基于微地形下的紫色砂岩和泥岩土壤剖面分异特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫色土集中分布于四川盆地丘陵区,面积约为16万km2,占川、渝两地总土地面积的28%左右,以侏罗系沙溪庙组和蓬莱镇组母质所成土壤面积最大。紫色土是以物理风化为主的岩性土,发育程度较浅,坡地土壤特别是坡顶土壤,常常还来不及发育完成,就被雨水冲刷到坡腰或坡脚,使其土壤元素在剖面及微地形上的分异性具有一定的规律,母岩和地形则是其规律形成的重要因子。本文从土壤发育、元素分异性及迁移性和生态环境角度,以母岩-土壤-生态环境(土壤退化)为研究系统,以重庆市丘陵地区沙溪庙组的砂岩和泥岩为研究对象,拟分析两种母岩发育的土壤剖面的分异状况,在不同微地形(坡顶、坡腰和坡脚)发育成土壤的过程中矿质营养元素的迁移及其剖面发育程度,并对两种紫色土在不同地形部位上的相对退化程度进行初步探析,研究结果如下:
     (1)土壤剖面及地形上土壤元素的分异规律
     通过统计分析得到紫色泥岩发育的土壤pH、全氮、全磷、全钾、碱解氮、有效磷和速效钾的含量普遍高于紫色砂岩发育的土壤;有机质含量和阳离子交换量(CEC)相差不大;从坡顶到坡脚,紫色泥岩土壤pH逐渐减小,分别为7.5±0.3、7.0±0.46、6.6±1.05,说明其酸化过程越来越强,而紫色砂岩土壤pH则逐渐增加,分别为5.9±0.79、5.9±0.95、6±1.09;有机质的分异规律相同,都是坡脚>坡顶>坡腰;两类土壤中全氮、有效锌、全铁和全锰在地形上的分异规律相似,而全磷、有效磷、碱解氮、全钾、速效钾及其他微量元素在地形上的分异规律则有所不同。对两类土壤各土层间元素含量进行方差分析表明,紫色泥岩和砂岩发育的土壤在pH、全磷、全钾、有效磷、CEC、全锌及全铜含量之间的差异性较大。如pH在坡顶A层间、C层间差异达到极显著性水平,在坡腰A层间、B层间呈显著性差异;全磷则在坡项A层达极显著水平。另外在地形分异规律上,土壤pH、碱解氮、全磷、有效磷、全钾和有效钾在地形上的分异规律存在显著差异。如在在紫色泥岩发育的土壤中,从坡顶到坡脚,土壤碱解氮有逐渐增加的趋势,而在紫色砂岩土壤中从坡顶到坡脚则是先减小后增加,在坡脚处达到最在值。
     其次,对土壤pH、有机质、CEC、常量矿质元素及微量元素间进行相关性分析表明,在紫色泥岩和砂岩发育的土壤中,氮、磷、钾的有效态之间都呈现了极显著的正相关,说明三者间的有效态含量具有相互促进作用;土壤有机质则与碱解氮、有效磷、速效钾及全氮都呈现极显著的正相关(紫色泥岩土壤中其相关系数分别达到r1=0.87**,r2=0.531**,r3=0.552**,r4=0.771**,n=48;紫色砂岩土壤中其相关系数分别为r1=0.776**,r2=0.646**,r3=0.536**,r4=0.787**,n=67);在紫色泥岩土壤中,土壤pH与全磷呈极显著的正相关(r=0.385**,n=48),与有效磷和CEC呈极显著负相关(r1=-0.512**,r2=-0.397**,n=48),而砂岩土壤中pH与有机质、碱解氮、有效磷呈极显著的负相关(r1=-0.465**,r2=-0.502**,r3=-0.527**,n=67),同时与全氮呈显著负相关(r=-0.269**,n=67),与全磷和CEC的相关性并不明显;泥岩土壤中.CEC只与土壤pH呈极显著的负相关,在砂岩土壤中CEC与pH相关性未达显著水平,而与有机质呈现了显著的负相关,与全磷、全钾表现为显著的正相关。对具有相关性的土壤性质之间作散点图并经回归得出各相关土壤性质的一元线性回归方程,如在紫色泥岩土壤中,有机质与全氮的相关方程为Y全氮=0.042X有机质+0.263,R2=0.594;而在紫色砂岩土壤中,有机质与全氮的相关方程为:Y全氮=0.043X有机质+0.184,R2=0.619。而常量矿质元素、有机质、CEC等对微量元素在土壤中的有效态影响较大,而对它们的全量影响甚微,只有在紫色砂岩土壤中pH、全磷、全钾、速效钾和CEC对微量元素的全量影响较大。
     (2)土壤剖面中的元素迁移规律
     对土壤中元素迁移规律进行统计分析表明:①在坡顶A层两种类型的土壤剖面中氮、铜、锌、锰、铅的迁移方向相反,紫色泥岩土壤中主要为淋溶作用,而在砂岩土壤中为富集作用;坡腰A层锌的迁移方向相反,坡腰B层铜、锌和锰的迁移方向相反,铅在坡脚A层中的迁移方向也不同,磷、铜、锌、铅在坡脚B层的迁移方向也相反,这可能与土壤的水分特征、土壤的质地及施肥措施相关。②常量矿质元素的迁移强度要大于微量元素的迁移强度,而常量矿质元素中氮的迁移强度又大于磷和钾的迁移强度。土壤元素在紫色泥岩和砂岩土壤的迁移强度不一,在不同地形部位的相对迁移强度也不同,特别是氮、磷、钾的迁移强度,这说明紫色泥岩和砂岩土壤在各地形部位中的发育强度不一。
     (3)不同地形部位上的土壤退化指数
     相对于坡顶,坡腰和坡脚的退化指数都为正数,说明坡腰和坡脚的土壤退化强度小于坡顶,坡腰砂岩土壤退化指数高于泥岩土壤,而在坡脚却低于泥岩土壤,说明泥岩土壤在坡脚处其营养元素强烈淀积,而在坡腰处的淋溶淀积作用与坡顶相差无几。
The purple soil distributing mostly in hilly and low mountainous region of Sichuan basin. The acreage of purple soil in this area is about 0.16 million km2, which is about 28% of Sichuan province and Chongqing city, and the largest parent materials are J2s and J3p. The purple soil is lithology soil and the main weathering effect is physical weathering. The purple soil is shallow, generally, the soil on the sloping field especially the soil in the slope top is eroded to midslope and basal slope by the rainwater before the end of soil development. This thesis use the points of soil development, distributing and migratory rules of soil elements and ecological environment, with the system of parent materials-soil-ecological environment and the object of mudstone and sandstone which belong to the parent material of J2s in hilly region in Chongqing. And on this foundation, this thesis analyze difference of the distributing rules of soil properties,element migratory, the degree of soil profile development and soil degradation in different microtopography between two different soils, and the main results are as follows:
     (1)The distributing rules of soil elements in soil profiles and microtopography
     First, using the statistical method we can found that soil pH, total N,total P, total K, alkaline hydrolytic nitrogen, available P, available K in the soil which develop from purple mudstone is higher than sandstone soil.In these two type soil, there are no obvious otherness about the content of organic matter and cation exchange capacity (CEC). From slope top to basal slope, the soil pH of mudstone soil is decreasing gradually(in slope top is 7.5±0.3,in midslope is 7.0±0.46, in basal slope is 6.6±1.05), this prove that the process of soil acidification is more and more strong, but in sandstone soil the rules of soil pH is completely opposite. The distributing rules of organic matter is the same (basal slope>slope top>midslope), as well as the total N, available Zn, total Fe and total Mn. But there are difference of distributing rules in different microtopography on total P, available P, alkaline hydrolytic nitrogen, total K, available K and microelements. We can found that the variance of the content of soil pH, total P, total K, available P, CEC, total Zn and total Cu in these two type soil is observable. For example, the variance of soil pH between purple mudstone and sandstone soil is highly significant in the soil profile A and C of the slope top, in the soil profile A and B of the midslope the variance is significant; The variance of total P in the profile A of the slope top is highly significant. In addition, the distribution of soil pH, alkaline hydrolytic nitrogen, total P, available P, total K and available K in microtopography is different. For alkaline hydrolytic nitrogen example, from slope top to basal slope, the content of alkaline hydrolytic nitrogen gradually increase in mudstone soil,but in sandstone soil,the content of hydrolytic nitrogen is basal slope>slope top>midslope.
     Secondly, with the correlation analysis for soil pH, organic matter, CEC, major elements and microelements, we can found that there are highly significant positive correlation between alkaline hydrolytic nitrogen, available P and available K, this indicated that there are stimulative effective role between them, as well as between alkaline hydrolytic nitrogen, available P and available K, total N and organic matter(in purple mudstone soil the correlation coefficient is respectively r1=0.87**,r2=0.531**,r3=0.552**,r4=0.771**,n=48; and in purple sandstone soil the correlation coefficient is respectively r1=0.776**,r2=0.646**,r3=0.536**,r4=0.787**,n=67).In the soil developed from purple mudstone material, soil pH and total P showed highly significant positive correlation (r=0.385**,n=48), but highly significant negative correlation between pH and available P, CEC (ri=-0.512**,r2=-0.397**,n=48). On the other hand, in the soil developed purple sandstone material, between soil pH and organic matter, alkaline hydrolytic nitrogen, available P showed highly significant negative correlation(ri=-0.465**,r2=-0.502**,r3=-0.527**,n=67), significant negative correlation between soil pH and total N(r=-0.269**,n=67), and no significant correlation between soil pH and total P and CEC. The soil CEC just with soil pH showed highly significant negative correlation in purple mudstone soil, but in purple sandstone soil there are no significant correlation between CEC and soil pH, whereas, it showed significant negative correlation between CEC and organic matter, significant positive correlation between CEC and total P and total K. We can educed some linear equations with protracting scatter diagram. For example, the equation of organic matter and total N is YTN=0.042xo M+0.263,R2=0.594, and in purple sandstone soil is YT N=0.043xOM+0.184,R2=0.619. In the soil whether developed from purple mudstone or sandstone, the major elements, organic matter and CEC have effective action to the available microelements, but not significant to total content of microelements. In the purple sandstone soil, the soil pH, total P, total K, available K and CEC have significant effect to the total content of microelements.
     (2) The migratory rules of soil elements in soil profiles
     With statistical analysis of the element migratory coefficient we can make clear that the elements N, Cu, Zn, Mn and Pb migratory in opposite direction in profile A of the slope top, the major development process in the purple mudstone soil is leaching process, but in purple sandstone soil is enrichment process. Other elements which migratory in opposite direction are the Zn in profile A of basal slope, the Cu, Zn and Mn in profile B of midslope and the Pb in profile A of basal slope. This may be related to soil water characteristics, soil texture and fertilization measures. The migratory intensity of major elements is higher than microelements, and the migratory intensity of soil N is higher than soil P and K. And there are different element migratory intensity especially soil N, P and K between purple mudstone soil and sandstone soil, as well as in different microtopography, this indicated that the strength of soil development is different with different microtopography and parent material.
     (3) soil degradation index in microtopography
     Making the soil in the slope top as control, the soil degradation index in midslope and basal slope are positive number, this showed that the strength of soil degradation in midslope and basal slope is lower than slope top. The soil degradation index in midslope of purple sandstone soil is higher than mudstone soil, but lower in basal slope, this showed mudstone soil in basal slope its nutritional elements strongly deposited, while in midslope its leaching process and illuviation almost the same with slope top.
引文
[1]龚子同等.土壤发生与系统分类[M].北京:科学出版社,2007,98-99
    [2]熊顺贵等.土壤基础学[M].北京:中国农业大学出版社,2001,54-55
    [3]赵其国,朱显谟.“世界土壤政策”会议简况[J].土壤.1981,(4):155-159
    [4]黄昌勇.土壤学[M].北京:中国农业出版社,2000,12-13
    [5]黄成敏,龚子同.海南岛北部玄武岩上土壤发育过程的定量研究[J].地理科学.2000,20(4):337-341
    [6]黄成敏,龚子同.热带土壤发育过程的定量研究——以海南北部为例[J].地球科学——中国地质大学学报.2001,26(3):315-320
    [7]黄成敏,龚子同.土壤发生和发育过程定量研究进展[J].土壤.2000,(3):145-150,160
    [8]R. Harrison, R.S.Swift, A.S. Campbell et al. A study of two soil development sequences located in a montane area of Canterbury, New Zealand, I. Clay mineralogy and cation exchange properties[J].Geoderma. 1990,47(3-4):261-282
    [9]E.V. Dobrovolsky. Physico-chemical mechanisms of weathering processes and corresponding models of dynamics of mineral zonality evolution[J].Chemical Geology.1987,60(1-4):89-94
    [10]H.Wayne Nesbitt, G. Markovics, R.C. price. Chemical processes affecting alkalis and alkaline earths during continental weathering[J].Geochimica et Cosmochimica Acta.1980,44(11):1659-1666
    [11]M. V. Gonzalez-Sangregorio, M. C. Trasar-Cepeda, M. C. Leiros et al. Early stages of lignite mine soil genesis: Changes in biochemical properties[J].Soil Biology and Biochemistry.1991,23(6):589-595
    [12]McFarlane A W.REE chemistry and Sm-Nd systematics of late Archean weathering profiles in the Fortescue Group. Western Australia[J].Geochim Cosmochim Acta.1994,58:1777-1794
    [13]R. Harrison, R.S. Swift, P.J. Tonkin. A study of two soil development sequences located in a montane area of Canterbury, New Zealand, Ⅱ. soil development indices based on major element analyses[J].Geoderma. 1991,48(1-2):163-177
    [14]Sugitani K, Horiuchi Y, Adachi M et al. Anomalously low A12O3/TiO2 values for Archean cherts Pilbara Block, Western Australia——Possible evidence for chemical weathering on the early earth[J].Precam Res. 1996,(8):49-76
    [15]Young G.M, Nesbitt H.W. Processes controlling the distribution of Ti and Al in weathering profiles, siliciclastic sediments, and sedimentary rocks[J].J. Sed. Res.1998,(68):448
    [16]Nesbitt H W, Markovics G. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments[J].Geochim Cosmochim Acta.1997,(61):1653-1670
    [17]Jack J. Middelburg, Cornelis H. van der Weijden, Joost R.W. Woittiez. Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks[J].Chemical Geology. 1988,68(3-4):253-273
    [18]Alireza Panahi, Grant M. Young, Robert H. Raninbird. Behavior of Major and Trace Elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Quebec, Canada[J].Geochimica et Cosmochimica Acta.2000,64(13):2119-2218
    [19]Banfield J F, Eggleton R A. Apatite replacement and rare earth mobilization, fractionation and fixation during weathering[J].Clay and Clay Min.1989,(37):113-127
    [20]Wollast R,Chou L. Surface reactions during the early stages of weathering of albite[J].Geochim Cosmochim Acta.1992,(56):3113-3123
    [21]陈骏,季峻峰,仇纲等.陕西洛川黄土化学风化程度的地球化学研究[J].中国科学(D辑).1997,27,6():531-536
    [22]周华茂,徐盛荣,朱克贵.我国北亚热带黄土母质发育的土壤成土过程特点[J].南京农业大学学报.1991,14(1):47-53
    [23]魏孝孚,罗永进,张志达.低丘红壤新造田土壤肥力特征及其演变[J].土壤,1981,13(6):201-204
    [24]林明海,赖庆旺.不同熟化度红壤及红壤性水稻土的腐殖质组成及其特性[J].土壤学报,1982,19(3):237-247
    [25]黄成敏,龚子同.土壤发育过程稀土元素的地球化学指示意义[J].中国稀土学报.2000,18(2):150-155
    [26]应维南,孙家干.海积母质水稻土发育过程中磷的迁移[J].土壤通报.1987,(5):221-222
    [27]王伯仁,徐明岗,申华平等.红壤母质熟化过程中土壤磷的组分变化研究[J].湖南农业科学.2005,(1):42-44
    [28]邓时琴,徐梦熊.中国颗粒研究(Ⅲ)——赣中丘陵红壤及其颗粒的物理特征[J].土壤学报,1990,27(4):368-376
    [29]邓铁金,樊友安,周任发.红壤性水稻土的形成过程特点及其肥力演变[J].土壤学报,1985,22(1):1-11
    [30]戴军.一个第四纪红色粘土母质发育的红壤剖面微形态特征的研究[J].热带亚热带土壤科学.1994,3(2):97-104
    [31]黄成敏,龚子同.热带土壤发育过程中土壤磁化率特征研究[J].海洋地质与第四纪地质.2000,20(4):63-67
    [32]胡玉福,邓良基,张世熔等.川中丘陵区城墙岩群和蓬莱镇组紫色岩上土壤性质研究[J].土壤通报.2007,38(6):1076-1080
    [33]吴蔚东,张桃林.中亚热带天然常绿阔叶林下不同母质的土壤质量性状[J].山地学报,2003,21(1):73-79
    [34]郭建军,李惠卓等.不同母岩母质上土壤特性的分析与研究[J].河北林业科技,2004,6:13-14
    [35]陈志诚,赵文君,龚子同,等.海南岛地形-母岩(母质)单元与土壤系统分类类型关系及其在编绘土壤图中的应用[J].土壤学报,2003,40(5):641-649
    [36]L.J.Osher, S.W.Buol.Relationship of soil properties to parent material and landscape position in eastern Madre de Dios Peru[J].Geoderma.1998,(83):143-166
    [37]Jeffrey S. Munroe, Gianina Farrugia, Peter C. Ryan. Parent material and chemical weathering in alpine soils on Mt. Mansfield, Vermong, USA[J].Catena.2007,(70):39-48
    [38]Stefan Dultz. Effects of parent material and weathering on feldspar content in different particle size fractions from forest soils in NW Germany[J].Geoderma.2002,(106):63-81
    [39]C.R. De Kimpe, M.R. Laverdiere, J. Dejou et al. Effects of acidic and basic parent materials on formation of some soils in Quebec (Canada)[J].Geoderma.1984,33(2):101-118
    [40]D. Barton, D. Hope, M.F. Billett et al. Sulphate adsorption capacity and pH of upland podzolic soils in Scotland: Effects of parent material, texture and precipitation chemistry[J].Applied Geochemistry.1994,9(2):127-139
    [41]R.H. Marrs, M.W. Gough, M. Griffiths. Soil chemistry and leaching losses of nutrients from semi-natural grassland and arable soils on three contrasting parent materials[J].Biological Conservation.1991,57(3):257-271
    [42]Jenny L.K.Vestin, Kei Nambu, Patrick A.W.van Hees et al. The influence of alkaline and non-alkaline parent material on soil chemistry[J].Geoderma.2006,(135):97-106
    [43]Reynolds B, Neal C, Hornung M er al. Impact of afforestation on the soil solution chemistry of stagnopodzols in mid-Wales[J].Water,Air and Soil Pollution.1988,(38):55-70
    [44]Stutter M, Langan S, Cresser M. Weathering and atmospheric deposition signatures of base cations in upland soils of NE Scotland:their application to critical load assessment[J].Geoderma.2003,(116):301-342
    [45]Hobbie S.E, Nadelhoffer K.J, Hogberg P. A synthesis:the role of nutrients as constraints on carbon balances in boreal and arctic regions[J]. Plant Soil.2002,(242):163-170
    [46]Rota Wagai, Lawrence M.Mayer, Kanehiro Kitayama et al. Climate and parent material controls on organic matter storage in surface soils:A three-pool, density-separation approach[J]. Geoderma.2008,(147):23-33
    [47]Hall, S.J, Asner GP, Kitayama K. Substrate, climate, and land use controls over soil N dynamics and N-oxide emissions in Borneo[J]. Biogeochemistry.2004,(70):27-58
    [48]Grieve I.C. Effects of parent material on the chemical composition of soil drainage waters[J]. Geoderma.1999,(90):49-64
    [49]J.Hamdan, C.P.Burnham. The contribution of nutrients from parent material in three deeply weathered soils of Peninsular Malaysia[J].Geoderma.1996,74(3-4):219-233
    [50]刘敏.不同母质紫色土水分特征及作物需水量的研究[D].成都:四川农业大学.优秀硕士论文,2007
    [51]张凤荣,向师庆,聂立水.北京西部山区发育在不同母质上的土壤的发生分类问题[J].土壤通报.1992,23(3):111-114
    [52]董玲玲,何腾兵,刘元生等.喀斯特山区不同母质(岩)发育的土壤主要理化性质差异性分析[J].土壤通报.2008,39(3):471-474
    [53]章明奎,何振立.成土母质对土壤团聚体形成的影响[J].热带亚热带土壤科学.1997,6(3):198-202
    [54]周卫军,曾希柏,张杨珠等.施肥措施对不同母质发育的稻田生态系统土壤微生物量碳、氮的影响[J].应用生态学报.2007,18(5):1045-1049
    [55]何腾兵,董玲玲,李广枝等.喀斯特山区不同母质(岩)发育的土壤主要重金属含量差异性研究[J].农业环境科学学报.2007,27(1):188-193
    [56]章明奎,俞震豫,王人潮等.南京和九江两地黄土母质发育的土壤性质比较[J].热带亚热带土壤科学.1993,2(1):24-28
    [57]王焕之,吕军.红壤地区三种不同母质发育土壤的水分特性差异[J].水土保持学报.2001,15(2):68-71
    [58]马世五,高雪松,邓良基等.不同母质发育的紫色水稻土腐殖质分布特征[J].山地学报.2008,26(1):45-52
    [59]赵斌军,文启孝.石灰性母质对土壤腐殖质组成和性质的影响[J].土壤学报.1988,25(3):243-251
    [60]杨剑虹,胡艳艳,卢扬等.四川盆地紫色母岩中钛与母岩原始风化度关系的研究[J].土壤学报.2006,43(4):541-547
    [61]郭荣发,杨杰文.成土母质和种植制度对土壤pH和交换性铝的影响[J].生态学报.2004,24(5):984-989
    [62]唐诵六.用主成分分析研究土壤中重金属含量与母质的关系[J].环境科学.1985,3:2-6
    [63]何腾兵,董玲玲,刘元生等.贵阳市乌当区不同母质发育的土壤理化性质和重金属含量差异研究[J].水土保持学报.2006,20(6):157-162
    [64]陈明智,孔令伟,王亚弟等.热带不同母质香蕉园土壤理化性状比较研究[J].热带农业科学.2007,23(2):414-417
    [65]王先华,金慧,胡应堂.施肥及耕作方式对不同母质土壤腐殖质含量的影响[J].湖北农业科学.2005,(6):70-72,81
    [66]何毓蓉,等.中国紫色土下篇[M].北京:科学出版社,2003,78-79
    [67]胡玉福,邓良基,张世熔等.四川雨城区主要土壤母质上的耕地土壤性质变异研究[J].土壤通报.2004,35(3):246-250
    [68]魏孝荣,邵明安.黄土高原沟壑区小流域不同地形下土壤性质分布特征[J].自然资源学报.2007,22(6):946-952
    [69]Brubaker S C, Jones A J, Lewis D T,et al. Soil Properties Associated with Landscape Position [J].Soil Science. 1993,57:235-239
    [70]F.K.Salako, P.O.Dada, C.O.Adejuyigbe et al. Soil strength and maize yield after topsoil removal and application of nutrient amendments on a gravelly Alfisol toposequence[J].Soil and Tillage Research.2007,(94):21-35
    [71]Nagamatsu D Y, Yoshihiko H, Mochida Y. Influence of micro-landforms on forest structure, tree death and recruitment in a Japanese temperate mixed forest[J].Ecological Research.2003,18:533-547
    [72]Lark R M. Soil-landform relationships at within-field scales:An investigation using continuous classification[J]. Geoderma.1999,92:141-165
    [73]W. A. Stoop. Variations in soil properties along three toposequences in Burkina Faso and implications for the development of improved cropping systems[J].Agriculture, Ecosystems & Environment.1987,19(3):241-264
    [74]F.K.Salako, G.Tian, G.Kirchhof et al.Soil particles in agricultural landscapes of a derived savanna in southwestern Nigeria and implications for selected soil properties[J].Geoderma.2006,(137):90-99
    [75]P.L.M. Veneman, P.V. Jacke, S.M. Bodine. Soil formation as affected by pit and mound microrelief in Massachusetts,USA[J].Geoderma.1984,33(2):89-99
    [76]E.Vidal Vazquez, J.GVivas Miranda, A.Paz Gonzalez. Characterizing anisotropy and heterogeneity of soil surface microtopography using fractal models[J].Ecological Modelling.2005,(182):337-353
    [77]A.C.Parent, M.C.Belanger, L.E.Parent et al. Soil properties and landscape factors affecting maize yield under wet spring conditions in eastern Canada[J].Biosystems Engineering.2008,(99):134-144
    [78]F.K.Salako, P.O.Dada, C.O.Adejuyigbe et al. Soil strength and maize yield after topsoil removal and application of nutrient amendments on a gravelly Alfisol toposequence[J].Soil and Tillage Research.2007,(94):21-35
    [79]D.K.Pal, P.Srivastava, S.L.Durge et al. Role of microtopography in the formation of sodic soils in the semi-arid part of the Indo-Gangetic Plains, India[J].Catena.2003,(51):3-31
    [80]Johannes Botschek, Joao Ferraz, Marcelo Jahnel et al. Soil chemical properties of a toposequence under primary rain forest in the Itacoatiara vicinity (Amazonas, Brazil)[J].Geoderma.1996,(72):119-132
    [81]Bravard.S, Righi D. Characterization of fulvic and humic acids from an Oxisol-Spodosol toposequence of Amazonia,Brazil[J].Geoderma.1991,(48):1151-162
    [82]Bravard.S, Righi D. Geochemical differences in an Oxisol-Spodosol toposequence of Amazonia Brazil[J]. Geoderma.1989,(44):29-42
    [83]毕如田,李华.不同地形部位耕地微量元素空间变异性研究[J].土壤.2005,37(3):290-294
    [84]秦松,樊燕,刘洪斌等.地形因子与土壤养分空间分布的相关性研究[J].水土保持研究.2008,15(1):46-49,52
    [85]张学雷,陈杰,张甘霖.海南岛不同地形上某些土壤化学性质的多样性分析[J].应用生态学报.2004,15(8):1368-1371
    [86]王百群,刘国彬.黄土丘陵区地形对坡地土壤养分流失的影响[J].土壤侵蚀与水土保持学报.1999,5(2):18-22
    [87]李笑吟,毕华兴,张志等.晋西黄土区坡面尺度地形因子对土壤水分状况的影响[J].北京林业大学学报.2006,28(4):51-56
    [88]柳云龙,胡宠涛.红壤地区地形位置和利用方式对土壤物理性质的影响[J].水土保持学报.2004,18(1):22-26
    [89]胡学玉,龙成凤,赵书军等.湖北棕红壤丘陵区不同地形部位及利用方式的土壤养分状况[J].湖北农学院学报.1997,17(3):208-212
    [90]张春,邓良基,张世熔等.红棕紫色土不同地形部位的土壤质量分析——以川中丘陵区为例[J].农机化研究.2006,(9):61-64
    [91]陈志诚,赵文君.泰和县丘陵区四个土链中微量元素的含量与分布[J].土壤,1986,18(2):93
    [92]魏孝荣,邵明安,张兴昌等.黄土沟壑区小流域不同地形条件下土壤锰的形态分布及其有效性[J].植物营养与肥料学报.2008,14(3):439-444
    [93]Birte Junge, Armin Skowronek. Genesis, properties, classification and assessment of soils in Central Benin, West Africa[J].Geoderma.2007,(139):357-370
    [94]Feddema J.J. Estimated impacts of soil degradation on the African water balance and climate[J]. Clim.Res.1998,(10):127-141
    [95]Lal.R. Physical management of soils of the tropics:priorities for the 21st centaury[J].Soil Science. 2000,(165):191-207
    [96]Villamil M B,Amiotli N M, Peinemann N. Soil degradation related to overgrazing in the semi-arid southern Caldanal area of Argntina[J].Soil Science,2001,166:441-452
    [97]史德明,韦启潘,梁音,等.中国南方侵蚀土壤退化指标体系研究[J].水土保持学报,2000,14(3):1-9
    [98]何毓蓉,张丹,张映翠,等.金沙江干热河谷区云南土壤退化过程研究[J].水土保持学报,1999(4):1-5,38
    [99]黄成敏,何毓蓉,文安邦.四川紫色土退化的分类与分区[J].山地研究.1993,11(4):201-208
    [100]卢金伟,李占斌.土壤侵蚀退化研究进展[J].土壤与环境,2001,10(1):72-76
    [101]何毓蓉,黄成敏,宫阿都等.金沙江干热河谷典型区(云南)土壤退化机理研究——母质特性对土壤退化的影响[J].西南农业学报(增刊).2001,(14):9-13
    [102]林年丰,王娟,唐洁,等.吉林省西部土壤退化特征及机理分析[J].水土保持通报,2003,23(2):1-8
    [103]李绍良,贾树海,陈有君等.内蒙古草原土壤退化进程及其评价指标的研究[J].土壤通报.1997,28(6):241-243
    [104]孙晓辉,吴祥云,李宏昌等.辽西北农牧交错区土壤退化评价指标体系[J].辽宁工程技术大学学报.2008,27(增刊):308-310
    [105]孙波,赵其国等.红壤退化中的土壤质量评价指标及评价方法[J].地理科学进展.1999,18(2):118-128
    [106]徐琪,章家恩,董元华.三峡地区土壤生态退化评价——以秭归县为例[J].世界科技研究与发展.2001,(1):16-21
    [107]章家恩,徐琪.三峡库区秭归县土壤退化综合评价[J].生态农业研究.1999,7(1):32-35
    [108]郭滨,毕玉芬,龙光强等.不同植被恢复措施下退化灌草丛草地土壤理化性状的评价[J].云南农业大学学报.2008,23(2):195-199
    [109]莫彬,曹建华:徐祥明等.岩溶石漠化演替阶段土壤质量退化的预警指标评价[J].水土保持研究.2007,14(3):16-18
    [110]徐鹏,赵东,赵勇等.黄河小浪底库区不同恢复阶段土壤退化评价[J].安徽农业科学.2007,35(10):2959-2961,3102
    [111]刘良梧,龚子同.全球土壤退化评价[J].资源科学.1995,(1):10-15
    [112]C.T.Omuto. Assessment of soil physical degradation in Eastern Kenya by use of a sequential soil testing protocol[J].Agriculture Ecosystems and Environment.2008,(128):199-211
    [113]Vrieling A. Satellite remote sensing for water erosion assessment:a review[J].Catena.2006,(65):2-18
    [114]V.V.Snakin, P.P.Krechetov, T.A.Kuzovnikova et al. The system of assessment of soil degradation[J].Soil Technology.1996,(8):331-343
    [115]Jose-Miguel de paz, Juan Sanchez, Fernando Visconti. Combined use of GIS and environment indicators for
    assessment of chemical, physical and biological soil degradation in a Spanish Mediterranean region[J].Journal of Environmental Management.2006,(79):150-162
    [116]Stolbovoi V.S, Yu I, Savin B et al. The geoinformation system on soil degradation in Russia[J].Soil Science. 1999,(5):589-593
    [117]Antonio P. Leone, Stefan Sommer. Multivariate Analysis of Laboratory Spectra for the Assessment of Soil Development and Soil Degradation in the Southern Apennines (Italy)[J].,Remote Sens. Environ. 2000,(72):346-359
    [118]周红艺,熊东红,杨忠等.长江上游典型地区的土壤退化评价[J].水土保持通报.2005,25(6):70-72,77
    [119]黄昌勇.土壤学[M].北京:中国农业出版社,2004:7-8,77-78,148
    [120]骆东奇.紫色母岩现代表生作用及环境效应研究[D].重庆:西南农业大学,2003
    [121]胡玉福,邓良基,张世熔等,川中丘陵区典型小流域土壤氮素空间变异特征及影响因素研究[j].水土保持学报,2008,22(3):70-75
    [122]Marc van den Broek, Andre van Amstel, Arnold Verbakel et al. Variability of soil properties in a landscape ecological survey in the Tuscan Apennines, Italy. CATENA.1981,8(2):155-170
    [123]李志,刘文兆,王秋贤.黄土塬区不同地形部位和土地利用方式对土壤物理性质的影响.应用生态学报.2008,19(6):1303-1308
    [124]D.Right, L. Lorphelin. Weathering of silt and clay in soils of a toposequence in the Himalayas, Nepal. Geoderma.1986,39(2):141-155
    [125]杨剑虹,土壤农化分析与环境监测[M].北京:中国大地出版社,2008
    [126]田均良,刘普灵,李雅琦.黄土高原土壤剖面元素相对迁移强度初探[J].水土保持研究.1995,2(4):51-55
    [127]曾觉廷.土壤发生与分类学[M].成都:成都科技大学出版社,1996
    [128]骆东奇,侯春霞,魏朝富等.不同母质发育紫色土团粒结构的分形特征研究[J].水土保持学报.2003,17(1):131-133,182
    [129]赵其国,昆明地区不同母质对红壤发育的影响[J].土壤学报.1964,12(3):253-264
    [130]N.C.Brady. The Nature and Properties of Soils.1974:9,92-95,289
    [131]吴涌泉,屈明,孙芬等.秸秆覆盖对土壤理化性状、微生物及生态环境的影响[J].中国农学通报.2009,25(14):263-268
    [132]黄巧云,土壤学[M].北京:中国农业出版社,2006:179-180
    [133]赵其国,史学正.土壤资源概论[M].北京:科学出版社,2007:31-35
    [134]林超文,庞良玉,陈一兵等.四川盆地紫色土N,P损失载体及其影响因子[J].水土保持学报.2008,22(2):20-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700