刘财,陈业全,刘洋,王典等.勘探地震资料处理新方法及新技术.北京:科学出版社,2006
    30. 刘洪,孟凡林,李幼铭.计算最小走时和射线路径的界面网全局方法.地球物理学报,1995,38(6):823-832
    31. 陆国纯.地球物理 CT 成像技术概述.中国煤田地质,1989,1(3):78-84
    32. 陆基孟.地震勘探原理(上、下册).山东东营:石油大学出版社,1993
    33. 吕庆田,姜枚,马开义,许志琴.由震源机制和地震波各向异性探讨青藏高原岩石圈变形.地质评论,1997,43(4):337-346
    34. 马文璞.区域构造解析——方法理论和中国板块构造.北京:地质出版社,1992
    35. 马争鸣,李衍达.二步法射线追踪.地球物理学报,1991,34(4):501-508
    36. 马宗晋,赵俊猛.天山与阴山-燕山造山带的深部结构和地震.地学前缘,1999,6(3):95-102
    37. 钱辉,姜枚,宿和平,董英君.中国天然地震探测深部构造的研究现状与发展.物探与化探,2000,24(1):1-11
    38. 谯汉生,方朝亮,牛嘉玉等.中国东部深层油气地质学丛书(第一卷)—中国东部深层石油地质.北京:石油工业出版社,2002
    39. 史大年,姜枚,马开义,薛光琦,董英君.阿尔金断裂带地壳和上地幔结构的 P 波层析成像.地球物理学报,1999,42(3):341-351
    40. 宋林平.平方慢度射线追踪与非线性地震走时层析成像.成都理工学院学报,1994,21(1):107-113
    41. 宋炜.球面波近似快速波前射线追踪.勘探地球物理进展,2003,26(4):255-259
    42. 孙加鹏,邱殿明,张兴洲,杨宝俊,闫静奇.裂谷盆地下的壳-幔结构及其成因机 制讨论——以由近垂直反射地震剖面揭示的松辽盆地下的壳-幔结构为例.吉林大学学报(地球科学版),2004,34:40-45
    43. 唐修生,王五平,方璟,张剑.基于 Snell 定律的射线追踪程序实现及模拟计算.焦作工学院学报(自然科学版),2004,23(2):118-122.
    44. 滕吉文,尹周勋等.青藏高原岩石层三维和二维结构与大陆动力学.地球物理学报,1994,37(增刊 1):117-130
    45. 田玥,陈晓非.水平层状介质中的快速两点间射线追踪方法.地震学报,2005,27(2):147-154
    46. 汪筱林,刘立,刘招君.满洲里-绥芬河地学断面域中新生代盆地基底结构及构造演化,见:M-SGT 课题组,中国满洲里-绥芬河地学断面域内岩石圈结构及其演化的地质研究.北京:地震出版社,1994
    47. 王椿镛,王贵美,林中洋等.用深地震反射方法研究邢台地震区地壳细结构.地球物理学报,1993,36(4)
    48. 王椿镛.地球内部构造和动力学的地震学研究.地学前缘,5(1-2):91-98
    49. 吴功建.中国地学断面地球物理研究的进展和展望.地球物理学报,1997,40(增刊):110-120
    50. 吴建平,曾融生.青藏高原 Q 值结构反演.地震学报,1996,18(2):208-214
    51. 席道瑛,程经毅,易良坤,张斌.饱和多孔岩石应力波的衰减特性.地震学报,1997,19(5):457-461
    52. 席道瑛,邱文亮,程经毅,易良坤,张斌,谢端.饱和多孔岩石的衰减与孔隙率和饱和度的关系.石油地球物理勘探,1997,32(2):196-202
    53. 徐初伟,张建中,李海洋.基于薄层模型的有限频率地震波射线追踪.勘探地球物理进展,2004,27(3):182-195
    54. 徐广民,王华忠,范华,辛可峰,吴国忱,陈猛.复杂介质常梯度射线追踪方法研究.石油地球物理勘探,2004,39(3):265-270
    55. 徐果明,卫山,高尔根,林庆忠,蒋先艺,罗开云.二维复杂介质的块状建模及射线追踪.石油地球物理勘探,2001,36(2):213-219
    56. 徐昇,杨长春,刘洪,李幼铭.射线追踪的微变网格方法.地球物理学报,1996,39(1):97-102
    57. 徐涛,徐果明,高尔根,蒋先艺.复杂介质的折射波射线追踪.石油地球物理勘探,2004,39(6):690-693
    58. 徐涛,徐果明,高尔根,朱良保,蒋先艺.三维复杂介质的块状建模和试射射线追踪.地球物理学报,2004,47(6):1118-1126
    59. 徐彦,苏有锦,秦嘉政.Q值研究动态.地震研究,2004,27(4):385-389
    60. 许琨,吴律,王妙月.改进 Moser 法射线追踪.地球物理学进展,1998,13(4):60-66
    61. 薛光琦,姜枚,史大年,宿和平.利用天然地震震相探讨阿尔金地区地壳结构.地质评论,1999,45(2):120-124
    62. 薛光琦,钱辉,姜枚,宿和平,董英君.青藏高原东北部天然地震探测与岩石圈深部特征.地球学报,2003,24(1):19-26
    63. 杨宝俊,李勤学,唐建人,刘财,王建民,王兆湖,李占林,冯暄,于平,李世哲,刘洋,付雷.松辽盆地反射地震莫霍面的形态、三瞬处理结果及其地质解释.地球物理学报,2003,46(3):398-403
    64. 杨宝俊,刘财,毕玉英等.中国大庆附近地区软流圈结构研究.见:臧绍先,高锐等.中国地球物理学会年刊(第 247 页).北京:地震出版社,1993
    65. 杨宝俊,刘财,孙家蓬.满-绥地学断面域垂直地震反射剖面结构及其地质意义.见臧绍先,方正等,中国地球物理学会年刊(第 302 页).上海:同济大学出版,1997
    66. 杨宝俊,刘财,唐大义等.新莫霍成因初探,见:臧绍先,金振武等,中国地球物理学会年刊,北京:石油工业出版社,1995,40
    67. 杨宝俊,刘财等.用近垂直地震反射方法研究莫霍面的特征与成因.地球物理学报,1999,42(5):617-628
    68. 杨宝俊,刘万崧,王喜臣等.中国东部大兴安岭重力梯级带域地球物理场特征及其成因.地球物理学报,2005,48(1):86-97
    69. 杨宝俊,穆石敏,金旭,刘财.中国满洲里-绥芬河地学断面地球物理综合研究.地球物理学报,1996,39(6):772-782
    70. 杨宝俊,唐建人,李勤学等.松辽盆地深部反射地震探查.地球物理学进展,2001,16(4):11-17
    71. 杨宝俊,唐建人等.松辽盆地隆起区地壳反射结构与“断开”莫霍界面.中国科学(D辑),2003,33(2):170-176
    72. 杨宝俊,王功先,刘财等.哈尔滨附近垂直反射地震试验研究.长春地质学院学报,1992,22
    73. 杨光,薛林福,刘振彪,刘金平.松辽盆地深部地震剖面解释与深部地质研究.石油与天然气地质,2001,22(4):326-336
    74. 叶林,李伟东,施行觉.波形反演法测量Q值的实验室研究.地球物理学进展.2001,16(1):31-38
    75. 叶茂,张世红,吴福元.中国满洲里-绥芬河地学断面域古生代构造单元及其地质演化.长春地质学院学报,1994,24(3):241-245
    76. 余仕成,王克协.饱和度对纵波频散和衰减的影响.武汉化工学院学报,1998,20(2):82-86
    77. 俞寿朋.高分辨率地震勘探.北京:石油工业出版社,1993
    78. 曾融生.大陆岩石圈构造与地球动力学.地球科学进展,1991,6(2)
    79. 曾融生.固体地球物理学导论.北京:科学出版社,1984
    80. 曾融生.莫霍界面的性质.地球物理学会报,1964,13(2)
    81. 曾融生等.中国大陆莫霍界面深度图.地震学报,1995,17(3):322-327
    82. 张建中,陈世军,徐初伟.动态网络最短路径射线追踪.地球物理学报,2004,47(5):899-904
    83. 张霖斌,许云,乌达巴拉,曾校丰.地震反射波波前法射线追踪.石油地球物理勘探,1995,30(1):50-55
    84. 张钋,刘洪,李幼铭.射线追踪方法的发展现状.地球物理学进展,2000,15(1):36-45
    85. 张禹慎,马石庄.全球地震面波相速度变化及其大地构造学意义.地球物理学报,1997,40(2):181-192
    86. 张中杰等.由宽角反射地震资料重建壳幔反射结构相似性剖面.地球物理学报,2004,47(3):469-474
    87. 赵改善,郝守玲,杨尔皓,陈伟.基于旅行时线性插值的地震射线追踪算法.石油物探,1998,37(2):14-24
    88. 赵连锋,朱介寿,曹俊兴,郑圻森.有序波前重建法的射线追踪.地球物理学报,2003,46(3):415-420
    89. 种衍文,江柳,黄天锡.三区分划射线追踪法研究及其应用.武汉大学学报(理学版),2003,49(5):663-666
    90. 周国藩.中下扬子地区的壳幔结构及其与地震相关性的研究.地壳形变与地震,1994,14(4):75-79
    91. 周华伟,Michael A. MURPHY,林清良.西藏及其周围地区地壳、地幔地震层析成像——印度板块大规模俯冲于西藏高原之下的证据.地学前缘,2002,9(4):285-292
    92. 周辉,渠广学,杨宝俊.用地震波频谱计算Q值的新方法.长春地质学院学报,1994,24(4):461-467
    93. 朱介寿,曹家敏,蔡学林等.东亚及西太平洋边缘海高分辨率面波层析成像.地球物理学报,2002,45(5):646-664
    94. 朱介寿,曹家敏,李显贵等.中国及其邻区地球三维结构初始模型的建立.地球物理学报,1997,40(5):627-648
    95. 朱介寿,严忠琼,曹俊兴,张雪梅.勘探地球物理层析成像软件系统及其应用.物探与化探,1998,22(2):90-98
    96. 朱介寿等.中国及相邻区域岩石圈结构及动力学意义,成都理工大学学报(自然科学版),2004,31(6):567-574
    97. 朱介寿等.用瑞利面波研究东亚及西太平洋地壳上地幔三维结构,物探化探计算技术,2005,27(3):185-193
    98. 张贻侠,吴建功,冯昭贤.中国大陆及海域岩石圈结构与动力学.国土资源部“九五”重点科技项目(9501201)研究报告,1999
    99. Aki K.. Three-dimensional seismic inhomogeneities in the lithosphere and asthonosphere:Evidence for decoupling in the lithosphere and flow in the asthenosphere. Review of Geophysios and Space physios, 1982, 20:161-170
    100. Amanatides J., Woo A.. Fast voxel traversal algorithm for ray tracing In: Marechal G ed. Proc Eurographics, 1987:3-10
    101. Anderson D. L. and Hart R. S.. An earth model based on free oscillations and body waves. J. Geophys. Res., 1976, 81(8):1461-1475
    102. Anderson J. G., Bodin, P., Brune, J. N. et al.. Strong ground motion from the Micheacan. Mexico earthquake. Science, 1986, 233:1043-1049
    103. Artyushkow E. V.. Role of crustal stretching on subsidence of the continental crust. Tectonophysics, 1992, 215:187-208
    104. Austrheim H.. Eclogite formation and dynamics of crustal roots under continental collision zone. Terra Nova, 1991, 3:492-499
    105. Bamford D.. Pn velocity anisotropy in a continental upper mantle. Geophys. J. R. Astron. Soc., 1977, 49:29-48
    106. Barazangi M. and James N.. Velocities and propagation characteristics of Pn and Sn beneath the Himalayan are and Tibetan Plateau:Possible evidence for underthrusting of the Indian continental lithosphere beneath Tibet. Geology, 1982, 10:179-185
    107. Barnes A.E.. Moho reflectivity and seismic signal penetration.Tectonophysies, 1994, 232: 299-307
    108. Barnes, A. E.. Moho reflectivity and seismic signal penetration. Tectonophysics, 1994, 232:299-307
    109. Bear G., Lu C. p., Lu R. et al. The construction of subsurface illumination and amplitude maps via ray tracing. The leading edge, 2000
    110. Brown ,L.D.. Lower continental crust: variations mapped COCORP deep seismic profiling. Annal. Geophy. 1987, 5:325-330
    111. Bulant P.. Two-point ray tracing and controlled initial-value ray tracing in 3-D heterogeneous block structures. SEG Expanded Abstracts 16,1997:1727-1730
    112. Carlos Piedrahíta, Martin Tygel, and Lúcio T. S.. Applications of automata theory to ray tracing. SEG Expanded Abstracts 21, 2002:2011-2014
    113. Cervenjl V. and Jose E. P. SoaresFresnel volume ray tracing. Geophysics, 1992, 57(7):902–915
    114. Chen T. Y., Xiao F.. A rapid and accurate two-point ray tracing method in horizontally layered velocity model. Acta seismologica sinica, 2005, 18(2):154-161
    115. Christensen N. I. and Mooney W. D.. Seismic velocity structure and composition of the continental crust: A global view. J. Geophys. Res., 1995, 100:9761-9788
    116. Christensen N. I.. Ophiolites, seismic velocities and oceanic crustal structure. Tectonophysics, 1978, 47:131-157
    117. Daley P. F., Marfurtz K. J. and McCarron E. B.. Finite-element ray tracing through structurally deformed transversely isotropic formations. Geophysics, 1999, 64(3):954–962
    118. Dasgupta R. and Clark R. A.. Estimation of Q from surface seismic reflection data. Geophysics, 1998, 63(6):2120-2128
    119. Dasios A. T., Timothy R. A., McCann C.. Increasing confidence in seismic Q measurements:A comparison of estimates from sonic and surface seismic data. SEG Expanded Abstracts, 1998
    120. Docherty P. and Bleistein N.. A fast ray tracing routine for laterally inhomogeneous media. SEG Expanded Abstracts, 1984:788-790
    121. Fischer R. and Lees J. M.. Shortest path ray tracing with sparse graphs. Geophysics, 1993, 58(7):987-996
    122. Foutain D. M., Salisbury M. H. and Percival J.. Seismic structure of the continental crust based on rock velocity measurements from the Kapuskasing Uplift. J. Geophys. Res., 1995, 95:1167-1186
    123. Fuchs K.. On the properties of deep crutal reflections. J. Geophys, 1969, 35: 133-149
    124. Gerver M. and Markusevitch V.. Determination of seimic wave velocity from the travel-time curve. Geophys. J. R. astron. Soc., 1996, 11:165-173
    125. Gerver M. and Markusevitch V.. On the characteristic properties of travel-time curves. Geophys. J. R. astron. Soc., 1967, 13:241-246
    126. Gopa S. De, Winterstein D. F. and Meadows M. A.. Comparison of P-and S-wave velocities and Q's from VSP and sonic log data. Geophysics, 1994, 59(10):1512-1529
    127. Grechka V. Y., McMechan G. A.. 3-D two-point ray tracing for heterogeneous, weakly transversely isotropic media. Geophysics, 1996, 61(6):1883-1894
    128. Grunberg M., Genaud S., Mongenet C.. Seismic Ray-Tracing and Earth Mesh Modeling on Various Parallel Architectures. The Journal of Supercomputing, 2004, 29:27-44
    129. Hammer P.T.C. and Clowes R. M.. Moho reflectivity patterns—a comparison of Canedian LITHOPROBE transects. Tectonophysics, 1997, 269: 179-198
    130. Hanyga A. and Hans B. H.. Comparison of complex ray tracing with finite differences. SEG Expanded Abstracts 9, 1990:1032-1036
    131. Hanyga A.. Ray tracing in the case of multiple-valued traveltimes. SEG Expanded Abstracts 10, 1991:1517-1521
    132. Hargreaves N. D. and Calvet A. J.. Inverse Q filtering by Fourier transform. Geophysics, 1991, 56(4):519-527
    133. Hirn A., Nercessian A. et al.. Lhasa block and bordering sutures--a continuation of a 500km Moho traverse through Tibet. Nature, 1984, 307 (5946): 25-27
    134. Holberg O., Pajchel J., Riste P. et al.. Comparison of ray tracing and finite-difference modeling. SEG Expanded Abstracts 9, 1990:1037-1041
    135. Holbrook W. S., Mooney W. D. and christensen N. I.. The seismic velocity structure of the deep continental crust. In: Fountain D. M., Arculus R. Kay and R. W., Continental Lower crust, Developments in Geotectonics 23, Elsevier B. V., The Netherlands, 1992, 1-44
    136. Isacks B. et al.. Seismology and the new global tectonics. J. Geophys. Res., 1968,73: 5855-5899
    137. Jannaud L.R.. Two point raytracing in Marmousi. SEG Expanded Abstracts 15, 1996:690-694
    138. Jarchow C. M. and Thompson G. A.. The nature of the Mohorovicic discontinuity. Ann. Rev. Earth Planet. Sci., 1989, 17:475-506
    139. Jones T. D. and Nur A.. Seismic velocity and anisotropy in mylonites and the reflectivity of deep crustal faults. Geology, 1982, 10: 260-263
    140. Jones T. D. and Nur A.. The nature of seismic reflections from deep crustal fault zones. J. Geophys. Res., 1984, 89:3153-3171
    141. Jurado F.. Amplitudes for 3D bending ray tracing. SEG Expanded Abstracts 20, 2001:1143-1146
    142. Klemperer S. L., Hauge T. A., Hauser E. C. et al.. The Moho in the northern Basin and Range province, Nevada, along the COCORP 40~N seismic-reflection transect. Geol. Soc. Am. Bull., 1986, 97:603-618
    143. Klemperer S. L.. Deep seismic reflection profiling and the growth of the continental crust. Toctonophysics, 1989, 161: 233-244.
    144. Klimes L.. Lyapunov exponents for 2-D ray tracing without interfaces. SEG Expanded Abstracts 19, 2000:2293-2296
    145. Lai H. L., Gibson R. L., Jr. and Lee K. J.. Quasi-shear wave ray tracing by wavefront construction in 3-D anisotropic media. SEG Expanded Abstracts 23, 2004:1909-1912
    146. Larkin S. P., Levander A., Henstock. T. J. and Pullammanappallil S.. Is the Moho flat? Seismic evidence for a rough crust-mantle interface beneath the northern Basin and Range. Geology, 1997,25 (5): 451-454
    147. Li Xuetian,Zhou Fugen,Yang Changchun and Li Youming. 3-D ray tracing method in complex geological model. SEG Expanded Abstracts 15, 1996:703-706
    148. Mao W. J. and Stuart G. W.. Rapid multi-wave-type ray tracing in complex 2-D and 3-D isotropic media. Geophysics, 1997, 62(1):298–308
    149. Matsuoka T. and Ejzak T.. Ray tracing using reciprocity. Geophysics, 1992, 57(2):326-333
    150. Meissner R.. The 'Moho' as a transition zone. Geophys. Surv., 1973, 1:195-216
    151. Mitrofanov G. and Kurdyukova T.. Algorithms of ray tracing for block media. SEG Expanded Abstracts 18, 1999:1953-1955
    152. Mittet R., Sollie R. and hokstad K.. Prestack depth migration with compensation for absorption. Abstracts/Journal of Applied Geophysics, 1995, 34:137-167
    153. Mohammed B. and Mooney H. M.. Q measurements from compressional seismic waves unconsolidated sediments. Geophysics, 1987, 52(6):772-784
    154. Mokhtar T. A., Herrmannt R. 6. and Russell D. R.. Seismic velocity and Q model for the shallow structure of the Arabian shield from short-period Rayleigh waves. Geophysics, 1988, 53(11):1379-1387
    155. Monger J. W. H.. The Global Geoscience Transects Project. Episodes, 1986, 9 (4):217-222
    156. Moser T. J.. Efficient seismic ray tracing using graph theory. SEG Expanded Abstracts 8, 1989:1106-1108
    157. Moser T. J.. Shortest path calculation of seismic rays. Geophysics, 1991, 56(1):59-67
    158. Nelson B., Hajnal Z. and Lucas S. B.. Moho signature from wide-angle reflections: preliminary results of the 1993 Trans-Hudson orogen refraction experiment. Tectonophysics, 1996, 264:111-121
    159. Nobili Ph., Mallet J. L. and Huang Y. g.. Using simplex for 3-D two point ray tracing on very complex surfaces. SEG Expanded Abstracts 9, 1990:1020-1023
    160. Pereyra V.. Two-point ray tracing in complex 3-D media. SEG Expanded Abstracts 7, 1988:1056-1060
    161. Psencik I. and Farra V.. First-order ray tracing for P waves in inhomogeneous, weakly anisotropic media. Geophysics, 2005, 70(6):D65-D75
    162. Pyun S., Shin Ch. S., Min D. J. and Ha T.. Refraction traveltime tomography using damped monochromatic wavefield. Geophysics, 2005, 70(2):U1-U7
    163. Raikes S. A.. Regional variations in upper mantle structure beneath southern California. Royal Astronomical Society Geophysical Journal, 1980, 63 (1):187-216
    164. Raitt R. W. et al.. Mantle anisotropy in the Pacific Ocean. Tectonophys., 1971,12:173-186
    165. Rüger A. and Hale D.. Meshing for velocity modeling and ray tracing in complex velocity fields. SEG Expanded Abstracts 23, 2004:1865-1868
    166. Senatorski P.. Interactive dynamics of faults. Tectonophysica, 1997, 277:199-207
    167. Shah P. M.. Ray tracing in three dimensions. Geophysics, 1973, 38(3):600-604
    168. Spakman W.. The structure of the lithosphere and mantle beneath the Alps as mapped by delay time to-mography. In: Freeman R., Giese P. and Mueller St. (eds), The European Geotraverse: Integrative studies. European Science Foundation, Strasbourg, France, 1990a:213-220
    169. Spakman W.. Tomographic images of the upper mantle below central Europe and the Mediterranean Nova, 1990b, 2:542-543
    170. Spencer T. W., Sonnadt J. R. and Butlers T. M.. Seismic Q-Stratigraphy or dissipation. GEOPHYSICS, 1982, 47(1):16-24
    171. Stegena L. and Meissner R.. Velocity structure and geothermics of the earth crust along the Europe traverse. Tectonophysics, 1983, 121:87-96
    172. Stiickli R. F.. Two-point ray tracing in a three-dimensional medium consisting of homogeneous nonisotropic layers separated by plane interfaces. Geophysics, 1984, 49(6):767-770
    173. Thisse P. and Marthelot J. M.. Two-point ray tracing in 3-D complex media using triangular surfaces: Application to line-drawing migration in 3-D. SEG Expanded Abstracts 13, 1994:1410-1413
    174. Uyeda S.. The Japanese island arc and the subduction process. Episodes, 1991, 14 (3):190~198
    175. Vasco D. W., Peterson J. E., Jr. and Ernest L.. Majer. Resolving seismic anisotropy: Sparse matrix methods for geophysical inverse problems. Geophysics, 1998, 63(3):970-983
    176. Vidale J. E.. Finite-difference calculation of traveltimes in three dimensions. Geophysics, 1990, 55(5):512-526
    177. Virieux J. and Farra W.. Ray tracing in 3-D complex isotropic media:An analysis of the problem. Geophysics, 1991, 56(12):2057-2069
    178. Wesson R. L., Burford R. O. and Ellsworth W. L.. Relationship between seismicity, fault creep, and crustal loading along the central San Andreas fault. In: kovach R. L. and Nur A. (eds), Proceedings of the conference on tectonic problems of the San Andreas fault system. Stanford, Calif., Stanford University Publications in the Geolegical Sciences, 1973, 13:303-321
    179. White R. E.. The accuracy of estimating Q from seismic data. Geophysics, 1992, 57(11):1508-1511
    180. Wulff A. M. and Burkhardt H.. Dependence of Seismic Wave Attenuations and Velocities in Rock on Pole Fluid Properties. Phys. Chem. Earth, 1997, 22(1-2):69-73
    181. Yacoub N., Scott J. H. and Mckeown F. A.. Computer ray tracing through complex geological models for ground motion studies. Geophysics, 1970, 35(4):586-602
    182. Yang B. J., Liu C., Hou G. B. & Feng X.. A study of the detachment faults in upper basement of songliao basin near Daqing of China bu using the vibroseis technique, In: Russian academy of sciences siberian branch, Methods of study structure and monitoring of the lithosphere (Materials of the international conferences ), 1998:140-141
    183. Yang B. J., Liu C., Tang J. R., et al.. The basic characteristics of the the structure of Anda-Fengle nearly vertical seismic reflection profile of CHINA, In: Consejo superior de Investigacines Cientificas(CSIC) and University of Barcelona, 8th International symposium on deep seismic profiling of the continents and their margins, Barcelona, Spain, 1998, 134
    184. Yang B. J., Liu C., Yang P. H.. The basic characteristics of Moho near Daxinganling gravity gradient zone of China and it's geological interpretation, In: Russian academy of sciences siberian branch, Methods of study structure and monitoring of the lithosphere (Materials of the international conferences ), 1998:406-409
    185. Yang B. J., Liu C., Zhang H. J & Hah W. M. Study on the seismic sounding inM-SGT, In: Zhang X. Z., Cao X., International symposium on geoseienee progress ofnortheast Asia, Abstract volume, Changchun, China, 1995:97-98
    186. Yang B. J., Liu C., Zhou H. & Tang D. Y. Initial study result of the crustal structure along Chinese Anda-Zhaozhou -Harbin intersect, In: Xu B. C., He Q. D. et al., international symposium on deep and regional geophysics and geology, Abstracts, Changchun, China, 1994:72-73
    187. Yang B. J., Mu S. M., Jin X. & Liu C.. Comprehensive geology study in the Manzhouli-Suifenhe geoscience trasect, China, Chinese Journal of Geophysics, 1997, 40(1):27-40
    188. Yilmaz O. and Taner M. T.. Ray tracing using Huygens' principle. SEG Expanded Abstracts 16, 1997:1794-1797
    189. Zelt C.A. and Ellis R. M.. Practical and efficient ray tracing in two-dimensional media for rapid traveltime and amplitude forward modeling. Canadian journal of exploration geophysics, 1988, 24(1):15-31
    190. Zhao W. J., Neelson K. D. et al.. Deep seismic reflection evidence for continental underthrusting beneath south Tibet. Nature, 1993, 3(66):557-559
    191. Zhou B. and Greenhalgh S. A.. ‘Shortest path' ray tracing for most general 2D/3D anisotropic media. Journal of Geophysics and engineering, 2005, 2:54-63
    192. Zhu T. and Cheadle S.. A grid raytracing method for near-surface traveltime modeling,69th Ann. Internat. Mtg. Soc. of Expl. Geophys, 1999:1759-1763

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700