峨眉山玄武岩PGE富集机理——兼论陆海玄武岩PGE成矿作用差异
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
晚二叠世峨眉山玄武岩建造是世界上前第三纪五个最大的溢流玄武岩建造之一。伴随玄武岩的大量喷发有许多基性-超基性岩体、岩脉的侵入活动,在这些侵入体中已发现较多的V-Ti-Fe、PGE、Ni-Cu等矿床。本文以攀西地区PGE在暗色岩套(具有时空及成因联系的峨眉山玄武岩、基性-超基性岩、浅成脉岩的通称)中的富集机理为研究目标,以巨量玄武岩(喷出相)PGE相对贫化而局部侵入基性-超基性岩体(侵入体)PGE相对富集为切入点,系统研究了峨眉山玄武岩分布区的控矿构造、火成岩的分布及地球化学特征对矿床的控制作用,并重点解剖了丹巴杨柳坪岩浆Ni-Cu-PGE硫化物矿床的成矿机理。
     区域地球物理特征研究表明,攀西地区上地壳存在的近地表高速地体与深部物质上涌有关。裂谷的地壳内部存在高密度强磁性地质体群,表明幔源超镁铁-镁铁质岩体大量贯入于地壳中。多个玄武岩分布区下存在基性-超基性岩体,暗示了玄武岩喷发时岩浆侵入活动的普遍性。
     控矿构造的遥感信息解译表明攀西地区主要的控矿因素为断裂带和火成岩体。多种构造因素的复合是控矿的关键,大量的岩浆为矿床形成提供足量的成矿元素。
     出露于丹巴地区的大石包组玄武岩是峨眉山玄武岩的组成部分,Zr/TiO_2-Nb/Y岩石类型划分图显示其为亚碱性-碱性之间的过渡系列。Th/Ta-Th、Ti/Zr-SiO_2和Gd/Yb-La/Sm图解表明该段玄武岩属岩浆结晶分异演化的产物,受地壳同化混染作用较小。Pd-Cu、Pt-Mg#、Ir-Mg#关系表明,形成该段玄武岩的岩浆是S不饱和的,该岩浆极具形成岩浆PGE矿床的可能性。玄武岩PGE陆海对比研究表明峨眉山玄武岩高的PGE含量、Pd/Ir值源于地幔柱活动下的幔源高度熔融。
     杨柳坪含矿基性-超基性岩体为顺层一次性侵入形成的多岩相“杂岩体”,岩体自蚀变作用强烈,其岩浆期后热液主要为富CO_2、SiO_2流体。玄武岩、基性-超基性岩体岩石化学特征具Nb、Ta、Hf负异常,具有大陆溢流玄武岩的岩石化学特征。火成岩微量元素和PGE参数的一致性表明它们之间具有成生联系。
    
    中国海洋大学博士学位论文
     杨柳坪岩浆Ni一Cu一PGE硫化物矿床按成矿作用的不同可分为岩浆熔离型、岩
    浆接触交代型和热液型三种,岩浆熔离型为其主要的矿体类型,其产出受岩相控制。
    从硫化物与岩体的比例来看,岩浆在最终就位之前经历过硫化物的预富集作用;东
    谷一鱼海子大断裂可能为岩浆通道,矿床S同位素组成也表明其成矿物质来源于
    地慢。综合矿石S同位素分析结果与岩体微量元素特征分析,岩浆的结晶分异或
    不同成分岩浆的混合作用是促使岩浆发生S过饱和及其硫化物熔离作用发生的主
    要机制。
     研究认为,源于地慢柱作用下的具高PGE含量的慢源岩浆为矿床的形成提供
    了成矿元素,岩浆演化过程中可能发生的硫化物熔离作用所形成的硫化物熔体富集
    PGE并侵入于通道或构造薄弱地带就位成矿。因此PGE主要富集于基性一超基性
    岩体内的硫化物中,次为该类岩体的围岩裂隙中。溢流相(玄武岩)中PGE的亏
    损意味着熔岩经历了硫化物的熔离作用。
Late Permian Emeishan basalt formation is one of the five biggest pre-Tertiary flood basalt formations. Accompanying the vast eruption of the basalts, there are a lot of mafic-ultramafic intrusions and dikes, in which magmatic V-Ti-Fe, PGE and Ni-Cu deposits have been detected. Aiming at the elucidation of the PGE enrichment mechanism in the Emeishan Traps (a general term for temporally, spatially and genetically associated Emeishan basalts, mafic-ultramafic intrusions and dikes) and based upon the fundamental phenomena that locally PGE enrichments in intrusions are connected with the depletion of PGE in the voluminous volcanics, we systematically studied ore-controlling structures in the Panxi rift, and the impact of the distribution and geochemistry of igneous rocks on the distribution of ore deposits with an emphases on the analysis of ore-forming processes of the Yangliuping magmatic Ni-Cu-PGE sulfide deposit.
    Studies of regional geophysical signatures reveal that near surface high-speed terrain in the Panxi area is related to the upwelling of deeplying matter. Highly distributed ferromagnetic geologic bodies under the rift hints the injection of many mantle-originated mafic-ultramafic intrusions, and the presence of these intrusive bodies under many basalts-distributed areas suggests the universalism of magma penetrating activity during the Emeishan flood volcanism.
    Interpretation of remote sensing information manifests that main ore-controlling factors in the Panxi area are fault belts and igneous bodies. The combination of multi-structures is the key to ore-forming processes, while voluminous magma provided metallogenetic elements necessary to the formation of deposits.
    Dashibao formation basalt outcropped in the Danba area is part of the Emeishan
    
    
    Zr/TiCVNb/Y rock type discrimination diagram. Plots of Th/Ta-Th, Ti/Zr-SiOi and Gd/Yb-La/Sm demonstrate that sampled basalts are derivatives of magma experienced crystallization differentiation with little crustal contamination, if there is any. Scattergrams of Pd-Cu, Pt-Mg# and Ir-Mg# indicate that this section of basalts was formed from S-undersaturated magma, which had a great potential to form magmatic PGE sulfide deposit provided it reached S-oversaturation en route to the surface. Compared with basalts from Kolbeinsey ridge and other places, Emeishan basalts have high PGE concentrations and Pd/Ir values, and this indicates that they were mantle melts of high melting degree.
    Yangliuping ore-bearing mafic-ultramafic intrusions consist of multi-lithofacies intruded along strata in one period, and the intrusions had suffered a high degree of self-alteration, which reflected that post-magmatic fluids were mainly composed of SiC>2 and CO2- Intrusions and basalts have geochemical features of continental flood basalts with negative Nb, Ta and Hf anomalies. Consistencies of the trace elements and PGE parameters among basalts, intrusions and ore-bodies indicate a genetic link among them.
    Based on ore-forming processes, ore-bodies of Yangliuping magmatic Ni-Cu-PGE sulfide deposit can be divided into three subtypes: 1) ore-bodies formed through magma differentiation by liquation, which is the main ore type and their emplacement is strictly controlled by lithofacies, 2) ore-bodies formed by contact metasomatism between intrusions and their wall rocks, and 3) ore-bodies formed by hydrothermal fluids. The ratios of sulfides to intrusives indicate that magma had experienced sulfide pre-concentration process before its final emplacement, and Donggu-Yuhaizi fault could be the pathway of the magma. Sulfur isotope composition of the deposit also shows that ore-forming elements came from the mantle. Based on the S isotope composition and trace elements characteristics of the intrusion, magma crystallization fractionation or magma mixing is the main factor triggering the happening of S-oversaturation and unmixing of sulfide melts.
    Studies reveal that under mantle plume operation, magma originated from mantle with high PGE concentrations provided ore-forming elements for the d
引文
1.曹志敏,李佑国。康定黄金坪金矿床原生晕分带特征及找矿意义。矿物岩石 1992,12(2):53-60.
    2.丛柏林。攀西裂谷的形成为演化。北京:科学出版社,1988.
    3.侯增谦,卢红仁,汪云亮等。峨眉火成岩省:结构、成因与特色。地质论评,1999a,45(增刊):885-891.
    4.侯增谦,汪云亮,张成江等。峨眉火成岩省地热柱的主要元素及Cr,Ni地球化学特征。地质论评,1999b,45(增刊):880-884.
    5.胡晓强,李云泉,帅德权。四川丹巴地区Cu-Ni-Pt族元素矿床矿石组构与成矿期次。成都理工学院学报,2001a,28(1):48-52.
    6.胡晓强,李云泉,帅德权。四川丹巴地区Cu-Ni-Pt族元素矿床的矿石矿物特征。矿物岩石,2001b,21(1):14-18.
    7.李晓林,柴之芳,毛雪瑛。铂族元素地球化学示踪研究—四川新街层状侵入岩体铂族元素地球化学特征。地球物理学报,1998,41(增刊):162-168.
    8.林建英。中国西南三省二叠纪玄武岩的时空分布及其地质特征。科学通报,1985,30(12):929-932.
    9.卢记仁。峨眉地幔柱的动力学特征。地球学报,1996,17(4):424-438.
    10.骆耀南,陈茂勋,俞如龙,侯立玮、赖绍民等。扬子地台西南缘有色贵金属成矿地质条件及远景预测。地质科技通报,1998,10:32-33.
    11.梅尔W.D.等著,旷平摘译。岩浆型镍-铜-铂族元素矿床的勘查:地球化学手段的新进展及其在南部非洲某些矿床的应用。地质科技动态,1999,11:11-13.
    12.潘兆橹等。结晶学及矿物学。北京,地质出版社,1988:8-10.
    13.宋谢炎,侯增谦,曹志敏,卢纪仁,汪云亮,张成江,李佑国。峨眉大火成岩省的岩石地球化学特征及时限。地质学报,2001,75(4):498-506.
    14.宋谢炎,侯增谦,汪云亮,张成江,曹志敏,李佑国。峨眉山玄武岩的地幔热柱成因。矿物岩石,2002,22(4):27-32.
    15.宋谢炎,王玉兰,曹志敏,金景福,李巨初,温春齐。峨眉山玄武岩、峨眉地裂运动与幔热柱。地质地球化学,1998,1:47-52.
    16.王登红,楚萤石,罗辅勋,卢治安。杨柳坪铜-镍-铂族元素矿床的矿化类型及意义。矿物岩石地球化学通报,2000,19(4):323-325.
    17.王登红,刘凤山,楚萤石,罗辅勋。四川杨柳坪热液型富铂族元素矿石的发现及其意义。地质通报,2002,21(3):158-162.
    18.王登红,骆耀南,傅德明,楚萤石,卢治安。四川杨柳坪Cu-Ni-PGE矿区基性-超基性岩的地球化学特征及其含矿性。地球学报,2001,22(2):135-140.
    
    
    19.王旺章,汪云亮,曾昭贵,张筑凤。峨眉山玄武岩母岩浆的性质及其成因类型。矿物岩石,1996,16(1):17-23.
    20.汪云亮,李巨初,周蓉生,王旺章,章纯涵,熊舜华。岩浆岩微量元素地球化学原理及其应用—兼论峨眉山玄武岩的成因。成都,成都科技大学出版社,1993.
    21.汪云亮,张成江,修淑芝。玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别。岩石学报,2001,17(3):413-421.
    22.张成江,李晓林。峨眉山玄武岩的铂族元素地球化学特征。岩石学报,1998,14(3):299-304.
    23.张云湘,骆耀南,杨崇喜等。攀西裂谷。北京,地质出版社,1988,P:141-197.
    24.赵家骧。中国西南部二叠纪玄武岩系成因及其时代的检讨。地质论评,1942,7:4-5.
    25. Agiorgitis G., and Wolf R. Aspects of osmium, ruthenium and iridium contents in some Greek chromites. Chem. Geol., 1978, 23: 267-272.
    26. Amoss(?) J., Dabl(?) P., and Allibert M. Thermochemical behaviour of Pt, Ir, Rh and Ru vs. fO_2 and fS_2 in a basaltic melt: Implications for the differentiation and precipitation of these elements. Mineral. Petrol., 2000, 68: 29-62.
    27. Auge T. Platinum-group-mineral inclusions in ophiolitic chromitite from the Vorinos complex, Greece. Canadian Mineralogist, 1985, 23:163-171.
    28. Auge T. Platinum-group-minerals in the Tiebaghi and Vourinos ophiolite complexes: Genetic implications. Canadian Mineralogist, 1988, 26:177 - 192.
    29. Ballhaus C.G., and Stumpfle F. Sulfide and platinum mineralization in the Merensky Reef: Evidence from hydrous silicates and fluid inclusions. Contribution to Mineralogy and Petrology, 1986, 94:193-204.
    30. Barnes S.-J. and Picard C.P. The behavior of platinum-group elements during partial melting, crystal fractionation, and sulfide segregation: An example from the Cape Smith Fold Belt, northern Quebec. Geochim. Cosmochim. Acta, 1993, 57: 79-87.
    31. Barnes S.-J., Makovicky M., Rose-Hansen J. and Karup-Moller S. Partition coefficients for Ni, Cu, Pd, Pt, Rh and Ir between monosulphide solid solution and sulphide liquid and the formation of compositionally zoned Ni-Cu sulfide bodies by fractional crystallization of sulfide liquid. Can.J. Earth Sci., 1997, 34: 366-374.
    32. Barnes, S.-J., Naldrett, A.J., and Gorton, M.P. The origin of the fractionation of platinum-group elements in terrestrial magmas. Chem. Geol., 1985, 53: 303-323.
    33. Boudreau A.E. Fluid fluxing of cumulates: The J-M Reef and associated rocks of the Srillwater Complex, Montana..Journal of Petrology, 1999, 40: 755-772.
    34. Boudreau A.E., Mathez E.A., and McCallum, I.S. Halogen geochemistry of the Stillwater and Bushveld complexes: Evidence for transport of the platinum-group elements by Cl-rich fluids. Journal of Petrology, 1986, 27: 967-986.
    
    
    35. Brooks C.K., Keays R.R., Lambert D.D., Frick L.R., and Nielsen T.F.D. Re-Os isotope geochemistry of Tertiary picritic and basaltic magmatism of East Greenland: constraints on plume-lithosphere interactions and the genesis on the Platinova reef, Skaergaard intrusion. Litbos, 1999, 47:107-126
    36. Br(?)gmann G.E., Arndt N.T., Hofmann A.W., and Tobschall H.J. Noble metal abundances in komatiite suites from Alexo, Ontario, and Gorgona Island, Columbia, Geochim, Cosmochim. Acta. 1987, 51: 2159-2169.
    37. Burt D.R.L., and Sheppy N.R. Mount Keith nickel sulfide deposit, In: Knight CL (ed) Economic geology of Australia and Papua New Guinea, I. Metals: Australasian Institution Mining and Metallitrgy Mon., 1975, 5: 159-168.
    38. Cabri L.J., and Laflamme J.H.G. The mineralogy of the platinum-group dements from some copper-nickel deposits of the Sudbury area, Ontario. Econ. Geol., 1976, 71: 1159-1195.
    39. Campbell I.H. and Naldrett A.J. The influence of silicate/sulfide ratios on the geochemistry of magmatic sulfides. Econ. Geol., 1979, 74:1503-1506.
    40. Campbell I.H., and Turner, J.S. The role of convection in the formation of platinum and chromitite deposits in layered intrusions. Mineralogical Association of Canada Short Course Handbook, 1986, 12: 236-278.
    41. Campbell I.H., Naldrett A.J., Barnes S.J. A model for the origin of the platinum-rich sulfide horizons in the Bushveld and Stillwater complexes. Journal of Petrology, 1983, 24: 133-165.
    42. Can Z.-M., Luo Y,-N., Wen C,-Q., Li B.-H. A genetic discussion of the first independent tellurium deposit. Science in China Series B. 1995, 38 (11): 1370-1378.
    43. Capobianco C.J. and Drake M.J. Partitioning of ruthenium, rhodium and palladium between spinel and silicate melt and implications for platinum-group element fracdonation trends. Geochim. Cosmochim. Acta, 1990, 54: 869-874.
    44. Capobianco C.J., Hervig R.L. and Drake M.J. Experiments on crystal/liquid partitioning of Ru, Rh and Pd for magnetite and hematite solid solutions crystallized from silicate melt. Chem. Geol., 1994, 113: 23-43.
    45. Chauvel C., Hofmann A.W., and Vidal P. HIMU-EM: The French Polynesian connection. Earth and Planet. Lett., 1992, 110: 99-119.
    46. Chen Y. Paragenesis of platinum-group minerals. Geoscience, 2001, 15 (2): 131-142.
    47. Chou C.L., Shaw D.M., and Crockett J.H. Siderophile trace elements in the Earth's oceanic crest and upper mande. J. Geophys. Res., 1983, 88: A507-A518.
    48. Chung S.-L., and Jahn B.M., Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary,, Geology, 1995, 23: 889-892.
    
    
    49. Chung S.L., Jahn B.M., Wu G.Y., Lo C.H., and Cong B.L. The Emeishan Flood Basalt in SW China: a mantle plume initiation model and its connection with continental breakup and mass extraction at the Permian-Triassic boundary, In: M.F.J. Flower, S.L. Chung, C.H. Lo, T.Y Lee (Eds.), Mantle Dynamics and Plate Interactions in East Asia, AGU Geodyn. 1998, 27: 47-58.
    50. Cliff R.A., Baker P.E., and Mateer N.J. Geochemistry of inaccessible Island volcanics. Chem. Geol., 1991, 92: 251-260.
    51. Condie K.C. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem. Geol., 1993, 104: 1-37.
    52. Crocker J.H., Fleet M.E., and Stone W.E, Experimental partitioning of osmium, iridium and gold between basalt melt and sulfide liquid at 1300℃. J. Earth Sci., 1992, 39:427-432.
    53. Crocker J.H., Fleet M.E., and Stone W.E. Implications of composition for experimental partitioning of platinum-group elements and gold between sulfide liquid and basaltic melt: the significance of nickel content. Geochim. Cosmochim. Acta, 1997, 61:4139-4149.
    54. Czamanske G.K., and Moore J.G. Composition and phase chemistry of sulfide globules in basalt from Mid-Atlantic Ridge rift valley near 37°N lat. Geol. Soc. Am. Bull. 1977, 88: 587-599.
    55. Darbyshire F.A., Bjarnason I.T., White R.S., and Fl(?)venz O.G. Crustal structure above the Iceland mantle plume imaged by the ICEMELT refraction profile. Geophys. J. Int. 1998, 135: 1131-1149.
    56. Devey C.W., Garbe-Sch(?)nberg C.-D., Stoffers P., Chauvel C., and Mertz D.F. Geochemical effects of dynamic melting beneath ridges: reconciling major and trace element variations in Kolbeinsey (and global) mid-ocean ridge basalts. J. Geophys. Res., 1994, 99: 9077-9095.
    57. Djomani Y.H.P., Diament M., and Wilson M. Lithospheric structure across the Adamawa plateau (Cameroon) from gravity studies. Tectonophisics, 1997, 273: 317-327.
    58. Ebel D.S., and Naldrett A.J. Fractional crystallization of sulfide ore liquids at high temperature. Economic Geology, 1996, 91: 607-621.
    59. Farrow C.E.G. and Watkinson D.H. Alteration and the role of fluids in Ni, Cu and platinum-group element deposition, Sudbury Igneous Complex Contact, Onaping-levack area, Ontario. Mineralogy and petrology, 1992, 46: 67-83.
    60. Fitton J.G. and Dunlop H.M. The Cameroon Line, West Africa, and its beating on the origin of oceanic and continental alkali basalt. Earth Planet. Sci. Lett., 1985, 72: 23-38.
    61. Fleet M.E., Crocket J.H., and Stone W.E. Partitioning of palladium, iridium, and platinum between sulfide liquid and basalt melt: effects of melt composition, concentration, and oxygen fugacity. Geochim. Cosmochim. Acta, 1991a, 55: 2545-2554.
    
    
    62. Fleet M.E., Crocket J.H., and Stone W.E., Partitioning of platinum-group elements (Os, Ir, Ru, Pt, Pd) and gold between sulfide liquid and silicate melt. Geochim. Cosmochim. Acta, 1996, 60: 2397-2412.
    63. Fleet M.E., Crocket J.H., Lui M.-H. and Stone W.E. Laboratory partitioning of platinum-group elements (PGE) and gold with application to magmatic sulfide-PGE deposits. Lithos., 1999, 47: 127-142.
    64. Fleet M.E., Tronnes R.G., and Stone W.E. Partitioning of platimum-group elements in the Fe-O-S system to 11 GPa and their fractionation in the mantle and meteorites. J. Geophys: Res., 1991b, 96: 21949-21958.
    65. Garuti G., Fershtater G., Bea F., Montero P., Pushkarev E.V., and Zaccirini F. Platinum-group elements as petrological indicators in mafic-ultramafic complexes of the central and southern Urals: preliminary results. Tectonophisics 1997a, 276:181-194
    66. Garuti G., Oddone M., and Torres-Ruiz J. Platinum-group element distribution in subcontinental mantle: Evidence from the Ivrea (Italy) and the Betic-Rifean Cordillera (Spain and Morocco). Can. J. Earth Sci., 1997b, 34:444-456
    67. Gauert C. Sulfide and oxide mineralization in the Uitkomst complex, South Africa: origin in in a magma conduit. Journal of African Earth Scinces, 2001, 32 (2): 149-161.
    68. Ghiorso M.S. and Sack R.O. Chemical mass transfer in magrnatic processes Ⅳ. A revised and internally consistent thermodynamical model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib. Mineral. Petrol. 1995, 119: 197-212.
    69. Gresham J.J. Depositional environments of volcanic peridotite-associated nickel sulphide deposits with special reference to the Kambalda Dome. In: Freidrich et al. (eds), Geology and metallogeny of copper deposits. Springer-Verlag, Heidelberg, Berlin, 1986, p: 63-90.
    70. Gresham J.J., and Loftus-Hills G.D., The geology of the Kambalda Nickel Field, Western Australia. Econ. Geol., 1981, 76: 1373-1416.
    71. Grinenko L.N. Sources of sulfur of the nickeliferous and barren gabbro-dolerite intrusions of the northwest Siberian platform. Int, Geol. Rev., 1985, 27: 695-708.
    72. Halliday A.N., Lee D.-C., Tommasini S., Davies G.R., Paslick C.R., Fitton JG., and James D.E. Incompatible trace elements in OIB and MORB and source enrichment in the sub-oceanic mantle. Earth Planet Sci. Lett., 1995, 133: 379-395.
    73. Handler M.R. and Bennett V.C. Behavior of Platinum-group elements in the subcontinental mantle of eastern Australia during variable metasomatism and melt depletion. Geochim. Cosmochim. Acta, 1999, 63 (21): 3597-3618.
    74. Harney D.M.W. and Von Gruenewaldt G. Ore-forming processes in the upper part of the Bushveld complex, South Africa. Journal of African Earth Sciences, 1995, 20 (2): 77-89.
    
    
    75. Hart S.R. and Davis K.E. Nickel partitioning between olivine and silicate melt. Earth Planet. Sci. Lett. 1978, 40:1797-1811.
    76. Haughton D.R., Roeder P.L., and Skinner B.J. Solubility of sulfur in mafic magmas. Econ. Geol., 1974, 69: 451-467.
    77. Hawkesworth C.J., Lightfoot P.C., Fedorenko V.A., Blake S., Naldrett A. J., Doherty W., and Gorbachev N.S. Magma differentiation and mineralisation in the Siberian continental flood basalts. Lithos., 1995, 34: 61-88.
    78. H(?)mond C., Arndt N.T., Lichtenstein U., and Hofmann A.W. The heterogeneous Iceland plume: Nd-St-O isotopes and trace element constraints. J. Geophys. Res. 1993, 98: 15833-15850.
    79. Hoatson D.M. and Keays, R.R. Formation of platiniferous sulfide horizons by crystal fractionation and magmatic mixing in the Munni Munni layered intrusion, West pilbara Block, Western Australia. Econ. Geol., 1989, 84: 1775-1804.
    80. Hill R.E.T. Komatiite volcanology and associated nickel sulfide deposits. In: Papunen, H. (ed), Mineral Deposits: research and exploration, where do they meet? Proc fourth Biennia SGA Meeting, Turku, Finland, August 1997, Balkema, Rotterdam, 1997, p: 5-6.
    81. Hill, R.E.T. Komatiite volcanology, volcanological setting and primary geochemical properties of komatiite-associated nickel deposits. Geochemistry: Exploration, Environment, Analysis, 2001, 1: 365-381.
    82. Hill R.E.T., Barnes S.J., Gole M.J., and Dowling S.E. The volcanology of komatiites as deduced from field relationships in the Norseman-Wiluna greenstone belt, western Australia. Lithos., 1995, 34: 159-188.
    83. Hill R.E.T., Gole M.J., and Barnes S.J. Olivine adcumulates in the Norseman-Wiluna greenstone belt, Western Australia: Implications for the volcanology of komatiites. In: Prendergast, M.D,, Jones, M.J. (eds) magmatic sulfides - the Zimbabwe volume. Special Publication, Institution Mining and Metallurgy, London, 1989, p: 189-206.
    84. Hofmann A.W. Chemical differentiation of the earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 1988, 90: 297-314.
    85. Hudson D.R. Platinum-group minerals from the Kambalda deposits, Western Australia. Econ. Geol., 1986, 81: 1218-1225.
    86. Irvine T.N. Origin of chromite layers in the Muskox intrusion and other stratiform intrusions, a new interpretation. Geology, 1977, 5: 273-277.
    87. Joseph L.W., Gerald K.C., and Robin M.B. Pb isotope data indicate a complex, mantle origin for the Noril'sk-Talnakh ores, Siberia. Economic Geology, 1992, 87: 1153-1165.
    88. Keays R.R. Palladium and iridium in komatiites and associated rocks: Application to petrogenetic problems. In: N.T. Arndt and E.G. Nisbet (Editors), Komatiites. Allen and Unwin, Hemel Hempstead, 1982a, p: 435-457.
    
    
    89. Keays R.R., Archaean gold deposits and their source rocks: the upper mantle connection. In: R.P. Foster. Gold'82: The Geology, Geochemistry and Genesis of Gold Deposits. A.A. Balkema, Rotterdam, 1982b, p: 17-51.
    90. Keays R.R. Archaean gold deposits and their source rocks: the Upper Mantle connection. In: R.P. Foster, Gold'82-The Geology, Geochemistry and Genesis of Gold Deposits. Balkema, Amsterdam, 1983, p: 17-51.
    91. Keays R.R. The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits, Lithos., 1995.34: 1-18.
    92. Keays R.R. and Campbell I.H. Precious metals in the Jimberlana Intrusion, Western Australia: Implications for the genesis of platiniferous ores in layered intrusions. Econ. Geol., 1981.76: 1118-1141.
    93. Kepezhinskas P., Defant M.J., and Widom E. Abundance and distribution of PGE and Au in the island-arc mantle: implication for sub-arc metasomatism. Lithos. 2002, 60: 113-128
    94. Kinzler R.J. Melting of mantle peridotite at pressures approaching the spinel to garnet transition: Application to mid-ocean ridge basalt petrogenesis. J. Geophys. Res. 1997, 102: 853-874.
    95. Kinzler R.J. and Grove T.L. Primary magmas of mid-ocean ridge basalts. 2. Application. J. Geophys: Res. 1992, 97, 6907-6926.
    96. Klein E.M. and Langmuir C.H. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J. Geophys. Res. 1987, 92: 8089-8115.
    97. Kodaira S., Mjelde R., Gunnarsson K., Shiobara H., and Shimamura H. Crustal structure of the Kolbeinsey Ridge, North Atlantic, obtained by use of ocean bottom seismographs. J. Geoph.ys. Res. 1997, 102: 3131-3151.
    98. La Fleche M.R., Camire G., and Jenner G.A. Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen Islands, Quebec, Canada. Chem.Geol. 1998, 148:115-136.
    99. Larson T.B., Yuen D.A., and Storey M., Ultrafast mantle plumes and implications for flood basalt volcanism in the Northern Atlantic Region. Tectonophysics, 1999, 311: 31-43.
    100. Le Roex A,, Cliff R.A., and Adair B.J.L. Tristan de Cunha, South Atlantic: geochemistry and petrogenesis of a basanite-phonolite lava series. J. Petrol., 1990, 31: 779-812.
    101. Lee D.-C. A chemical, isotopic, and geochronological study of the Cameroon Line. Ph.D. dissertation, Univ. of Michigan. 1994.
    102. Lesher C.M. Komatiite-associated nickel sulfide deposits. In: Whitney, J.A., Naldrett, A.J. (eds), Ore deposition associated with magmas. Reviews in Economic Geology, Society of Economic Geologists, 1989, p: 45-102.
    
    
    103. Li C. and Naldrett A.J. Sulfide capacity of magma: a quantitative model and its application to the formation of sulfide ores at Sudbury, Ontario. Econ. Geol., 1993, 88: 1253-1260.
    104. Li C. and Naldrett A.J. A numerical model for the compositional variations of Sudbury sulfide ores and its application to exploration, Econ. Geol., 1994, 89: 1599-1607.
    105. Li C. and Naldrett A.J. Geology and petrology of the Voisey's Bay intrusion: reaction of olivine with sulfide and silicate liquids. Lithos., 1999, 47: 1-31.
    106. Li C., Barnes S.J., Makovicky E., Rosen-Hansen J., and Makovicky M. Partitioning of nickel, copper, irdium, platinum, and palladium between monosulfide solid solution and sulfide liquid: Effects of composition and temperature. Geochim. Cosmochim. Acta, 1996, 60 (7): 1231-1238.
    107. Li C., Ripley E.M., Maier W.D., and Gomwe T.E.S. Olivine and sulfur isotopic compositions of the Uitkomst Ni-Cu sulfide ore-bearing complex, South Africa: evidence for sulfur contamination and multiple magma emplacements. Chemical Geology. 2002, 188:149-159.
    108. Lightfoot P.C., Naldrett A.J., Gorbachev N.S., Fedorenko V.A. Geochemistry of the Siberian trap of the Noril'sk area, USSR, with implications for the relative contributions of crust and mantle to flood basalt magmatism. Contrib Mineral Petrol., 1990, 104: 631-644.
    109. Lo C.-H., Chung S.-L., Lee T.-Y., and Wu G.-Y. Age of the Emeishan flood magmatism and relations to Permian-Triassic boundary events. Earth and Planetary Science Letters; 2002, 198: 449-458.
    110. Maier W.D., and Barnes S.-J. Platinum-group elements in silicate rocks of the lower, critical and main zones at Union section, Western Bushveld Complex. J. Petrol., 1999, 40: 1647-1671.
    111. Mathez E.A. Sulfur solubility and magamtic sulfides in submarine basaltic glass. J. Geophys: Res., 1976, 81: 4269-4276.
    112. McCandless T.E., Ruiz J., Adair B.I., and Freydier C. Re-Os isotope and Pd/Ru variations in chromitites from the critical zone, Bushveld Complex, South Africa. Geochim. Cosmochimi. Acta, 1999, 63 (6): 911-923.
    113. McDonough W.F. Chemical and isotopic systematics of continental lithospheric mantle. In: H.O.A. Meyer and O.H. Leonardos (Editors), Proc. 5th Int. Kamberlite Conf, 1994
    114. McDonough W.F., and Sun S.-S. The composition of the Earth. Chem. Geol., 1995. 120: 223-253.
    115. McGoldrick P.J., Keays R.R., and Scott R.B. Thallium: A sensitive indicator of rock/seawater interaction and of sulfur saturation of silicate melts. Geochim. Cosmochim. Acta, 1979, 43:1303-1311.
    116. McQueen K.G. Volcanic-associated nickel deposits from around the Widgiemooltha dome, western Australia. Econ. Geol., 1981, 76: 1417-1443.
    
    
    117. Meurer W.P., Willmore C.C., and Boudreau A.E. Metal redistribution during fluid exsolution and migration in the Middle Banded series of the Stillwater Complex, Montana. Lithos., 1999, 47:143-156.
    118. Mitchell R.H., and Keays R.R. Abundance and distribution of gold, palladium, and iridium in some spinel and garnet lherzolites: Implications for the nature and origin of precious metal-rich inter-granular components in the upper mantle. Geochim. Cosmochim. Acta, 1981, 45: 2425-2442.
    119. Moln(?)r F., Watkinson D.H., and Everest J.O. Fluid-inclusion characteristics of hydrothermal Cu-Ni-PGE veins in granitic and metavolcanic rocks at the contact of the Little Stobie deposit, Sudbury, Canada. Chem. Geol., 1999, 154: 279-301.
    120. Morgan J.W. Ultramafic xenoliths: Clues to the Earth's late accredonary history. J. Geophys: Res., 1986, 91: 12375-12387.
    121. Naldrett A.J. Platinum-group element deposits. Platinum-group elements: mineralogy, geology, recovery. Can. Inst. Min. Metall., 1981, 23: 197-231.
    122. Naldrett A.J. Magmatic Sulfide Deposits. Oxford Univ. Press, New York, 1989, p: 186.
    123. Naldrett A.J. World-class Ni-Cu-PGE deposits: Key factors in their genesis. Mineralium Deposita, 1999, 34:227-240
    124. Naldrett A.J. and Duke J.M. Platinum metals in magmatic sulfide ores. Science, 1980, 208: 1417-1424.
    125. Naldrett A.J., and Turner A.R. The geology and petrogenesis of a greenstone belt and related nickel sulfide mineralization at Yakabindie, Western Australia. Precamh. Res., 1977, 5: 43-103.
    126. Naldrett A.J. and von Gruenewaldt G. Association of platinum-group elements with chromitite in layered intrusions and ophiolite complexes. Economic Geology, 1989, 84: 180-187.
    127. Naldrett A.J, et al. The composition of the Ni-Cu ores of the Noril'sk region. In The Sudbury-Noril'sk Symp. Ont. Geol. Sur: Spec. Pub., 1994, 5: 357-372.
    128. Naldrett A.J., Fedorenko V.A., Lightfoot P.C., Kunilov V.I., Gorbachev N.S., Doherty W., and Johan J. Ni-Cu-PGE deposits of the Noril'sk region, Siberia: Their formation in conduits for flood basalt volcanism. Trans: Inst. Mining Metal., 1995, 104: B18-B36.
    129. Naldrett A. J., Lightfoot P.C., Fedorenko V.A., Gorbachev N.S., and Doherty W. Geology and geochemistry of intrusions and flood basalts of the Noril'sk region, USSR, with implications for the origin of the Ni-Cu ores, Econ. Geol., 1992, 87: 975-1004.
    130. Naldrett A.J., Rao B.V., and Evensen N.M. Contamination at Sudbury and its role in ore formation, in Gallagher, M.J., Ixer, R.A., Neary, C.R., and Pritchard, H.M., eds., Metallogeny of basic and ultrabasic rocks: London, Inst. Mining Metallugy, 1986: 75-92.
    
    
    131. Nixon G.T., Cabri L.J., and Laflamme J.H.G. Platinum-group dement mineralization in lode and placer deposits associated with the Tulameen Alaskan-Type complex, British Columbia. Canadian Mineralogist, 1990, 28: 503-535.
    132. O'Neill H.S.C. The origin of the Moon and the early history of the Earth—A chemical model, Part 2: The Earth. Geochim. Cosmochim. Acta, 1991, 55: 1159-1172.
    133. Page N.J., and Talkington R.W. Palladium, platinum, rhodium, ruthenium, and iridium in peridotites and chromitites from ophiolite complexes in Newfoundland. Can. Mineral., 1984, 22: 137-149.
    134. Peach L.C., Mathez E.A. and Keays R.R. Sulfide melt-silicate melt distribution coefficients for noble metals and other chalcophile dements as deduced from MORB: implication for partial melting. Geochim. Cosmochim. Acta, 1990, 54: 3379-3389.
    135. Peck D.C. and Keays R.R. Insight into the behavior of precious metals in primitive, S-undersaturated magmas: Evidence from the Heazlewood River Complex, Tasmania. Can. Mineral., 1990a, 28: 553-577.
    136. Peck D.C. and Keays R.R. Geology, geochemistry and origin of phtinum-group element—chromitite occurrences in the Heazlewood River Complex, Tasmania. Econ. Geol., 1990b, 85: 765-793.
    137. Prevec S.A., Lightfoot P.C., Keays R.R. Evolution of the sublayer of the Sudbury Igneous Complex: Geochemical, Sm-Nd isotopic and petrologic evidence. Lithos., 2000, 51: 271-292.
    138. Rehk(?)mper M., Halliday A.N., Fitton J.G., Lee D.-C., Wieneke M., and Arndt N.T. Ir, Ru, Pt, and Pd in basalts and komatiites: New constraints for the geochemical behavior of the platinum-grouup elements in the mantle. Geochim. Cosmochim. Acta, 1999, 63 (22):3915-3934.
    139. Schoenberg R., Kruger F.J., Nagler T.F., and Meisel T. PGE enrichment in chromitite layers and Menrensky Reef of the western Bushveld Complex: A Re-Os and Rb-Sr isotope study. EPSL. 1999, 172: 49-64.
    140. Sharma M. Siberian Traps in Large Igneous Provinces: continental, oceanic, and planetary flood volcanism. Edited by J.J. Mahoney and M. Coffin. Geophysical Monograph 100. American Geophysical Union, 1997, 273-296.
    141. Song X.-Y., Zhou M.-F., Cao Z.-M., Sun M., and Wang Y.-L. Ni-Cu-(PGE) magmatic sulfide deposits in the Yangliuping area, Permian Emeishan igneous province, SW China. Mineralium Deposita, 2003, 38: 831-843.
    142. Stockman H.W. and Hlava P.F. Phtinum-group minerals in alpine chromitites from southwestern Orogon. Economic Geology, 1984, 79: 491-508.
    143. Stribrny B., Wellmer F.-W., Burgath K.-P., Oberthur T., Tarkian M., and Pfeiffer T., Unconventional PGE occurrences and PGE mineralization in the Great Dyke: Metallogenic and economic aspects. Mineralium Deposita, 2000, 35: 260-281.
    
    
    144. Sun S.-s., Wallace D.A., Hoatson D.M., Glikson A.Y. and Keays R.R., Use of geochemistry as a guide to platinum-group element potential of mafic-ultramafic rocks: examples from the west Pilbara Block and Halls Creek mobile zone, Western Australia. Precambrian Res., 1991, 50: 1-35.
    145. Thallhammer O.A.R., Prochaska W., and Muhlhans H.W. Solid inclusions in chrome-spinels and platinum-group element concentrations from the Hochgrossen and Kraubath ultramafic massifs (Austria). Contribution to Mineralogy and Petrology, 1990, 105:66-80.
    146. Von Gruenewaldt G., and Merkle R.K.W. Platinum group element proportions in chromitites of the Bushveld complex: Implications for fractionation and magma mixing models. Journal of African Sciences; 1995, 21 (4): 615-632.
    147. Walker R.J., Hanski E., Vuollo J., and Liipo J. The osmium isotopic composition of Proterozoic upper mantle: evidence for chondritic upper mantle from Outokumpu ophiolite, Finland. Earth Planet Sci. Lett., 1996, 141:161-173.
    148. Wallace P. and Carmicheal I.S.E. Sulfur in basaltic magmas. Geochim. Cosmochim. Acta, 1992, 56: 1863-1874.
    149. Wedepohl K.H. The composition of the continental crust. Geochim. Cosmochim. Acta, 1995, 59: 1217-1232.
    150. Wooden J.L., Czamanske G.K., Fedorenko V.A., Arndt N.T., Chauvel C, Bouse R.M., King B.W., Knight R.J., and Siems D.F. Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril'sk area, Siberia. Geochim Casmochim Acta, 1993, 57: 3677-370.
    151. Xu Y.-G., Chung S.-L., Jahn B.-M., and Wu G.-Y. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China. Lithos., 2001, 58: 145-168.
    152. Yao Y., Viljoen M.J., Viljoen R.P., Wilson A.H., Zhong H., Liu B.-G., Ying H.-L., Tu G.-L., and Luo N. Geological characteristics of PGE-bearing layered intrusions in Southwest Sichuan Province, China. Economic Geology Research Unit, Information Circular, 2001, 358: 11.
    153. Zhang H.-X., and Liu C.-Q. Isotopic and geochemical study of the ultramafic complex and Erneishan basalt, near Panxi continentalrift, China. Eleventh Annual V.M.Goldschmidt Conference, 2001, 3157.pdf.
    154. Zhou M.-F. PGE distribution in 2.7-G.a layered komatiite flows from the Belingwe greenstone belt, Zimbabwe. Chem. Geol., 1994, 118: 155-172.
    155. Zhou M.-F, Malpas J., Sun M., Liu Y., and Fu X. A new method to correct Ni- and Cu-argide interference in the determination of the platinum-group elements, Ru, Rh and Pd, by ICP-MS. Geochemical Journal, 2001,35: 413-420.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700