地球化学异常与矿床规模的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型矿床和矿集区的经济价值和战略意义巨大,对全省乃至全国的矿产资源都具有重大意义。对大型、巨型矿床的勘查和研究工作是许多国家的地球化学家和矿床学家们正在研究的重大前沿课题。以成矿物质量为基础,研究大规模地球化学异常与大型矿床或矿集区的关系,成为指导地球化学方法评价大型矿床的理论基础。
     河北省地处华北地台北缘,是我国前寒武纪陆块成矿域、古亚洲成矿域、滨西太平洋成矿域三大成矿域的一部分,全省在地质历史上经历了太古代、古元古代、中元古代、早古生代、晚古生代、中生代六个成矿集中期,形成了储量可观,资源潜力很大的铁、有色金属和贵金属矿床。由于在以往的地球化学勘查评价过程中,主要集中于利用局部异常评价单个矿点,没有从全省或区域的角度深入挖掘地球化学所蕴含的更多找矿信息,特别是对找寻大型矿床的研究更少。
     本论文针对上述问题利用河北省已有的1:20万区域化探资料,结合区域岩石和地质矿产资料,从五个层面开展了研究工作,并取得如下成果:(1)地球化学省与矿集区存在密切相关关系:圈定面积大于1000km2的金地球化学省3处,铅地球化学省7处,锌地球化学省4处。分析了三元素地球化学省的分布特征、地质地球化学特征及其所包含的矿集区内的典型矿床(田)的地质地球化学特征。通过金、铅锌的地球化学省与已知矿集区的对比研究发现,河北省现已发现的2个大型金矿集区和1个铅锌矿集区都位于地球化学省范围内。地球化学省与矿集区存在密切的相关关系,地球化学省是矿集区形成的物质基础,地球化学省可以作为潜在矿集区的评价标志。(2)区域地球化学异常与大型矿床存在密切对应关系:进一步的研究了提高异常下限后地球化学省分解的区域异常与大型矿床的关系,研究发现地球化学省内区域异常与大型矿床存在十分密切的关系,河北省的4个大型金矿床均位于金地球化学省所包含的区域异常内,而全省范围产出的4个大型铅锌矿床中的3个也均位于铅锌地球化学省所包含的区域异常内。(3)形成大规模地球化学异常的物质来源有3类:矿床的点源分散、矿源层风化搬运、高背景岩石。高背景岩石提供了成矿元素的高背景,异常比较平坦,不会形成明显的浓集中心;矿源层提供元素的初始富集;矿床风化的点源分散进一步形成叠加异常,异常具有明显的浓集中心。因此,具有多层套合地球化学异常,即地球化学省包含区域异常,区域异常又包含局部异常,才是对找矿最有意义的异常。(4)马兰峪和金厂峪金成矿物质来源的稀土示踪表明稀土元素配分曲线变化趋势与变质岩更为接近,推断遵化岩群和迁西岩群是金矿的主要物质来源。金的表生迁移研究发现矿体剖面金含量的变化特征是从矿体—近矿围岩—远矿围岩—围岩,金的含量渐次降低。水系沉积物中的金含量从矿区到下游水系不断降低。(5)对河北省的3个金地球化学省和地球化学省范围内21处区域异常进行了资源量定量预测,预测方法是面金属量法和成矿可利用金属量法,选择勘探程度高的地球化学省或区域异常作为参考区。预测结果显示分布于冀东的兴隆-遵化-宽城-青龙金地球化学省具大的资源潜力。区域异常中,位于冀东的兴隆-遵化-宽城-青龙金地球化学省内的兴隆陡子峪、遵化马兰峪、青龙安子岭区域异常金的潜在资源量很大,尤其是遵化马兰峪是大型金矿床的重点产出区域。
Hebei Province is geologically located in the northern margin of North China Platform, which hosts three metallogenic megaprovinces:the Precambrian, the Paleoasian and the Circum Pacific. Iron, nonferrous and precious metals deposits are rich in the province formed in six main metallogenic periods of Archean, paleoproterozoic, mesoprozerozoic, early paleozoic, late paleozoic and mesozoic. In recent years, most of surface outcropping ore deposits have been explored and evaluated in Hebei, therefore it is more and more difficult to find large or giant ore deposits. The activities in past exploration and assessment process are concentrated on local geochemical anomalies to find single ore deposit. How to use a amount of geochemical data to delineate regional and provincial anomalies for potential large-size ore deposits is a chanllenge. The author tries to reveal the relationship of large-scale geochemical anomalies with large ore deposits or ore districts in order to predict new large ore deposits by using geochemical anomalies..
     Based on the 1:200000 stream sediments geochemical data in Hebei province, combined with regional rock survey and mineral data, the following results are achieved (1) Good correlation between geochemical provinces and the ore districts:3 gold,7 lead and 4 zinc geochemical provinces, each of them covering an area more than 1000km2, are delineated in whole territory of Hebei province. Two large gold districts and one lead-zinc districts are located within the geochemical provinces. Geochemical provinces are indicates to potential large ore districts. (2) Close relationship of regional anomalies with large deposits:all large gold, lead and zinc deposits are hosted within regional gold, lead and zinc geochemical anomalies (each regional anomalous area more than 20 km2) respectively. (3) Genesis of large-scale geochemical anomalies. Three sources for large-scale geochemical anomalies (regional and provincial):deposits, mineralization beds and high background rocks. High background rocks can provide high background of elements without significant concentration centers; mineralization beds can supply initial concentration of elements; weathering of deposits as point sources can further can be despersed to form superimposed contents, which have obvious concentration centers. Therefore, a multi-nested geochemical anomalies can be formed and delineated that a geochemical province contains regional anomalies, and further regional anomalies contains local anomalies around a mineral district or a large ore deposit. (4) Statistics for distribution of rare earth elements are used to identify the mineralization source of gold in Malanyu and Jinchangyu area. The fact of REE distribution model closer to that of metamorphic rocks show that Qianxi and Zunhua rock group possibly is the main mineralization source of gold. The results of surface transportation of gold in Jinchangyu deposit show that gold contents decrease gradually from ore bodies to wall rocks near mine to wall rocks far from mine to background rocks. The gold contents in stream sediments continue to reduce from ore deposit area to lower reaches of streams. (5) Quantitative resource predictions are conducted for 3 gold geochemical provinces and 21 regional anomalies within gold geochemical provinces. Areal productivity and available metals methods are used for mineral resource predictions. Geochemical province or regional anomalies containing the known gold deposits with explored reserves are chosen as reference areas. Prediction results show that Xinglong-Zunhua-Kuancheng-Qinglong gold geochemical province is potential for large gold deposits in the eastern Hebei. In regional anomalies located at Douziyu in Xinglong County, Malanyu in Zunhua County, Anziling in Qinglong County within Xinglong-Zunhua-Kuancheng-Qinglong gold geochemical province have large potential resources, particularly, Malanyu is a main prediction area of large gold deposits.
引文
[1]吴传璧,施俊法.矿产勘查与信息找矿[A].见:谢学锦,邵跃,王学求.走向21世纪矿产勘查地球化学[M].北京:地质出版社,1999:48-57.
    [2]B(?)lviken, B., Kullerud, G. and Loucks, R.R. Geochemical and metalogenic provinces:a discussion initiated by results from geochemical mapping across northern Fennoscandia[J]. Journal of Geochemical Exploration,1990,39:49-90.
    [3]Reimann, C. and Melezhik, V. Metallogenic provinces, geochemical provinces and regional geology-what causes large-scale patterns in low density geochemical maps of C-horizon of podzols in Arctic Europe?[J]. Applied Geochemistry,2001,16:963-983.
    [4]王学求.寻找和识别大型特大型矿床的勘查地球化学理论方法与应用[J].物探与化探,1998,22(2):81-89.
    [5]王学求.巨型矿床与大型矿集区勘查地球化学[J].矿床地质,2000,19(1):76-87.
    [6]王学求.地球化学模式及成因初探[J].矿床地质,2001,20(3):216-222.
    [7]王学求,中伍军,张必敏等.地球化学块体与大型矿集区的关系—以东天山为例[J1.地学前缘,2007,14(5):116-123.
    [8]谢学锦,刘大文,向运川等.地球化学块体—概念和方法学的发展[J].中国地质,2002,29(3):225-233.
    [9]刘大文,谢学锦.基于地球化学块体概念的中国锡资源潜力评价[J].中国地质,2005,32(1):25-32.
    [10]Koval, P.V., Burenkov, E.K., Golovin, A.A. Introduction to the program "Multipurpose Geochemical Mapping of Russia"[J]. Journal of Geochemical Exploration,1995,55:115-123.
    [11]Burenkov, E.K., Golovin, A.A., Morozova, I.A., et al. Multi-Purpose geochemical mapping (1: 1,000,000) as a basis for the integrated assessment of natural resources and ecological problems[J]. Journal of Geochemical Exploration,1999,66:159-172.
    [12]Webb, J.S., Thornton, I., Thompson, M., et al. The Wolfson Geochemical Atlas of England and Wales[M]. Oxford:Clarendon Press,1978:69
    [13]Dunning, F.W. Metallogeny of the United Kingdom of Great Britain and Northern lreland[A]. In:P. Laffitte, F. Halin and L.Pilette. Explanatory Memoir of the Metallogenic Map of Europe and Neighboring Countries[M]. Paris:UNESCO,1984:11-16.
    [14]Walther, H.W. La metallogenie de la Republique Federal d'Allemange[A]. In:P. Laffitte F. Halin and L. Pilette, Explanatory Memoir of the Metallogenic Map of Europe and Neighboring Countries[M]. Paris: UNESCO,1984:187-235.
    [15]Gustavsson, N., Lampio, E., Nilsson, B. Geochemical maps of Finland and Sweden[J]. Journal of Geochemical Exploration,1994,51:143-160.
    [16]Salminen, R., Tarvainen T. Geochemical mapping and databases in Finland[J]. Journal of Geochemical Exploration,1995,55:321-327.
    [17]Ottesen, R.T., Bogen, J., Bolviken, B.and Volden, T. Overbank sediment: a representative sample medium for regional geochemical mapping[J]. Journal of Geochemical Exploration,1989,32:257-277.
    [18]Juve, G. and Gust, J. Ore deposits. Map 1:2 million, Geology Survey of Norway,1984.
    [19]Lindahl, I. Mineral deposits in the Precambrian rocks of Norway [A]. In:P. Laffitte, F. Halin and L.Pilette. Explanatory Memoir of the Metallogenic Map of Europe and Neighboring Countries[M]. Paris: UNESCO,1984,17-23.
    [20]Brundin, N. H., Ek, J. I. and Selinus, O.C. Biogeochemical studies of plants from stream banks in northern Sweden[J]. Journal of Geochemical Exploration,1987(27):157-188.
    [21]Grip, E. Sweden [A]. In:S.H.U. Bowie, A. Kvalheim and H.W. Haslam. Mineral Deposits of Europe.Vol.1:Northwest Europe[M]. London:Transaction of the Institution of Mining and Metallurgy, 1978:93-198.
    [22]Frietsch, R. The ore deposits of Sweden [A]. In:P. Laffitte, F. Halin and L. Pilette. Explanatory Memoir of the Metallogenic Map of Europe and Neighboring Countries[M]. Paris:UNESCO,1984:25-38.
    [23]Salminen, R. Geochemical Atlas of Europe, Part 1-Background information, methodology, and maps, Electric publication [EB/OL]. http://www.gtk.fi/publ/foregsatlas/index.php,2010-05-05.
    [24]De Vos, W. and Tarvainen, T. Geochemical Atlas of Europe, Part 2-Interpretation of Geochemical Maps, Addition Tables, Figures, Maps, and Related Publications [EB/OL]. http://www.gtk.fi/publ/ foregsatlas/part2.php,2010-05-05.
    [25]Smith, S.M. History of the National Uranium Resource Evaluation Hydrogeochemical and Stream Sediment Reconnaissance Program [EB/OL]. http://pubs.usgs.gov/of/1997,2008-01-25.
    [26]Cocker, M.D. Geochemical mapping in Georgia, USA:a tool for environmental studies, geologic mapping and mineral exploration[J]. Journal of Geochemical Exploration,1999,67(1-3):345-360.
    [27]Garrett, R.G., Banville, R.M.P. and Adcock, S.W. Regional geochemical data compilation and map preparation, Labrador, Canada[J]. Journal of Geochemical Exploration,1990,39:91-116.
    [28]Painter, S., Cameron E.M., Allan, R., Rouse, J. Reconnaissance geochemistry and its environmental relevance[J]. Journal of Geochemical Exploration,1994,51(3):213-246.
    [29]Key, R.M., De Waele, B., Liyuangu, A.K. A multi-element baseline geochemical database from the western extension of the Central Africa Copper belt in northwestern Zambia[J]. Applied Earth Science, 2004,113(3):205-226.
    [30]Labuschagne, L.S., Holdsworth, R. and Stone, T.P. Regional stream sediment geochemical survey of South Africa[J]. Journal of Geochemical Exploration,1993,47:283-296.
    [31]谢学锦,刘大文.地球化学填图与地球化学勘查[J].地质论评.2006,52(6):722-732.
    [32]Xie Xuejing and Ren Tianxiang. A decade of regional geochemistry in China-the National Reconnaissance Project[J]. Applied Earth Science,1991,100:B57-B65.
    [33]Xie Xuejing and Yin Binchuan. Geochemical patterns from local to global[J]. Journal of Geochemical Exploration,1993,47:109-129pp.
    [34]谢学锦.用新观念与新方法寻找巨型矿床[J].科学中国人,1995,5:14-16.
    [35]谢学锦,向运川.巨型矿床的地球化学预测方法[A].见:谢学锦,邵跃,王学求.走向21世纪矿产勘查地球化学[M].北京:地质出版社,1999:61-91.
    [36]王学求,谢学锦.金的勘查地球化学理论与方法·战略与战术[M].济南:山东科学技术出版社,2000.
    [37]中国地质调查局发展研究中心.我国东部地区地球化学块体内矿产资源潜力预测[R].2002.
    [38]Hawkes, H.E. and Webb, J.S. Geochemistry in mineral exploration[M]. Harper & Row, New York, 1962.
    [39]Bradshaw, P.M.D., Clews, D.R. and Walker, J.L. Exploration Geochemistry[M]. Barringer Research Ltd.,1972.
    [40]史长义,张金华.大中型铜矿区域地球化学异常预测评价研究[J].地质与勘探,1998,34(6):24-28.
    [41]师淑娟,宫进忠,张洁.河北省铅锌矿源层与地球化学块体[J].矿床地质,201 0,29(2):276-282.
    [42]Ahmet Gokce, Gulcan Bozkaya. Lead and sulfur isotope evidence for the origin of the Inler Yaylasi lead-zinc deposits, Northern Turkey[J]. Journal of Asian Earth Sciences,2006,26:91-97.
    [43]段永民,余晓红,王汉林.甘肃柴家庄金矿床地球化学特征及矿床成因[J].地质与勘探,2006,42(1):21-25.
    [44]胡小蝶,沈保丰,毛德宝,等.冀北蔡家营铅锌矿床成因探讨[J].地质调查与研究,2005,28(4):221-227.
    [45]李久明,巩恩普,姚玉增,等.燕山地区银矿成矿时代与成矿物质来源探讨[J].地质与资源.2006,15(3):179-186.
    [46]李生.四川锦屏山地区金矿矿源层及成矿模式[J].沉积与特提斯地质,2001,21(1):48-59.
    [47]娄德波,宋国玺,李楠,等.磁法在我国矿产预测中的应用[J].地球物理学进展,2008,23(1):249-256.
    [48]陈毓川.当代矿产资源勘查评价的理论与方法[M].北京:地震出版社,1999.
    [49]王世称,范继樟,杨永华.矿产资源评价[M].长春:吉林科学技术出版社,1 990.
    [50]赵鹏大,陈建平,张寿庭.“三联式”成矿预测新进展[J].地学前缘,2003,10(2):455-463.
    [51]朱裕生,肖克炎.成矿预测方法[M].北京:地质出版社,1997.
    [52]Harris, D.P. Mineral resource assessment-perspectives on the past and present and speculation on future direction[J]. Nonrenewable Resources,1995,4(3):213-232.
    [53]Singer D.A. Basic concepts in three-part quantitative assessments of undiscovered mineral resources[J]. Nonrenewable Resources,1993,2(2):69-81.
    [54]阮天健,朱友光.地球化学找矿[M].北京:地质出版社,1985,61-63.
    [55]黎彤.锰的成矿地球化学特征及其资源预测[J].矿床地质.1993,11(4):301-306.
    [56]Hawkes, H.E. The downstream dilution of stream sediment anomalies[J]. Journal of Geochemical Exploration,1976,6:345-358.
    [57]王学求.大型矿床地球化学定量评价模型和方法[J].地学前缘,2003,10(1):257-261.
    [58]李随民,吴景霞,栾文楼等.地球化学块体方法在冀北金矿资源潜力估算中的应用[J].中国地质,2009,36(2):444-449.
    [59]刘大文,周晓东,谢学锦.应用于矿产资源评价的地球化学块休方法技术[J].地学前缘,2003,10(1).
    [60]刘大文,谢学锦,严光生等.地球化学块体的方法技术在山东金资源潜力预测中的应用[J].地球学报,2002,23(2):169-174.
    [61]刘大文,谢学锦.基于地球化学块体概念的中国锡资源潜力评价[J].中国地质,2005,32(1):25-32.
    [62]王银宏.矿产资源潜力定量评价研究—以长江中下游斑岩铜矿为例[D].北京:中国地质大学,2005.
    [63]张宏强,王忠.地球化学块体资源预测在甘肃金矿的应用[J].甘肃地质,2006,15(2):48-54.
    [64]李通国,王忠,张宏强.应用地球化学块体预测西秦岭地区银资源量[J].物探与化探,2006,30(6):482-487.
    [65]河北省地球物理勘查院.河北省区域岩石地球化学调查报告[R].1997.
    [66]地矿部地球物理地球化学勘查研究所,河北省地矿局地球物理探矿大队.河北省北部半干旱区1/20万区域化探异常筛选和查证方法技术研究[R].1995.
    [67]任天祥,伍宗华,羌荣生.区域化探异常筛选与查证的方法技术[M].北京:地质出版社,1998.
    [68]河北省地质矿产勘查开发局.河北地下水[M].北京:地震出版社,1999:14-17.
    [69]河北省测绘局.河北省地图集(内部用图).1981.
    [70]河北省地质矿产局.河北省北京市天津市区域地质志[M].北京:地质出版社,1989.
    [71]河北省地质矿产勘查开发局.河北省地质·矿产·环境[M].北京:地质出版社,2006.
    [72]河北省地质矿产局.河北省岩石地层[M].武汉:中国地质大学出版社,1996.
    [73]河北省地球物理勘查院.河北省1:50万区域物化探成果综合研究报告[R].2007.
    [74]河北省地质矿产局.河北省北京市天津市区域矿产总结.1986.
    [75]宫进忠.河北省含铁岩系的地球化学特征[J].物探与化探,2006,30(5):393-396.
    [76]鄢明才,迟清华.中国东部地壳与岩石的化学组成[M].北京:科学出版社,1997.
    [77]Levinson, A.A. Introduction to Exploration Geochemistry[M]. Applied Publishing Ltd. CALGARY. 1974:55-58.
    [78]Beus, A.A. and Grigorian, S.V. Geochemical Exploration Methods for Mineral Deposits[M]. Applied Publishing Ltd, Wilmette, IL. 1977.
    [79]Rose, A.W., Hawkes, H.E. and Webb, J.S. Geochemistry in Mineral Exploration[M],2nd edition. Academic Press, London. 1979:657.
    [80]Parker S P. Dictionary of Earth Sciences [M]. McGraw-Hill, New York. 1984:837.
    [81]尹冰川,谢学锦.地球化学省的概念、特征及其与成矿省的关系[J].长春地质学院学报,1994,24(1):38-43.
    [82]Doe, B.R. Source rock and the genesis of metallic mineral deposits[J]. Global Tectonics and Metallogeny,1991,4(1-2):13-19.
    [83]Xie Xuejing. Surficial and superimposed geochemical exploration for giant ore deposits[C]//Clark A H. Giant ore deposits II. Kingston, Canada: Queen's University Press,1995,475-485.
    [84]Laznika, P. Giant ore deposits:a quantitative approach[J]. Global Tectonics and Metllogeny,1983, 2(1-2):41-63.
    [85]毛景文,华仁民,李晓波.浅议大规模成矿作用与大型矿集区[J].矿床地质,1999,18(4):291-299.
    [86]徐勇.浅论矿集区的资源潜力与勘查评价[J].中国地质,2002,29(3):263-270.
    [87]涂光炽.超大型矿床的探寻与研究的若干进展[J].地学前缘,1994,1(3):45-53.
    [88]Knight, C. L. Ore genesis:the source bed concept[J]. Economic Geology,1957,52(7):808-817.
    [89]许静.金的矿源层讨论[J].地质论评,1992,38(4):311-315.
    [90]翟裕生,邓波,李晓波.区域成矿学[M].北京:地质出版社,1999,97.
    [91]孙邦东.广西铅锌矿矿源层探讨[J].广西地质,2002,15(1):37-42.
    [92]中国人民武装警察部队黄金指挥部黄金地质研究所.河北省金厂峪金矿床成矿地质特征[A].见:中国典型金矿床实例第一集[M](内部资料).1985,105-116.
    [93]于润林,李文来,谷守志,等.冀东主要金矿类型成矿条件及找矿方向.中国金矿主要类型区域成矿条件文集,2.冀东地区.北京:地质出版社,1989.
    [94]孙大中,干奎元,王俊连.冀东太古宙含金岩石系列研究.中国金矿主要类型区域成矿条件:文集,2.冀东地区.北京:地质出版社,1989.
    [95]余昌涛,贾斌.冀东主要金矿床的成因及形成机理研究.中国金矿主要类型区域成矿条件文集,2.冀东地区.北京:地质出版社,1989.
    [96]张秋生,杨振升,高德玉,等.冀东金厂峪地区高级变质区地质与金矿床[M].北京:地质出版社,1991.
    [97]韦永福,吕英杰,江熊新,等.中国金矿床[M ].北京:地质出版社,1993.
    [98]中国人民武装警察部队黄金指挥部黄金地质研究所.河北省峪耳崖金矿床地质特征[A].见:中国典型金矿床实例第一集[M](内部资料).1985,197-205.
    [99]中国人民武装警察部队黄金指挥部黄金地质研究所.河北省小营盘金矿成矿地质特征[A].见:中国典型金矿床实例第一集[M](内部资料).1985,53-59.
    [100]邱小平,高励,钱会文,等.冀西北金矿集区成矿特征[M].北京:冶金工业出版社,1996:160-163.
    [101]河北省地质矿产局综合研究地质大队.河北省铅锌银资源总量预测报告[R].1991.
    [102]张素兰,姚敬金,曹洛华.河北蔡家营铅锌银矿床地球物理-地球化学找矿模型[J].物探与化探,1999,23(3):161-169.
    [103]杨敏之.冀北银矿床类型、矿床地质地球化学、地史-演化模式及找矿方向[J].地质找矿论丛, 2000,15(3):193-203.
    [104]王莉娟,王京彬,王玉往,等.蔡家营大井多金属矿床成矿流体和成矿作用[J].中国科学(D辑),2003,33(10):941-950.
    [105]牛树银,孙爱群,邵振国,等.地幔热柱多级演化及其成矿作用—以华北矿聚区为例[M].北京:地震出版社,2001,61-65.
    [106]马忠社,李密文,刘俊杰.兴隆-遵化一带遥感解译地质构造及其控矿特征[J].河北地质矿产信息,1999,(4):9-11.
    [107]胡云中,任天祥,马振东,等.中国地球化学场及其与成矿关系[M].北京:地质出版社,2006.
    [108]Koval, P.V. The role of regional lithogeochemistry in mineral exploration[J]. Journal of Geochemical Exploration,1984,21:201-208.
    [109]迟清华.岩石化学元素丰度在地球化学块体研究中的意义[J].物探与化探,2003,27(6):428-430.
    [110]宫进忠,杨春.河北省金的矿源层和地球化学块体[J].黄金地质,2004,10(4):55-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700