渭河上游河流阶地的成因与地貌演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河流地貌历来是地学界研究的重点和热点问题之一。阶地作为流域地貌的基本形态之一,通过对其研究不但可以恢复河流地貌的演化历史,而且可以提取与构造运动和气候变化相关的信息。近一个世纪以来,中外学者通过对河流阶地的研究,已经对黄河的形成演化取得了比较一致的认识。但是,作为黄河最大的一级支流—渭河,其形成演化的过程目前分歧较大,且多数研究主要集于中下游地区。渭河上游位于陇中盆地的南缘,西秦岭的北麓地带,新生代期间构造活动剧烈,气候变化频繁,从而造成了该区流域地貌类型多样,地表侵蚀切割强烈。其源头鸟鼠山以其低矮的分水岭与黄河的另一支流洮河相隔,该区倍受地貌学家的关注,被认为是解决古黄河与古渭河形成发育的关键地带。
     本文选择渭河上游陇西段和中滩段的河流阶地进行研究。通过古地磁、光释光、~(14)C及黄土-古土壤序列等定年方法,研究发现渭河陇西段7级阶地的形成年代分别为860ka BP、790ka BP、620ka BP、410ka BP、130ka BP、60ka BP与11ka BP。渭河中滩段7级阶地的形成年代分别为1.5Ma BP、1.1Ma BP、870ka BP、620ka BP、410ka BP、128ka BP与11ka BP。
     同时,综合该流域其它地质地貌资料,根据阶地的形成年代和拔河高度等参数,得到了渭河不同河段和不同支流的下切速率。陇西地区渭河自860ka BP以来下切速率为0.2m/ka,宝鸡段为0.99m/ka;渭河的支流中,洛河下切速率为0.11m/ka,泾河为0.16m/ka,灞河为0.17m/ka。可以看出渭河上游地区河流的下切速率明显高于中下游,而与秦岭内部的岷江下切速率相比,则要低的多,可能是由于构造活动的不同导致了河流下切速率的差异,秦岭内部抬升要强于北麓地区,而渭河上游地区则要高于下游。
     渭河陇西段各级河流阶地河漫滩顶部都发育了一层古土壤,如T7-T1分别对应于古土壤S8、S7、S5、S4、S1、Sm与S0,表明气候变化在阶地形成过程中发挥着重要作用,河流下切可能发生在冰期向间冰期的转化阶段。因此,在陇中盆地,渭河阶地是在构造运动和气候变化共同作用下形成的。更新世以来,陇中盆地至少经历了10次气候转型事件,而渭河却只发育了7级阶地,可能由于阶地被后期的河流侧向侵蚀和构造运动所破坏,或与气候温暖湿润程度不够及气候变化的不稳定性有关。
     最高级河流阶地是河流开始出现的重要标志。通过渭河不同河段的最高级阶地的研究表明,距今1.5Ma BP左右,渭河在陇中盆地开始发育,注入天水古湖,此时渭河下游三门古湖面积急剧缩小。1.4-1.2Ma BP,渭河在陇西地区出现,渭河切穿宝鸡峡谷,渭河上下游贯通;这一时期黄河流域水系也发生了重大的调整,黄河切穿三门峡东流入海,三门古湖消失,渭河注入黄河共同入海。1.2Ma BP左右,洛河、灞河和泾河形成,丰富了渭河水系,现代渭河水系基本形成。
Fluvial geomorphology is an important hotspot in geoscience. As a major aspect of fluvial geomorphological evolution, river terrace is used to recover the history of fluvial geomorphological evolution and get related information about surface uplifting and climate change. In the last century, by studying river terraces, reseachers were in agreement with the genesis and evolution of Yellow River. However, there is no consistent opinion about the process of evolution of Weihe River, which is the largest tributary of Yellow River. Most studies about Weihe River focused on its middle and lower sections. The upper Weihe River is located at the southern Longxi basin and the northern flank of the Qinling Mountains. Influenced by the active tectonic movements during Tertiary and frequent climate changes during Quaternary, the forms of landscape in this area are various and surface was eroded strongly. Niaoshushan Mountain, from which Weihe River originates, divides Yaohe River, another tributary of Yellow River. This area drew attention of geomorphologists and was considered as a key region to uncover the genesis and evolution of Yellow River and paleo- Weihe River.
     We selected Zhongtan and Longxi as the study area in our work, and proposed the history of Weihe River and Yellow river and genesis of the terraces in study area. Based on palaeomagnetic data, optical stimulated luminescenece (OSL) detection, ~(14)C dates and loess-paleosol sequence, the ages of seven terraces along upper Weihe River around Longxi and Zhongtan have been confirmed. The seven river terraces preserved along the upper Weihe River in Longxi basin were formed about 870 ka BP, 790 ka BP、620 ka BP、420 ka BP、130 ka BP、60 ka BP and 10ka BP; The seven river terraces preserved along the upper Weihe River in Zhongtan basin were formed about 1.5 Ma BP、1.1 Ma BP、870 ka BP、620 ka BP、410 ka BP、128 ka BP and 11 ka BP.
     By comparing the data about ages and elevations of those terraces in other geological and geomorphological researches, we got incision rates about different sections and tributaries of Weihe River. The incision rates of Weihe River and its tributary are as following (river name, incision rate): Weihe River around Longxi, 0.2 m/ka; Weihe River around Baoji, 0.99 m/ka; Luohe River, 0.11 m/ka; Jinghe River, 0.16 m/ka; Bahe River, 0.17 m/ka. Those data indicate that the incision rate of upper Weihe River is higher than its middle-lower, but lower than Mingjiang in the interior of Qinling Mountains. It was maybe caused by different tectonic movement, which was stronger in inner areas than at northern flanks of Qinling Mountains and at upper area than at lower area of Weihe River.
     The paleosol overlying all terraces around Longxi along Weihe River(for example, from T7 to T1, the paleosol was S8, S7, S5, S4, S1, Sm and S0, conrrespondingly.) indicate that climate change played an important role in terrace formation. So, tectonic uplifting and climate change may each have played variable roles, and from our study their effects cannot be clearly separated. In Longxi zone there was at least ten times of climate transition, but only seven terraces have been founded. One reason is these terraces destroyed because of river erosion and tectonic movement, another is relative to the degree of warm-moist of climate and climate instability.
     Generally the highest terrace has been considered as an important sign as river appearance. Based on the highest terrace along Weihe River, the results indicated that: at 1.5 Ma BP, Sanmen palaeolake began to contract, when Weihe River appeared in Longzhong basin, joining into paleolake around Tianshui. Then Weihe River cut through Baoji gorge at 1.4-1.2 Ma BP, and appeared in Longxi basin. At the same time, the water system of Yellow River also had great changes. Yellow River cut through Sanmen gorge and flowed toward to the east into China Sea, and Weihe River joined into Yellow River. Sanmen palaeolake disappeared. At 1.2 Ma BP, Luohe River、Bahe River and Jinghe River formed, which flowed to Weihe River, whichindicated that entire Weihe River had been built, and modern river system formed.
引文
1. An Z S, Kukla G, Porter S C, et al. Late Quaternary dust flow on the Chinese loess plateau. Catena, 1991a, 18: 125-130.
    
    2. An Z S, Kukla G, Porter S C, et al. Magnetic susceptibility evidence of monsoon variation on the loess plateau of China over last 130,000 Years. Quaternary Research, 1991b, 36:29-36.
    
    3. An Z S, Liu D S, Lu Y C, et al. Long term paleomonsoon variation recorded by the loess-paleosol sequence in Central China. Quaternary International, 1990, 7/8: 91-95.
    
    4. Anderson M G Modelling Geomorhological Systems, John Wiley and Sons, Chichester, 1988,New York, Brisbane, Toronto, Singapore.
    
    5. Barbour G B. Pleistocene history of the Huangho. Bulletin of the Geological Society of A merica, 1932,V44:1143-1 160.
    
    6. Belllier O, Mercier J L, Vergelly P, et al. Evolution sedimentaire et tectonique du graben cenozoique de la Weihe (Province du Shaaxi, Chine du Nord). Bull Soc Geol France, 1988,IV, 6: 979-994.
    
    7. Belllier O, Vergely P, Mercier J L, et al. Analyse tectonique et sedimentaire dans les Monts Li Shan (Province du Shaaxi, Chine du Nord); datation des regimes tectonique esextensifs dans le graben de la Weihe. Bull Soc Geol France, 1991,I, 162: 101-112.
    
    8. Blum M D. Genesis and architecture of incised valley fill sequences: a Late Quaternary example from the Colorado river, Gulf Coastal Plain of Texas. In: Weimer P. Posamentier H(Eds). Siliciclastic Sequcence Stratigraphy-Recent Developments and Applications.American Association of Petroleum Geologists, Memoirs, 1994, 58: 259-283.
    
    9. Bridgland D R, Allen P. A revised model for terrace formation and its significance for the early Middle Pleistocene terrace aggradations of north-east Essex, Englans. In: Turner C, Td.The Early Middle Pleistocene in Europe. Balkema, Rotterdam, 1996, 121-134.
    
    10. Bridgland D R. River terrace systems in north-west Europe: an archive of environmental change, uplift and early human occupation. Quaternary Science Research, 19: 1293-1303.
    
    11. Bull W, Knuepfer P L K. Adjustments by the Charwell river, New Zealand, to uplift and climate changes. Geomorphology, 1987, 1: 15-32.
    
    12. Bull.W.B. Stream-terrace genesis: implication for soil development. Geomorphology, 1990,3:351-367.
    
    13. Burbank.D.W, John Leland, Eric Fielding, et al. Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature, 1996, 8: 505-510.
    
    14. Burchfiel B C, Zhang P Z, Wang Y P et al. Geology of the Haiyuan fault zone, Ningxia-Hui Autonomous region, China, and its relation to the evolution of the northeastern margin of the Tibetan Plateau. Tectonics, 1991, 10:1091-1110.
    
    15. Cande S C, Kent D V. Revised calibration of the geomagnetic polarity timescale for the late Cretaceous and Cenozoic. Journal of Geophysical Research, 1995, 100: 603-609.
    
    16. Chambers, R. Ancient sea margins an Memorials of changes in the relative level of sea and land. London: W. S. Orrltd, 1848.
    
    17. Chorng-Shern Horng, Meng-Yang Lee, Heiko Palike, et al. Astronomically calibrated ages for geomagnetic reversals within the Matuyama chron. Earth Planets Space, 2002, 54: 679-690.
    
    18. Clapp F G. 1922. The Huang-Ho, Yellow River, Geo. Rev., 12.
    
    19. Clayton K M. River terrace. In: Shotton F W, Ed. British Quaternary Studies. Recent Advances. Oxford University Press, Qxford, 1977, 153-168.
    
    20. Coleman M, Hodges K. Evidence for Tibetan Plateau uplift before 14myr ago from a new minimum age for east-west extension. Nature, 1995, 374: 49-52.
    
    21. Collins P E F, Fenwich I M, Keith-Luxas D M, et al. Late Devensian river and floodplain dynamics and related environmental change in northwest Europe, with particular reference to a site at Woolhampton, Berkshire, England. Journal of Quaternary Science, 1996, 11:357-375.
    
    22. Coltori M, Oilier C D. Geomorphic and tectonic evolution of the Ecuadoran Andes.Geomorphology, 2000, 32: 1-19.
    
    23. Davis W M. The geology cycle. Geog.Jour, 1899, 14.
    
    24. Diana. Geological observationson in South America London: Simith, Elder&Co, 1846.
    
    25. Ding Z L, E D E.Derbyshire, S L Yang, et al. Stacked 2.6-Ma grain sizer record from the Chinese loess based on five sections and correlation with the deep-sea δ ~(18)O record.Paleoceanography, 2002, 17(3): 5-1-5-21.
    
    26. Ding Z, Yu Z, Rutter N W, et al. Towards an orbital time scale for Chinese loess deposits.Quaternary Sciences Reviews, 1994, 13: 39-70.
    
    27. Ding Z L, E Derbyshire, S LYang, et al. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ ~(18)O record.Paleoceanography, 2002, 17(3): 1-21.
    
    28. Duane E.Champion, Marvin A.Lanphere. Evidence for a new geomagnetic reversal from lava flows in Idaho:Disccusion of short polarity reversals in the Brunhes and Late Matuyama polarity chrons. Journal of Geophysical Research, 1988, 93(B10): 11667-11680.
    
    29. Dury G H. Rivers and river terraces. Macmillan, 1970, London.
    
    30. Elzas M S. Systemen modellen. Landbouwkundig tijdschrift, 1978, 90-8A.
    
    31. England P, Molnar P. Right-lateral shear and rotation as the explanation for strike-slip faulting in eastern Tibet. Nature, 1990, 344 (62): 140-142.
    
    32. Fort M. Late Cenozoic environmental changes and uplift on the northern side of the central Himalaya: a reappraisal from field date. Palaeogeo, 1996, 120: 123-153.
    
    33. Galadini F, Messina P, Giaccio B, et al. Early uplift history of the Abruzzi Apennines (central Italy): available geomorphological constraints. Quaternary International, 2003, 101-102:125-135.
    
    34. Gibbard, P L. Pleistocene history of the Lower Thames valley. Cambridge University Press, Cambridge, 1994, 229.
    
    35. Gilchrist A R, Summerfield M A, Cockburn H A P. Landscape dissection, isostatic uplift, and the morphologic development of orogens. Geology, 1994, 22: 963-966.
    
    36. Green C P, Mcgrrgor D F M. Quaternary evolution of the river Thames. In: Jones D K C, Ed. The Shaping of Southern England. Institute of British Grographers, Special Publication 11.Academic Press, London, 1980, 177-202.
    
    37. Guo Z T, Biscaye P, Wei L Y, et al. Summer monsoon variations over the last 1.2Ma from the weathering of loess-soil sequences in China. Geophysical Research Letter, 2000, 27(12):1751-1754.
    38. Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22Myr ago inferred from loess deposits in China. Nature, 2002, 416: 159-163.
    
    39. Han Jiamao. A preliminary study on the clay mineralogy of loess at Luochuan secion, In: Quaternary Geology and Environment of China. China Ocean Press, 1982, 67-82.
    
    40. Harrison P, Copeland P, Kidd W S F, et al. Rsising Tibet. Science, 1992, 255: 1663-1670.
    
    41. Hattingh J. Fluvial response to allocyclic influences during the development of the lower Sundays river, Eastern Cape, South Africa. Quaternary International, 1996,33:3-10.
    
    42. Hetzel R, Niedermann S, Ivy-Ochs S, et al. ~(21)Ne versus ~(10)Be and ~(26)Al exposure ages of fluvial terraces: the influence of crustal Ne in quartz. Earth and Planetary Science Letter,2002,201:575-591.
    
    43. Holmyard E J et al. Avicennae, de Congelatione et Conglulinatine lapidum. Paris, Librairie Orientaliste, 1922.
    
    44. Holbrook J, Schumm S A. Geomorphic and sedimentary response of rivers to tectonic deformation: a brief review and critique of a tool for recognizing subtle epeirogenic deformation in modern and ancient settings. Tectonophysics, 1999, 305: 287-306.
    
    45. Home, D.M. Notice of some high-water marks on the banks of the river Tweed so me of its tributaries, and also of drift deposits in the valley of the Tweed, Trans. Roy. Soc. Edinburgh,1875, XXVII, 513-562.
    
    46. Howard A D, Seidl M A, Dietrich W E. Modeling fluvial erosion on regional to continental scales. J Geophys Res, 1994, 99: 13971-13986.
    
    47. Hu xiaomeng, Li youli, Yang jingchun. Quaternary paleolake development in the Fen River basin, North China. Geomorphology, 2005, 65: 1-13.
    
    48. Huisink M. Changing fluvial styles in Response to Climate Change. Examples from the Maas and Vecht during the Weichselain Pleni- and Lateglacial. Thesis, Vrije Universiteit,Amsterdam, 127.
    
    49. Huller F, Liu T S. Magnetostratigrapical dating of loess deposits in China. Nature, 1982, 300:431-433.
    
    50. Hus K J. Time and place in Alpine orogenesis. Geol Soc London Spec Pub, 1989, 45:421-443.
    
    51. Johan Hattingh. Fluvial response to allocyclic influences dring the development of the lower Sundays river, Eastern Cape, South Africa. Quaternary International, 1996, 33:3-10.
    
    52. Kaniev D. Kurilovskiat prag prez kvaternera (Res. Le seuil de Luorilo Durant le Quaternaire).Godishnik na Sofijski Universitet, 1967, 58(2): 1-9.
    
    53. Kasse K, Vandenberghe J, Bohncke S. Climatic change and fluvial dynamics of the Maas during the late Weichselian and early Holocene. Palaeocli m Research, 1995, 14: 123-150.
    
    54. Kiden P, Tornqvist T E. Can river terrace flights be used to quantify Quaternary tectonic uplift rates? Journal of Quaternary Science, 1998, 13: 573-574.
    
    55. Kohler G. 1929. Der Hwang-Ho (Eine Physiogeographic), Petermann, Geogr. Mitteil. Erganz,Nr. 203.
    
    56. Kukla G, Heller T, Liu X M, et al. Pleistocene climates in China dated by magnetic susceptibility, geology, 1988, 16:8111-814.
    
    57. Lewis S G, Maddy D, Scaife R G. The fluvial system response to abrupt climate change during the last stage: the Upper Pleistocene River Thames fluvial succession at Ashton Keynes, UK. Global and Planetary Change, 2001, 28: 341-359.
    58. Li Jijun et al. Uplift of Qinghai-Xizang Plateau and Global Change. Lanzhou: Lanzhou University Press, 1995, 1-207.
    
    59. Li Jijun, Fang Xiao-Min, Rob Van der Voo, et al. Magnetostratigraphic dating of river terraces: Rapid and intermittent incision by the Yellow River of the northeastern margin of the Tibetan Plateau during the Quaternary. Journal of Geophysical Research, 1997, 102(B5):10121-10132.
    
    60. Li Jijun, Xie Shiyou, Kuang Mingsheng. Geomorphic evolution of the Yangtze Gorges and time of their formation. Geomorphology, 2001, 41: 125-135.
    
    61. Li Jijun, Zhang Bo, Zhu Jun-Jie, et al. Magneto-and pedo-stratigraphy of paleosol-loess sequences in the Lanzhou Basin: Evidence for evolution of Huang He. Chinese Science Bulletin, 1999,44(sup 1): 119-128.
    
    62. Li Jijun. The environmental effects of the uplift of QingHai-XiZang plateau. Quaternary Science Riview, 1991, 10: 479-483.
    
    63. Libby W F, Anderson E C, Arnold J R. Age determination by radiocarbon content:workd-wide assay of natural radiocarbon. Science 109: 227-228.
    
    64. Lilienberg, D. A. Osoveriemiennikh dvizeniakh zie mnoy kory vmakedonii (Sum. On recent tectonic movements in Macedonia). Doklady AN SSSR, 1965, 165(1): 159-162.
    
    65. Lin Aiming, Yang Zhenyu, Sun Zhiming, et al. How and when did the Yellow river develop its square bend? Geology, 2001, 29(10): 951-954.
    
    66. Liu X M, Liu T S, Shaw J, et al. Paleomanetic and paleoclimatic studies of Chinaese loess, In:Liu T S, eds. Loess, Environment and Global Change. Beijing: Science Press, 1991, 61-81.
    
    67. Lu H Y, Liu X D, Zhang F Q, et al. Astronomical calibration of loess-paleosol deposits at Luochuan, central Chinese Loess Plateau. Palacogeoraphy,Palaeoclimatology,Palaeoecology,1999(154):237-246.
    
    68. Lu Huayu, Zhang Fuqing, Liu Xiaodong, et al. Periodicities of palaeoclimatic variations recorded by loess-paleosol sequence in China. Quaternary Science Review, 2004, 23:1891-1900.
    
    69. Lyell C. Student's elements of geology. London: John Murray, 1871.
    
    70. Maddy D, Tuncer Ddmir, D R Bridgland. An obliquity-controlled Early Pleistocene river terrace record from western Turkey? Quaternary Research, 2005, 63: 339-346.
    
    71. Maddy D. Rapid communication uplift-driven valley incision and river terrace formation in southern English. Journal of Quaternary. 1997, 12: 539-545.
    
    72. Maddy D. Uplift-driven valley incision and climate-controlled river terrace development in the Thames Valley, UK. Quaternary International, 2001, 79: 23-36.
    
    73. Maddy D. Uplift driven valley incision and River Terrace formation in Southern England.Journal of Quaternary Science, 1997, 12: 539-545.
    
    74. Maddy.D, Bridgland.D.R, Green.C.P. Crustal uplift in southern England: evidence from the river terrace records. Geomorphology, 2000, 33:167-181.
    
    75. Maddy D, Bridgland D R, Westaway R. Uplift-driven valley incision and climate-controlled river terrace development in the Thames Valley, UK. Quaternary International, 2001, 79:23-36.
    
    76. Maddy D, Demir T, Bridgland D R, et al. An obliquity-controlled Early Pleistocene river terrace record fro m Western Turkey? Quaternary Research, 2005, 63: 339-346.
    
    77. Maher Taylor. Magnetic properties of some synthetic submicron magnetites. Geophysical Journal, 1988,94:83-96.
    
    78. Melton F A. Aerial photographs and structural geology. J Geol, 1959, 67: 231-370.
    
    79. Merritts K R, Vincent K R, Wohl E E. Long river profiles, tectonism, and eustasy: A guide to interpreting fluvial terraces. Journal of Geophysical Research, 1994, 99(B7): 14031-14050.
    
    80. Mol J. Weichselian and Holocene river dynamics in relation to climate in the Halle-Leipziger Tieflandsbucht (Germangy). Eiszeitalter and Gegenwart, 1995, 45: 32-41.
    
    81. Molnar P, England P. Late Cenozoic uplift of mountain ranges and global climate change:Chincken or egg? Nature, 1990, 346: 29-34.
    
    82. Molnar P. Nature, nurture and landscape. Nature, 2003, 426:612-614.
    
    83. Monecke K, Winsemann J, Hanisch J. Climatic response of Quaternary alluvial deposits in the upper Kali Gandaki valley(West Nepal). Global and Change, 2001, 28: 293-302.
    
    84. Nador A, Lantos M, Toth-Makk A. Milankovitch-scale multi-proxy records from fluvial sediments of the last 2.6 Ma, Pannonian Basin, Hungary. Quaternary Science Review, 2003,22:2157-2175.
    
    85. Pan Baotian, Burbank B, Wang Y X, et al. A 900Ky record of strath terrace formation during glacial interglacial transition in northwest China. Geology, 2003, 31: 957-960.
    
    86. Pan Baotian, Gao Hongshan, Wu Guangjian, et al. Dating of erosion surface and terraces in the eastern Qilian Shan, northwest China. Earth Surface Processes and Landforms, 2007, 32:143-154.
    
    87. Pazzaglia F J, Gardner T W. Fluvial terraces of the lower Susquehanna River.Geomorphology, 1993, 8(2): 83-113.
    
    88. Peltzer G, Tapponier P, Zhang Z, Xu Z. Neogene and Quaternary faulting in and along the Qinling Shan. Nature, 1985, 317: 500-505.
    
    89. Penck, A. Versuch einer Klimaklassifikationauf physiographische Grundlage, Preussische Akademie der Akademie der Wissenschaften. Sitz der Phys. Math, 1910, Kl. 12: 236-246.
    
    90. Peter Molnar, Erik Yhorson Brown, B Clak Burchiel et al. Quaternary climate change and the formation of terraces across growing anticlines on the North Flank of Tien Shan, China. The Journal of Geology, 1994, 102: 583-602.
    
    91. Porter S C, An ZhiSheng, Zheng HongBo, et al. Cyclic Quaternary Alluviation and Terracing in a Nonglaciated Drainage Basin in the North Flank of the QinlingShan, Central China. Quaternary Research, 1992,38: 157-169.
    
    92. Porter S C, An Z S. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature, 1995, 375: 305-308.
    
    93. Prestwich. J. On the loess of the valley of the south of English of the Somme and the Seine. Phil Trans Roy Soc Cliv, 1964, 247-309.
    
    94. Ray mo M E, Ruddiman W F. Tectonic forcing of late Cenozoic cli mate. Nature, 1992, 359:117-122.
    
    95. Readhead M L. Thermoluminescence dating of quartz in Aeolian sediments from southeastern Australia. Quaternary Science Reviews, 1988, 7: 257-264.
    
    96. Repka J, Anderson R S, Finkel R C. Cosmogenic dating of fluvial terraces, Fremont River, Utah. Earth and Planetary Science Letters, 1997, 152: 59-73.
    
    97. Rose J, Board man J. River activity in relation to short-term climatic deterioration.Quaternary Studies in Poland, 1983, 4: 189-198.
    
    98. Rutter N W, Ding Z L, Evans M E, et al. Magnetostratigraphy of Baoji loess-paleosol section in north central China Loess Plateau. Quaternary International, 1991, 7: 97-102.
    
    99. Schildgen T, Dethier D P, Bier man P, et al. ~(26)A1 and ~(10)Be dating of late Pleistocene and Holocene fill terraces: a record of fluvial deposition and incision, Colorado frontrange. Earth Surface Processes and Landforms, 2002, 27: 773-787.
    
    100. Schulte L. Climatic and human influence on river systems and glacier fluctuations in southeast Spain since the Last Glacial Maximum. Quaternary International, 2002, 93-94:85-100.
    
    101. Schumm S A, Mosley M P, Weaver W E. Experimental fluvial geomorphology. Wiley and Sons, 1987, New York.
    
    102. Schumm S A. The fluvial system. Hoboken:John. Wiley and Sons, 1977, 338-211.
    
    103. Schumm. S. A. River Response to Baselevel Change: Implications for Sequence Stratigraphy.The Journal of Geology, 1993, 101: 279-294.
    
    104. Singhvi, A. K., Wagner, G. A. Thermolunminescence dating and its application to young sedimentary deposits. In Hurford, A. J., F er, E. and TenCate, J. A. M. (eds), Dating young sediments. Proceedings of the Workshop, Beijing, People's Republic of China, Sept. 1985.(Bangkok: Thailand, CCOP Technical Secretariat), 159-198.
    
    105. Soeding E, Hay W W, Robert M et al. The late Cenozoic uplift-climate change paradox.International of journal earth science, 2002, 91: 746-774.
    
    106. Starkel L. Climatically controlled terraces in uplifting mountain areas. Quaternary Science Review, 2003, 22: 2189-2198.
    
    107. Starkel L. Reflection of the glacial-interglacial cycle in the evolution of the Vistula river basin.Terra Nova, 1994, 6: 486-494.
    
    108. Sun D H, Bloemendal J, Rea D K, et al. Bimodal grain-size distribution of Chinese loess, and its palaeoclimatic implications. Catena, 2004, 55: 325-340.
    
    109. Sun D H. Monsoon and westerly circulation changes record in the late Cenozoic Aeolian sequences of Northern China. Global and Planetary Change, 2004, 41: 63-80.
    
    110. Sun Jinmin. Long-term fluvial archives in the Fen Wei Graben, central China, and their bearing on the tectonic history of the India-Asia collision system during the Quaternary.Quaternary Science Reviews, 2005, 24(10-11): 1279-1286.
    
    111. Van Huissteden J, Vandenberghe J. Changing fluvial style of periglacial lowland rivers during the Weichselian Pleniglacial in the eastern Netherlands. Zeitschrift fur Geomorphologie,Suppplement Band, 1988,71: 131-146.
    
    112. Van Huissteden J. Tundra rivers of the Last Glacial: sedimentation and geo morphological processes during the middle pleniglacial (eastern Netherlands). Mededelingen Rijks Geologische Dienst, 1990,44: 1-138.
    
    113. Vandenberghe J. The relation between climate and river processes, landforms and deposits during the Quaternary. Quaternary International, 2002, 91: 17-23.
    
    114. Vandenberghe J. Timescales, Climate and river development. Quaternary Science Review,1995, 14:631-638.
    
    115. Veldkamp A, Vermeulen S E J W. River terrace formation, modeling, and 3-D graphical simulation. Earth Surface and Landfor m, 1989, 14: 641-654.
    
    116. Veldkamp A. Simulating internal dand external controls on fluvial terrace stratigraphy: a qualitative comparision with the Maas record. Geomorphology, 2000, 33: 225-236.
    
    117. Whipple K X, Kirby E, Brocklehurst S H. Geomorphic limits to climatically induced increases in topographic relief. Nature, 1999, 401: 39-43.
    118. Xiao Jule, Porter S C, An Z S, et al. Grain size of quartz as an indicator of winter monsoon strength on the loess plateau of central China during the last 130000yr. Quaternary Research, 1995, 43: 22-29.
    119. Zhang Bosheng. The analysis of the development of the drainage systems of Shensi in relation to the new tectonic movements. Scientia, 1962, Ⅺ, 3.
    120. Zhang P Z, Burchfiel B C, Molar P, et al. Amount and style of late Cenozoic deformation in the Liupan Shan area, Ningxia Autonomous region, China. Tectonic, 1991, 10(6): 1111-1129.
    121. Zhang Zhenke, Wang Sumin, Yang Xiangdong, et al. Evidence of a geological event and environmental change in the catchment area of the Yellow River at 0.15 Ma. Quaternary Inernational, 2004, 117(1): 35-40.
    122. Zheng H B, An Z S, John S, et al. A detailed terrestrial geomagnetic record for the interval 0-5 Ma. In: Liu Tungsheng eds. Leoss, Environment and Global Change, Beijing: Science Press, 1991, 147-156.
    123. Zhong Dalai, Ding lin. Rising process of Qinghai-Xizang Plateau and its mechanism. Scientia Sinica, 1996, 39(4): 369-379.
    124. Zhou L P, Shackleton N J. Thermoluminescence dating of the Orkusay loess section in Tashkent region, Uzbekistan, Central Asia. Quaternary Science Reviwes, 1995, 14: 721-730.
    125. Zhu R X, Zhou L P, Laj C, et al. The Blake geomagnetic polarity episode recorded in Chinese loess. Geoohvs Res Lett, 1994, 21: 697-700.
    126.安芷生,李华梅,王俊达.洛川黄土剖面的古地磁学研究.地球化学,1977,(4):239-249.
    127.安芷生,Kukla,G.U.,刘东生,洛川黄土地层学,第四纪研究,1989,2:155-168.
    128.安芷生,孙东怀,陈明扬等.黄土高原红粘土序列与晚第三纪的气候事件.第四纪研究,2000,20(5):435-446.
    129.安芷生,王俊达,李华梅.洛川黄土剖面的古地磁研究,地球化学,1997,4:39-49.
    130.安芷生.淀积铁质粒胶膜及其成因意义,科学通报,1979,24:356-359
    131.陈发虎,张维信等.甘青地区黄土地层学与第四纪冰川问题.科学出版社,1993.
    132.陈吉余,罗祖德,陈德昌等.钱塘江河口沙坎的形成及其历史演化.科学通报,1964,30(2).
    133.陈梦熊.1947.甘肃中部之地文.地质论评,12(6).
    134.陈云,童国榜,曹家栋,等.渭河宝鸡段河谷地貌的构造气候响应.地质力学学报,1999,5(4):49-56.
    135.成都地院陕北分队.沉积岩(物)粒度分析及其应用,1978.
    136.程绍平,邓起东,李传友等.流水下切的动力学机制、物理侵蚀过程和影响因素:评述和展望.第四纪研究,2004,24(4):421-429.
    137.崔之久,伍永秋,刘耕年.关于“昆仑—黄河运动”.中国科学(D辑),1998,28(1):53-59.
    138.丁骗.黄河流域之地形变迁及水系演进.黄河研究资料汇编(第三种),南京水利实验处,1949.
    139.丁仲礼,孙继敏,刘东生.联系沙漠-黄土演化过程中耦合关系的沉积学指标,中国科学(D辑),1999,29(1):82-87.
    140.丁仲礼,孙继敏,杨石岭等.灵台黄土—红粘土序列的磁性地层及粒度记录.第四纪研究,1998,1:86-94.
    141.丁仲礼,余志伟,刘东生.中国黄土研究新进展(三)事件标尺,第四纪研究,1991,4:336-348.
    142.方小敏,李吉均,Rob Van der Voo.西秦岭黄土的形成时代及与物源区关系探讨.科学通报,1999,44(7):779-782.
    143.方小敏,李吉均,朱俊杰等.甘肃临夏盆地新生代地层绝对年代测定与划分.科学通报,1997,42(14):1457-1471.
    144.方小敏,潘保田,管东红等.兰州约60ka以来夏季风干年尺度不稳定性研究.科学通报,1999,44(4):436-439.
    145.方小敏,赵志军,李吉均等.祁连山北缘老君庙背斜晚新生代磁性地层与高原北部隆升.中国科学(D辑),2004,34(2):97-106.
    146.傅开道,高军平,方小敏等.祁连山区中西段沉积物粒径和青藏高原隆升关系模型.中国科学(D辑),2001,31(增刊):169-174.
    147.高善明.1983.渭河发育过程.渭河下游河流地貌.科学出版社.
    148.管清玉,潘保田,高红山等.粘土含量—夏季风的良好替代指标,干旱区资源与环境,2004,18(8):17-19.
    149.郭进京,韩文峰,梁收运.青藏高原东北缘岷县—武都地区构造地貌演化与高原隆升,中国地质,2006,33(2):383-392.
    150.郭守年,徐敬文,孟万辉等.天水地区重力剖面测量结果与地壳结构.西北地震学报,1995,17(1):36-42.
    151.郭正堂,姜文英,吕厚远等.东亚季风区的极端气候事件及其原因.2002,9(1):113-120
    152.国家地震局《鄂尔多斯周缘活动断裂系》课题组.鄂尔多斯周缘活动断裂系,1988,地震出版社.
    153.黄春长,陕西蓝田辋川锡水洞遗址自然环境研究.西北大学学报(自然科学版),1984,14(1):71-78.
    154.黄春长.陕西蓝田辋川锡水洞旧石器时代文化遗址的发现及意义.科学通报,1983,4:241-244.
    155.黄万波,孙翠玉.三门峡水库第四纪地质会议野外旅行指南,见:中国第四纪地质专业会员会.三门峡第四纪地质会议文集.科学出版社,1959,141-146.
    156.贾建称,李建伍,王根厚等.索曲流域现代河流阶地对南羌塘陆块新构造运动的反演.东华理工学院学报,2006,29(1):17-21.
    157.贾兰坡.蓝田新生界.《陕西蓝田新生界现场会议论文集》.科学出版社,1964.
    158.蒋复初,傅建利,王书兵等.关于黄河贯通三门峡的时代.地质力学学报,2005,11(4):293-301.
    159.蒋复初,王书兵,傅建利等.河南邙山晚更新世黄土的环境记录.第四纪研究,2003,23(6):1-2.
    160.蒋复初,吴锡浩,肖国华等.邙山黄土及三门峡贯通时代.见:安芷生主编.黄土、黄河与黄河文化.黄河水利出版社.1998,13-19.
    161.康建成,穆德芬.甘肃临夏北塬黄土剖面地球化学特征.兰州大学学报(自然科学版本),1998,3d(2):119-125.
    162.康来迅.西秦岭北缘断裂带活动构造地貌特征及其形成机理,华东师范大学学报(自然科学版),1994,2:67-74.
    163.雷祥义,岳乐平,屈红军.秦岭北麓黄土沉积环境.西北大学学报,1990,20(3):79-88.
    164.雷祥义,张猛刚.渭河中游水系的阶地形成年代.见:卢演俦主编,新构造运动与环境,北京:地震出版社,2001,149-157.
    165.李传友.西秦岭北缘断裂带晚第四纪活动及其意义.北京:中国地震局地质研究所,2006.
    166.李吉均,方小敏,马海洲等.晚新生代黄河上游地貌演化与青藏高原隆起.中国科学(D)辑,1996,26(4):316-322.
    167.李吉均,方小敏,潘保田等.新生代晚期青藏高原强烈隆起及其对周边环境的影响.第四纪研究,2001,21(5):281-391.
    168.李吉均,方小敏.青藏高原隆起与环境变化研究.科学通报,1998,43(15):1569-1574.
    169.李吉均,文世宣,张青松等.青藏高原隆起的时代、幅度与形成探讨.中国科学,1979,(6):608-616.
    170.李吉均,朱俊杰,康世昌等.末次冰期旋回兰州黄土剖面与南极东方站冰岩芯研究.中国科学(B辑),1990,10:1086-1094.
    171.李吉均.黄河上游晚新生代以来环境演化—兼论青藏运动.西北国土发展与地理建设,1994,西北大学出版社,12-16.
    172.李勇,曹叔尤,周荣军等.晚新生代岷江下蚀速率及其对青藏高原东缘山脉隆升机制和形成时限的定量约束.地质学报,2005,79(1):28-37.
    173.李有利,史兴民,傅建利等.山西南部1.2 MaBP的地貌转型事件.地理科学,2004,24(3):292-297.
    174.李玉成,侯珍清,康哲民.中国西北陕甘宁青(E90~111°,N32~42°)地震区划.兰州:甘肃人民出版社,1986,75-105.
    175.刘椿.古地磁学导论.科学出版社,1991.
    176.刘东生.黄土与环境.西安交通大学学报(社会科学版),2002,22(62):7-12.
    177.刘东生.黄土与环境.北京:科学出版社,1985.
    178.刘护军,薛祥煦.对渭河盆地新生界及其时代的讨论.地球科学与环境学报,2004,26(4):1-5.
    179.刘小凤,刘百篪.应用“构造—气候旋回”年代学方法确定河流阶地形成时代的初步研究.西北地震学报,2001,23(4):395-403.
    180.鹿化煜,Huissteden K V,安芷生等.早、中更新世东亚冬季风强度的快速变化.海洋地质与第四纪地质,1999,19(2):75-83.
    181.鹿化煜,安芷生,J.Vandenberghe.洛川黄土地层定年的一个模式及其初步应用.沉积学报,1997,15(3):150-152.
    182.鹿化煜,安芷生,王晓勇等.最近14 Ma青藏高原东北缘阶段性隆升的地貌证据.中国科学(D辑),2004,34(9):855-864.
    183.鹿化煜,安芷生,杨文峰.洛川黄土序列时间标尺的初步建立.高校地质学报,1996,2(2):230-236.
    184.鹿化煜,安芷生.黄土高原黄土粒度组成的古气候意义.中国科学(D辑),1998,28(3):278-283.
    185.鹿化煜,安芷生.洛川黄土粒度组成的古气候意义.科学通报,1997b,42(1):66-69.
    186.罗四维.冬季我国高原东侧切变线形成的分析.气象学报,1963,33:305-318.
    187.孟万辉,孟夏.兰州—天水—武都地区重力场变化及其与地震的关系.西北地震学报,1999,21(3):326-330.
    188.米丰收,张安良.秦岭北缘断裂带的河流阶地变特征.见:国家地震局地质研究所编,活动断裂研究(2),北京:地震出版社,1992,190-199.
    189.倪晋仁,马蔼乃.河流动力地貌学。北京:北京大学出版社,1998,156-157.
    190.潘保田,高红山,李吉均.关于夷平面的科学问题—兼论青藏高原夷平面.地理科学,2002,22(5):520-526.
    191.潘保田,李吉均,曹继秀等.化隆盆地地貌演化与黄河水系发展研究.山地研究,1996, 14(3):153-159.
    192.潘保田,李吉均,李炳元.青藏高原地面抬升证据讨论.兰州大学学报(自然科学版),2000,36(3):100-108.
    193.潘保田,李吉均,朱俊杰,等.兰州地区黄河阶地发育与地貌演化.《中国西部第四纪冰川与环境》.北京:科学出版社,1991,271-277.
    194.潘保田,李吉均,朱俊杰等.兰州地区黄河阶地发育与地貌演化.见:中国西部第四纪冰川与环境学术讨论会编,中国西部第四纪冰川与环境.北京,科学出版社,1991,271-277.
    195.潘保田,苏怀,胡春生等.兰州地区1.0 Ma黄河阶地的发现和0.8 Ma阶地形成时代的重新厘定.自然科学进展,2006,16(11):1411-1418.
    196.潘保田,王均平,高红山等.从三门峡黄河阶地的年代看黄河何时东流入海,自然科学进展,2005b,15(6):700-705.
    197.潘保田,王均平,高红山等.河南扣马黄河最高级阶地古地磁年代及其对黄河贯通时代的指示.科学通报,2005a,50(3):255-261.
    198.潘保田,邬光剑,王义祥等.祁连山东段沙沟河阶地的年代与成因,科学通报,2000,45(24):2669-2675.
    199.潘保田,苏怀,刘小丰等.兰州东盆地最近1.2Ma的黄河阶地序列与形成原因.第四纪研究,2007,27(2):172-180.
    200.齐矗华,甘枝茂,惠振德.陕西秦岭构造地貌基本特征.见:中国地理学会第一次构造地貌学术讨论会论文集.北京:科学出版社,1984,145-150.
    201.钱宁,谢汉祥,周志德等.钱塘江河口沙坎德近代过程.地理学报,1964,30(2).
    202.陕西省地震局.秦岭北缘活动断裂带,北京:地震出版社,1996.
    203.沈玉昌.河流地貌学概述.北京:科学出版社,1986,61-63.
    204.施雅风,李吉均,李炳元等.青藏高原晚新生代隆升与环境变化.广州:广东科技出版社,1998.
    205.施雅风,李吉均,李炳元等.晚新生代青藏高原的隆升与东亚环境变化.地理学报,1999,54(1):10-21.
    206.史兴民,杨景春.河流地貌对构造活动的响应.水土保持研究,2003,10(3):48-51.
    207.水力电力部水利司,全国主要河流水文特征统计,1975年5月.
    208.宋春晖,方小敏,潘保田等.高原北缘典型盆地新生代沉积序列及其沉积演化.见:郑度,姚檀栋等编,青藏高原隆升与环境效应.北京:科学出版社,2004,200-207.
    209.宋友桂,方小敏,李吉均等.晚新生代六盘山隆升过程初探.中国科学(D辑),2001,31(增刊):142-148.
    210.孙继敏,许立亮.汾渭地堑的河流阶地对第四纪时期印度—欧亚板块碰撞带的构造响应.第四纪研究,2007,27(1):21-26.
    211.孙继敏.中国黄土的物质来源及其粉尘的产生机制与搬运过程.第四纪研究,2004,24(2):175-183.
    212.腾志宏,王晓红.秦岭造山带新生代构造隆升与区域环境效应研究.陕西地质,1996,14(2):33-41.
    213.童永生,王景文.河南潭头、卢氏和灵宝盆地上白垩—下第三系的划分.古脊椎动物与古人类,1980,18(1):21-28.
    214.王非,李红春,朱日祥等.晚第四纪中秦岭下切速率与构造抬升.科学通报,2002,47(13):1032-1036.
    215.王国芝,王成善,曾允孚等.滇西高原的隆升与莺歌海盆地的沉积响应.沉积学报,2000, 18(2):234-240.
    216.王均平,潘保田,高红山等.豫西黄土中砂粒含量及其环境意义,中国沙漠,2005,25(5):629-634.
    217.王均平.黄河中游晚新生代地貌演化与黄河发育.兰州大学博士论文,2006.
    218.王俊达,李华梅.陇西黄土剖面的古地磁研究.地球化学,1982(1):85-89.
    219.王乃樑.蓝田新生界,《陕西蓝田新生界现场会议论文集》.北京:科学出版社,1964.
    220.王乃樑等.陕西蓝田地区灞河中游地貌结构及发育历史.陕西蓝田新生界现场会议论文集.科学出版社,1964.
    221.王书兵,蒋复初,吴锡浩等.三门峡地区三门群地层时代研究.地质力学学报,1999,5(4):57-65.
    222.王勇,潘保田,崔明.1.2~0.6MaBP青藏高原的隆升与东亚地表各圈层的相互作用,兰州大学学报(自然科学版),2006,42(3):1-7.
    223.王跃,董光荣,金炯等.新构造运动在塔里木盆地演化中作用.地质论评,1992,38(5):72-76.
    224.吴珍汉,吴中海,江万等.中国大陆及邻区新生代构造—地貌演化过程与机制.北京:科学出版社,2001,18.
    225.伍光和,田连恕,胡双熙等.自然地理学(第三版).北京:高等教育出版社,1999.
    226.伍永秋,崔之久,葛道凯等.青藏高原何时隆升到现代的高度—以昆仑山垭口地区为例.地理科学,1999,19(6):481-484.
    227.夏开儒,李昭淑.渭河下游冲积形态的研究.地理学报,1963,29(3).
    228.刑成起,丁国瑜,卢演俦等.黄河中游河流阶地的对比及阶地系列形成中构造作用的多层次性分析.中国地震,2001,17(2):187-201.
    229.熊尚发,丁仲礼,刘东生.北京邻区1.2Ma以来黄土沉积及其对东部沙漠扩张的指示,海洋地质与第四纪地质,1999,19(3):67-73.
    230.熊尚发,刘东生,丁仲礼.两个冰期—间冰期旋回的黄土记录及其古气候意义.地理科学,2002,22(1):18-23.
    231.徐叔鹰.陇中西部黄土区黄河及其支流阶地反映的若干问题.兰州大学学报(自然科学版),1965,17(1):116-143.
    232.薛祥煦,李虎侯,李永项等.秦岭中更新世以来抬升的新资料及认识.第四纪研究,2004,24(1):82-87.
    233.薛祥煦,张云翔,毕延等.秦岭东段山间盆地的发育及自然环境变迁.北京:地质出版社,1996,49-52.
    234.薛祥煦,张云翔,岳乐平等.陕西府谷老高川三趾马动物群的发现及其时代分期.科学通报,1995,40(5):447-449.
    235.薛祥煦,张云翔.从生物化石的性质和分布分析秦岭上升的阶段性与幅度.地质评论,1996,42(1):30-36.
    236.薛祥煦,张云翔.秦岭东部红色盆地的形成时代及发育特征.见:秦岭造山带学术讨论会论文选集.西安:西北大学出版社,1990,89-98.
    237.徐炯心.中国不同自然带地河流过程.北京:科学出版社,1996,2-3.
    238.颜茂都,方小敏,陈诗越等.青藏高原更新世黄土磁化率和磁性地层与高原重大气候变化事件.中国科学(D辑),2001,31(增刊):182-186.
    239.杨东,方小敏,宋有桂等.六盘山西侧山麓剥蚀面的发育与新构造隆升.沉积学报,2002,20(2):282-287.
    240.杨杰东,陈骏,李春雷等.2.5Ma以来大陆风化强度的演化.地质论评,2000,45(5): 472-480.
    241.杨景春,李有利.2001.地貌学原理.北京:北京大学出版社.
    242.杨胜利,方小敏,李吉均等.表土颜色和气候定性至半定量关系研究.中国科学(D辑),2001,31(增刊):175-181.
    243.尹功明,卢演俦,赵华等.华山新生代构造抬升.科学通报,2001,46(13):1121-1123.
    244.袁道阳,刘小凤,郑文俊等.兰州马衔山—兴隆山活动断裂系的构造变形特征和机制.中国地质,2003,19(2):125-131.
    245.袁道阳,张培震,刘百篪等.兰州马衔山北源断裂带的新活动特征.地震地质,2002,24(3):315-323.
    246.袁庆东,郭召杰,张志诚等.天山北缘河流阶地形成及构造变形定量分析.地质学报,2006,80(2):210-216.
    247.岳乐平,雷祥义,屈红军.黄河中游水系的阶地发育时代.地质评论,1997,2(43):186-192.
    248.岳乐平,薛祥煦.中国黄土古地磁学.北京:地质出版社,1995,38-41.
    249.岳乐平,张云翔,王建其等.中国北方陆相沉积5.3Ma磁性地层序列.地质评论,1999,45(4):444-448.
    250.张保生.黄河河道地形的发育.科学通报,1957,8.
    251.张伯生.在断块构造的基础上说明秦岭两侧河流的发育.地质学报,1964,44(4):406-416.
    252.张国伟,梅志超,周鼎武等.秦岭构造带的形成及其演化.见:张国伟等著,秦岭造山带的形成及演化.西安:西北大学出版社,1988,1-16.
    253.张虎才.武都黄土堆积及晚更新世以来环境变迁研究.兰州大学学报(自然科学版),1997,33(1):105-114.
    254.张抗.黄河中游水系形成史初探.中国第四纪研究,1989,8(1):185-193.
    255.张天佑,A.E.M.纳恩.中国岩石的一些古地磁研究,科学记录,1959,3(1):37-38.
    256.张小曳,张光宇,朱光华等.中国源区粉尘的元素示踪.中国科学(D辑),1996b,26(5):423-430.
    257.张小曳.亚洲粉尘源区的分布、释放、疏松、沉降与黄土堆积.第四纪研究,2001,21(1):29-40.
    258.张勇.陇西盆地东南隅新近纪沉积与环境演变.兰州大学博士论文,2006.
    259.张有龙,李麒麟,赵桐等.兰州地区最老黄土的发现及其特征.中国区域地质,2001,20(2):141-157.
    260.张玉萍,黄万波,汤英俊等.陕西蓝田地区新生界.北京:科学出版社,1978,1-64.
    261.张云翔,孙东怀,安芷生等.甘肃灵台上新世晚期红粘土中的哺乳动物化石.古脊椎动物学报,1999,37(3):190-199.
    262.张宗祜等.陕西渭河谷地西部第四系问题,1964.
    263.张欧阳,许炯心.黄河流域产水产沙、输移和沉积系统的划分.地理研究,2002,21(2):188-194.
    264.赵景波,岳应利,杜鹃.陕西洛川黄土中第五层古土壤与环境研究.中国沙漠,2004,24(1):30-34.
    265.赵景波,周晓红.咸阳市近代渭河洪水演化研究.陕西师范大学学报(自然科学版),2005,33(2):103-110.
    266.赵志军,史正涛,方小敏等.祁连山北麓早更新世新构造运动的地层记录.兰州大学学报(自然科学版本),2001,37(6):92-98.
    267.中国科学院地理研究所渭河研究组.渭河下游河流地貌.科学出版社,1983,54-81.
    268.周特先,王利,曹明志.宁夏构造地貌格局形成与发展.地理学报,1985,40(3):215-223.
    269.朱俊杰,曹继秀,钟巍.兰州黄河最高级阶地与最老黄土的发现及其古地磁年代学的研究.青藏高原形成演化、环境变迁与生态系统研究.科学出版社,1994,77-90.
    270.朱先谟,赵景波.黄土中古土壤研究的新进展.世界科技研究与进展,1999,21(2):37-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700