基于数字化平台的分布式流域水文模型和流域汇流研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数字高程模型(DEM)已在分布式流域水文模型中得到了越来越广泛的应用,但
    DEM中的闭合洼地和平坦区域影响着流域河网的自动提取。目前已提出好多方法
    来处理这两种地形,但均针对已经形成的DEM单元网格进行处理,结果往往生成
    伪河道及平行河道。DEM中的闭合洼地和平坦区域是由于低质量的资料输入、生
    成DEM时的内插误差等引起的。通过增加输入地形高程信息,可避免DEM中平
    坦区域和闭合洼地的生成,使模拟的河网与实际河网能够精确拟合。实例分析表
    明,该方法效果明显。
    O'callaghan和Mark方法是广泛应用的提取流域河网的方法。为了得到连续的
    河网,方法中引入了汇水面积阈值的概念,但对于同一流域,利用不同的汇水面
    积阈值将得到不同的河网。提出了一种方法,利用河源密度(或河网密度)与汇
    水面积阈值的关系,确定汇水面积阈值,当河源密度(或河网密度)趋于稳定时
    对应合理的面积阈值。将该方法应用于沿渡河流域,得到了理想的结果。
    地貌单位线被看作是流域上各水质点在弱相互作用下,到达流域出口汇流时
    间的频率分布。对于一个典型的山坡型网格单元,汇流路径由两部分组成,即坡
    地部分和河道部分,为了得到汇流时间,必须首先确定汇流速度。坡地和河道的
    汇流速度随着区域位置而变,并且必然与坡度有关,因此,可首先计算流速的空
    间分布,进而得到汇流时间的空间分布。现行地貌单位线计算方法忽略了与坡地
    漫流有关的滞留时间。
    提出了一种汇流时间计算方法,汇流时间中包括坡地漫流时间和河道汇流时
    间。方法中坡地单元的汇流速度与河道单元的汇流速度采用不同的计算公式,同
    时考虑流速沿河道向下游的变化。流域中每一个网格单元的汇流时间得到后,将
    其看作随机变量,进行统计分析后,得到汇流时间的频率分布—GIUH。
    地形指数ln(α/tan β)是一些以物理概念为基础的水文模型的重要参数。
    TOPMODEL是以计算ln(α/tan β)指数及其分布为基础的。对于栅格DEM,α为上
    坡区域通过单位等高线长汇集到单元网格内的面积,反映径流在流域中任一点的
    累积趋势,tan β为单元网格的坡度,反映重力使径流顺坡移动的趋势。目前普遍
    使用的计算该地形指数的方法为多流向法。方法中计算α和tan β用的均是与流出
    单元网格流向垂直的等高线长。另外计算下坡单元网格累积汇流面积时没有考虑
    欲计算ln(α/tan β)值的单元网格的面积,这些是不合理的。计算α值应该用与流入
    单元网格流向垂直的等高线长,据此提出了改进后的ln(α/tan β)的计算公式。方法
    
    摘要
    中计算下坡单元累积汇流面积时包括了欲计算hi(a八anp)的单元网格的面积。分析
    了两种方法计算结果间的差值。
     多流向地形指数计算方法在实际应用时比较复杂。提出一种简单的地形指数
    in(a/t anp)计算方法,该方法分别计算DEM网格单元的a和tanp,对坡度为。的
    网格单元进行专门处理,然后计算每一个网格单元的ln(a/tanp)。以长江上游沿渡
    河流域为例,将计算的地形指数用于TOPMODEL进行洪水径流模拟计算,得到了
    比较满意的结果。
     流域地形控制着地表径流的路径和累积水量的空间分布,流域地形可以用地
    形指数的空间分布来表示。地形指数可用来作为水文相似性指数,即具有相同地
    形指数的各点对降雨具有相同的水文响应。TOPMODEL利用地形指数频率分布计
    算流域径流过程。因此可以认为:具有相同地形指数频率分布的流域具有水文相
    似性。分析认为长江流域上游的沿渡河流域与兴山流域具有水文相似性,利用兴
    山流域率定的模型参数和地形指数频率分布计算的沿渡河流域径流过程,与实测
    过程拟合较好。
Digital elevation model(DEM) has become widely used in distributed hydrological models. It is found that the automatic detection of drainage networks from digital elevation models is affected by flat areas and closed depressions .A variety of methods have been proposed to treat these two features , but it can be seen that the flat areas and closed depressions are processed only after they have been created ,so that many spurious and parallel drainage courses are generated . It is known that flat areas and closed depressions often arise because of low quality input data, interpolation errors during DEM generation et al., therefore, they can be removed by adding elevation information to input topographic data. The proposed approach can lead to better match between observed and modeled flow structure and produce more realistic results in application.
    The algorithm for delineation of a drainage network proposed by O'callaghan and Mark is very widely used. A drainage area threshold is used to produce a continuous network, so that different network is obtained for varying drainage area threshold. A method is proposed, in which the relation between source density (or drainage density) and the threshold is used to produce an ideal drainage network ,the area threshold when source density (or drainage density) show stability is reasonable. The method is used in Yanduhe watershed and a good result is obtained.
    The geomorphological instantaneous unit hydrograph(GIUH) is viewed as the frequency distribution of the times of arrival of individual water deoplets at the catchment outlet.The travel path ,for a typical hillslope cell .consists of a hillslope fraction,corresponding to overland flow and a stream fraction,corresponding to concentrated channeled flow.To obtain the time of travel,velocities must be defined.Hillslope and stream velocities vary with location and must be strongly correlated with slope,and therefore a spatial distribution of velocities and hence of travel times could be obtained.The present methods of GIUH neglect any time delays associated with overland flow pathways.
    A new method is presented.The travel time,including the time delays associated with overland folw pathways, is obtained.It is expected that the hillslope velocity and the stream velocity are different,and different equation is used.In the method ,the fact that velocity increases going downstream in river systems is taken into account.After
    
    
    
    the travel time of each cell being calculated,the frequency distribution of the times of arrival of individual water droplets at the catchment outlet -GIUH,is obtained.
    The topographic index ln(α/tan #) is an important parameter of many physically based hydrological models. TOPMODEL is based on the calculation of ln(α/tan #) index and its distribution .In terms of a DEM, a is the cumulative upslope area draining through per contour length to a pixel, which reflects the tendency of water to accumulate at any point in the catchment, tan # is the local slope angle of the cell, which reflects the tendency for gravitational forces to move that water downslide. The calculation method of ln(α/tan #) index widely used is the multiple flow direction algorithm developed by Quinn et al.It can been seen that, in the algorithm, the contour length normal to the direction of flow flowing out the current cell is used to determine both a and tan # , and that the calculated total cumulative contributing area of downslide grid cell does not include the area of the current cell. These are unreasonable. It is found that the contour length used to determine a should be that normal to the directi
    on of flow entering into the current cell, rather than that flow out the current cell. The algorithm improved to calculate the ln(α/tan #) index is presented, in which the area of the current cell is included in the calculated total cumulative contributing area of downslide grid cell. The different between the results of the two algorithms is described.
    A simple algorithm for the calculation of topographic index ln(
引文
[1] Turcotte R ,Fortin J P ,Rousseau A N ,Massicoatte S and Villeneuve J P. Determination of the drainage structure of a watershed using a digital elevation model and a digital river and lake network .J.Hydro. 2001,240:225-242.
    [2] Olivera F,Maidment D. Geographic information systems(GIS)-based spatially distributed model for runoff routing. Water Resour. Res. 1999,35(4):1155-1164.
    [3] Beven K, Kirkby M J. A physically-based, variable contributing area model of basin hydrology. Hydrol.Sci.Bull. 1979,24:43-69.
    [4] Quinn P, Beven K, Chevalier P and Planchon O.The prediction of hillslope flow path for distributed hydrological modeling using digital terrain model.Hydrol.Process. 1991,5:59-79.
    [5] Wolock D M, McCabe G J.Comparison of single and multiple flow direction algorithms for computing topographic parameters in TOPMODEL. Water Resour. Res. 1995, 31(5): 1315-1324.
    [6] Cabral M, Bras R L,Tarboton D and Entekhabi D.A distributed, physically-based rainfallrunoff model incorporating topography for real-time flood forecasting. Hydrology and Water Resource Systems, Report Number 332,Ralph M. Parsons Laboratory, M.I.T. Department of Civil Engineering. 1991.
    [7] Kite G W.The SLURP model.In:Singh V P.(Ed.),Computer Model of Watershed Hydrology. Water Resources Publications, 1995,pp.521-562.
    [8] Leavesley G H,Stannard L G. The precipitation-runoff modeling system—PRMS. In:Singh V P.(Ed.),Computer Model of Watershed Hydrology, Water Resources Publications, 1995, pp.281-310.
    [9] Fortin J P, Turcotte R,Massicotte S,Moussa R, and Fitzback J. A distributed watershed model compatible with remote sensing and GIS data, part1:description of the model. J. Hydrol.Engng, ASCE, 2001,6(2).
    [10] Tribe A S. Automated recognition of valley heads from digital elevation model.Earth Surf.Processes Landforms, 1991,16:33-49.
    [11] Greysukh V L. The possibility of studying landforms by means of digital computers, Sov.Geogr., 1967,8:137-149.
    [12] Peuker T, Douglas D H. Detection of surface-specific points by local parallel processing of discrete terrain-elevation data.Comput.Graphics Image Process., 1975,4:375-387.
    [13] Toriwaki J,Fukumura T. Extraction of structural information from grey pictures. Comput. Graphics Image Process., 1978,8:30-51.
    [14] Carrol R. Automated gully delineation using digital elevation data.ACSM-ASP 49th Annual Meeting,Technical Papers,Washington,DC, 1983,144-151.
    [15] Mark D M. Automated detection of drainage networks from digital elevation models. Cartographica, 1984,21:168-178.
    [16] Band L E. Topographic partition of watersheds with digital elevation models. Water Resour. Res., 1986,22:15-24.
    [17] Burrough P A. Principles of Geographical Information Systems for Land Resources Assessment. Clarendon Press,Oxford. 1986.
    [18] Douglas D H. Experiments to locate ridges and channels to create a new type of digital elevation model. Cartographica, 1986,23:29-61.
    [19] Tribe A S. Towards the automated recognition of landforms(valley heads) from digital elevation models. Proceedings of the Fourth international Symposium on Spatial Data Handing, Zurich,1990,Vol.1,Geographical Institute,University of Zurich,Switzerland,pp.45-52.
    [20] Tribe A. Automated recognition of valley lines and drainage network from digital elevation models:a review and a new methodJ.Hydrol., 1992,139:263-293.
    [21] Kirkby M J, Chorley R J. Throughtflow overland flow and crosion. Bull.Int. Assoc. Sci. Hydrol., 1967,15: 5-21.
    [22] O,Callaghan J F, Mark D M. The extraction of drainage networks from digital elevation data. Comput.Vision,Crraphics Image Process., 1984,28:323-344.
    
    
    [23] Band L E. Analysis and representation of drainage basin structure with digital elevation data.Proceedings of the Second International Symposium on Spatial Data Handing. Seattle, WA, 1986,pp.437-450.
    [24] Band L E.Aterrain-basedwatershed information system.Hydrol.Process. 1989,3:151-162
    [25] Carrara A. Drainage and divide networks derived from high-fidely digital terrain models. NATO Advanced Study Symposium. 1986.
    [26] Yuan L P, Vanderpool N L. Drainage network simulation. Comput. Geosci.,1986,12:653-665.
    [27] Weibel R, Heller M, Herzog A and Brassel K E. Approaches to digital terrain modeling. Proceedings of the First Latin American Conference on Computers in Geography, San Jose, Costa Rica. 1987.
    [28] Band L E, Wood E F. Strategies for large-scale, distributed hydrologic simulation. Appl. Math. Comput.,1988,27:23-37.
    [29] Jenson S K, Domingue J O. Extracting topographic structure from digital elevation data for geographic information systems analysis. Photogramm. Eng. Remote Sensing, 1988,54: 1593-1600.
    [30] Yoeli P. Computer-assisted determination of the valley and ridge lines of digital terrain models. Int Yearb. Cartogr., 1984,24:197-205.
    [31] Bevaqua G, Floris R. A surface-specific line tracking and slope recognition algorithm. Comput. Vision, Graphics Image Process., 1987,40:219-227.
    [32] Riazanoff S, Cervelle B, Chorowicz J. Ridge and valley line extraction from digital terrain models.Int.J.Remote sensing, 1988,9:1175-1183.
    [33] Skidmore A K. Terrain position as mapped from a gridded digital elevation model.Int. J. Geogr. Inf. Syst., 1990,4:33-49.
    [34] Martz L W, Garbrecht J. Automated recognition of valley lines and drainage network from digital elevation models: a review and a new method—Comment, J.Hydrol. 1995, 167: 393-396.
    [35] Hutchinson M F. A new procedure for gridding elevation and stream line data with automatic removel of spurious pits.J.Hydrol., 1989,106:211-232.
    [36] Collins S H. Terrain parameters directly from a digital terrain model. Can. Surv., 1975,29:507-518.
    [37] Weibel R, Heller M. A framework for digital terrain modelling.Proceedings of the Fourth International Symposium on Spatialanding Zurich, 1990, Vol.1,Geographical Institute, University of Zurich ,Switzerland, 1990,pp:219-229.
    [38] Palacios-Velez O L, Cuevas-Renaud B. Automated fiver-course, ridge and basin delineation from digital elevation data[J].J. Hydrol., 1986,86:299-314.
    [39] James W P, Kim K W. A distributed dynamic watershed model[J]. Water Resour. Bull. 1990, 4: 587-596.
    [40] Weihua zhang and Montgomery D R. Digital elevation model grid size,landscape representation and hydrologic simulations[J], Water Resour.Res. 1994,30(4):1019-1028.
    [41] Fairfield J, Leymarie P. Drainage network from digital elevation models[J]. Water Resour.Res. 1991,27(5),709-717.
    [42] Martz L W, Garbrecht J. The treatment of flat areas and depressions in automated drainage analysis of raster digital elevation models[J].Hydrol. Process. 1998,12,843-855.
    [43] 文康,金管生等,地表径流过程的数学模型[M],北京;水利电力出版社,1990.
    [44] Rodfiguze-Iturbe I,Valdes J B. The geomorphic structure of hydrologic response[J]. Water Resour. Res., 1979,15:1409-1420.
    [45] Gupta V K, Waymire E C,Wang C T. A representation of an instantaneous unit hydrograph from geomorphology[J]. Water Resour.Res.,1980,16:855-862.
    [46] Troutman M, Karlinger M R. Unit hydrograph approximations assuming linear flow through topologically random networks[J]. Water Resour.Res., 1985, 21(5):743-754.
    [47] Rosso R, Nash model relation to Horton order rations[J]. Water Resour.Res., 1984,20:914-920.
    [48] Rodriguze-Iturbe I, Gonzales-Sanabria M, Bras R L. A geomorphoclimatic theory of the instantaneous unit hydrograph[J].Water Resour.Res., 1982,18:877-886.
    
    
    [49] Wang C T, Gupta V K, Waymire E C. A geomorphologic synthesis of non-linerity in surfacerunoff. [J].Water Resour. Res., 1981,17:545-554.
    [50] 芮孝芳 利用地形地貌资料确定Nash模型参数的研究[J].水文,1999,3:6-10.
    [51] 芮孝芳,石朋 基于地貌扩散和动力扩散的流域瞬时单位线研究[J].水科学进展,2002.13(4):439-444
    [52] 芮孝芳 应用流路长度分布规律和坡度分布规律确定地貌瞬时单位线的研究[J].水科学进展,2003
    [53] Saghafian B, Yulien P Y, Rajaie H. Runoff hydrograph simulation based on time variable isochron technique[J]. J.Hydrol. 2002,261:193-203.
    [54] Philip J R. The theory of infiltration equation and its solution.Soil Sci., 1957,83(5):345-357.
    [55] Molz F J. Model of water transport in soil-plant system: A review. Water Resour. Res., 1981,17(5):1245-1260.
    [56] Engman E T, Rogowski A S. A partial area model for streamflow synthesis. Water Resour.Res., 1974,10(3):464-471.
    [57] Smith R E.and Hebbert R H. A Monte-Carlo analysis of the hydrologic effects of spatial variability of infiltration[J]. Water Resour.Res., 1979,15:419-429.
    [58] Warrick A W, Amoozegar-Fard A. Infiltration and drainage equations using spatially scaled hydraulic properties. Water Resour.Res., 1979,15:1116-1120.
    [59] Bresler E, Dagan G. Unsaturated flow in spatially variable fields,2.Application of water flow models to various fields, Water Resour.Res., 1983,19:421-428.
    [60] Wood E F, Sivapalan M, Beven K J. Scale effects in infiltration and runoff production. LASH Publ.1986,156:375-387.
    [61] Mantoglou A, Gelhar L W. Effective hydraulic conductivities of transient unsaturated flow in stratified soils[J]. Water Resour.Res., 1987,23:57-67.
    [62] Eagleson P S. Climate, soil and vegetation, 1-7. Water Resour.Res., 1978,14(5):705-776.
    [63] 芮孝芳,朱庆平.分布式流域水文模型研究中的几个问题[J]。水利水电科技进展,2002,22(3):56-58.
    [64] 于澎涛.分布式水文模型在森林水文学中的应用[J].林业科学研究,2000,13(4):431-438.
    [65] 李硕,曾志远,张运生.数字地形分析技术在分布式水文模型中的应用[J].地球科学进展,2002,17(5):769-775.
    [66] Freeze R A, Hadan R L. Blueprint for a physically based,digitally-simulated hydrologic response model[J].Hydrol.1969.
    [67] 黄平,赵吉国.流域分布型数学模型的研究及应用前景展望[J].水文,1997,(5):5-9.
    [68] Abbott M B, Bathurst J C, Cunge J A ,O'Connell P E and Rasmussen J. "An introduction to the European Hydroloic System-Systeme Hydrologique Europeen, SHE, 1: History and philosophy of a physically-based, distributed modeling system."J. Hydrol., 1986,87:45-59.
    [69] Abbott M B, Bathurst J C, Cunge J A, O'Connell P E and Rasmussen J. "An introduction to the European Hydroloic System-Systeme Hydrologique Europeen, SHE, 2: structure of a physically-based, distributed modeling system."J.Hydrol., 1986,87:61-77.
    [70] Freeze R A. A stochastic-conceptual analysis of rainfall-runoff processes on a hillslope. Water Resour.Res., 1980,16:391-408.
    [71] Moore R J, Clarke R T. A distribution approach to rainfall-runoff modelling. Water Resour. Res., 1981,17(5): 1367-1382.
    [72] Beven K J, Wood E F. Catchment Geomorphology and the Dynamics of Runoff Contributing Areas, J.Hydrol. 1983,65:139-158.
    [73] Hornberger G M, Beven K J, Ccosby B J,et al. Shenandoah watershed study:Calieation of a topography-based,variable contributing area hydrologicl model to a small forested catchment[J]. Water Resour. Res.,1985,21:1841-1850.
    [74] Beven K J. Prophesy ,reality and uncertainty in distributed hydrological modeling[J]. Advances in Water resources,1993,16:41-51.
    [75] 余新晓。赵玉涛,张志强.基于地形指数的Topmodel研究进展与热点跟踪[J].北京林业大学学报,2002,24(4):117-121.
    
    
    [76] 郭方,刘新仁,任立良.以地形为基础的流域水文模型——Topmodel及其拓宽应用[J].水科学进展,2000,11(3):296~301.
    [77] 任立良,刘新仁.基于DEM的水文物理过程模拟[J] 地理研究,2000,19(4):369-376.
    [78] 刘晓阳,毛节泰,李纪人,朱元竞.雷达估测降水模拟史灌河流域径流[J].北京大学学报(自然科学版),2002,38(3):342-349.
    [79] 熊立华,郭生练,胡彩虹.Topmodel在流域径流模拟中的应用研究[J].水文,2002,22(5):5-8.
    [80] Garrote L, Bras R L. A distributed model for real-time flood forecasting using digital elevation models[J]. J.Hydrol,1995,167:279-306.
    [81] Cabral M C, Garrote L, Bras R L, Entckhabi D. Kinematic infiitration in vertically heterogenous, anisotropic and sloped soils.Adv.Water Resour.,1992,15:311-324.
    [82] Rinaldo A, Marani A, Rigon R. Gcomorphological dispersion [J], Water Re. Res 1991, 27(4): 513-525.
    [83] 刘新仁.数字水文系统建设—信息时代的水文技术革新[J].水文,2000,21(4):5-8.
    [84] 任立良.流域水文物理过程的数字模型研究[D].南京;河海大学,1999.
    [85] 王忠静,李宏益.数字化流域与现代水资源规划[A].黄河水利委员会.建设数字黄河工程[C].郑州:黄河水利出版社.2002,pp:109-114.
    [86] Moore I D, Grayson R B. "Terrain-based catchment partitioning and runoff prediction using vector elevation data." Water Resour.Res.,1991,27(6):1177-1191.
    [87] 王中根,刘昌明等,基于DEM的分布式水文模型构建方法[J].地理科学进展,2002,21(5):430-439.
    [88] Beasley D B, Huggins L F, Monke E J. "ANSWERS:a model for watershed planning." Trans. ASAE, 1980,23:938-944.
    [89] Young R A, Onstad C A, bosch D D, Anderson W P. "AGNPS:A non-point source pollution model for evalutating agricultural watershed."J.Soil Water Conserval.,1989,44:168-173.
    [90] Moore I D, O'Loughlin E M, Burch G J. "A contour-based topographic model for hydrological and ecological applications."Earth Surf. Processes Landforms, 1988,13:305-620.
    [91] Moore I D, Pamuska J C, Grayson R B, Srivastava K P. "Application of digital topographic modeling in hydrology."Proc.,Int, Sym[osium on Modeling Agriculatural, Forest, and Rangel and Hydrology. Publication No.07-88,American Society of Agriculatural Engineers, St.Joseph, Mich., 1988,447-461.
    [92] O'Loughlin E N. "Prediction of surface sturation zones in natural catchments by topographic analysis." Water Resour.Res., 1986,22:229-246.
    [93] Moore I D, Burch G J. "Sediment transport capacity of sheet and rill flow: Application of unit stream power theory." Water Resour.Res., 1986,22:1350-1360.
    [94] Silfer A T, Hassett J M, Kinn G J. "Hydrologic runoff modeling of small watersheds:The Tmflow model."Proc.,National Symposium on Engineering Hydrology, ASCE, New York, 1987,545-550.
    [95] Grayman W M, Hadder A W, Gates W E, Moles R M. "Land-based modeling system for water quality management studies." J. Hydraul. Div., Am. Soc. Cir. Eng., 1975,110(HY5): 567-580.
    [96] Vieux B E. "Finite element analysis of hydrologic response areas using geographic inforation system." PhD dissertation,Michigan State Univ.,East Lansing,Mich. 1988.
    [97] Goodrich D C, Woolhiser D A, Keefer T O. "Kinematic routing using finite elements on a triangular irregular network (TIN)."Water Resour. Res.,1991,27(6):995-1003.
    [98] Fortin J P, Turcott R, Massicotte S, Moussa R, Fitzback J and Villeneuve J P. "A distributed watershed model compatible with remote sensing and GIS data Ⅰ: Description of model." J. Hydrologic Eng., 2001,6(2):91-99.
    [99] Fortin J P, Turcott R, Massicotte S, Moussa R, Fitzback J and Villeneuve J P. "A distributed watershed model compatible with remote sensing and GIS data Ⅱ:Application to Chaudiere watershed."J.Hydrologic Eng., 2001,6(2):100-108.
    [100] Wigrnosta M S, Vail L W, Lettenmaier D P. "A distributed hydrology-vegetation model for complex terrain." Water Resour.Res., 1994,30(6):1665-1679.
    [101] Julien P Y, Saghafian B and Ogden F L. "Raster-based hydrologic modeling of spatially
    
    varied surface runoff." Water Resour.Bull.,1995,31(3):523-536.
    [102] Desconnets J C, Vieux B E, Cappelaere B and Delclaux F. "A GIS for hydrological modeling in the semi-arid,HAPEX-Sahel experiment area of Niger, Africa." Trans. GIS,1996, 1(2), 82-94.
    [103] 李纪人.遥感和地理信息系统在分布式流域水文模型中的应用[A].全国水文预报与减灾学术讨论会论文选集[C].南京:河海大学出版社,1997。
    [104] 谭柄卿,金光炎.水文模型与参数识别[M].北京:中国科学技术出版社,1998.
    [105] 李志栋,朱庆.数字高程模型[M].武汉:武汉测绘科技大学出版社,2000.
    [106] 邬伦.地理信息系统—原理、方法与应用[M].北京:北京大学出版社,2000。
    [107] 吴信才等.地理信息系统原理与方法[M].北京:电子工业出版社,2002.
    [108] 周贵云,刘瑜,邬伦.基于DEM的水系提取方法[J].地理学与国土研究,2000,16(4):77-81.
    [109] Martz L W, Garbrecht J. Numerical definition of drainage network and subcatchment areas from digital elevation models, Comp.Geosci., 1992,18:747-761.
    [110] Fairchild J, Leymarie P. Drainage networks from grid digital elevation models[J].Wat. Resourc. Res, 1991,27:29-61.
    [111] 石朋.流域数字高程模型及其在地貌水文学中的应用[D].南京:河海大学 2001.
    [112] Yeboach Gyasi-Agyei Framcois p.de Troth. A dynamic hillslope response model in a geomorphology based rainfall-runoff model [J] J. Hydrol,1996,178:1-18.
    [113] 芮孝芳,产汇流理论[M],北京:水利电力出版社,1995.
    [114] Horton R E. Erosionl development of strems,Geol.Sol.Am.Bun,1945, 56:281-283.
    [115] Beven K J,Wood E F, Sivapalam M. On hydrological heteroeneity-catchment morphology and catchment response [J] .J.Hydrol.1988,100:353-375.
    [116] Maidment D R, Olivera J F. Unit Hydrograph Derived form a spatially Distributed Velocity Field[J].Hydro. Processes, 1996, 10(6):831-844.
    [117] Surkan AJ. Synthetic hydrographs:effects of network geometry [J].Water Resours. Res.,1968,5(1): 112-118.
    [118] Trouthman B M, Karling M R. Unit hydrograph approximations assuming liner flow through topologically random channel network[J].Water Resour.Res.,1985,21(5):743-754.
    [119] 长江流域规划办公室 水文预报方法[M].北京水利电力出版社 1979.
    [120] 芮孝芳 地貌学与最优化原理相结合的途径在确定 Nash模型参数中的应用[J].水利学报 1996,(3):70-74.
    [121] 芮孝芳径流形成原理[M].南京:河海大学出版社 1991.
    [122] 芮孝芳.地貌瞬时单位线理论的若干评论[J].水科学进展,1991,2(3):194-200.
    [123] Agnese C D. Asaro,F.,and Giordano,G. Estimation of the time scale of the geomorphologic instantaneous unit hydrograph from effective streamflow velocity[J]. Water Resoueces Research, 1988,24(7).
    [124] 复旦大学数学系主编.概率论与数理统计[M],上海:上海科学技术出版社,1960.
    [125] 缪胜清.最大信息熵原理及其对统计力学的应用[C],熵与交叉科学,北京:气象出版社,1988.
    [126] Pilgrim D H. Travel times and nonlinearity of flood runoff from tracor measurements on a samll watershed[J].Water Resour.Res.. 1976.12:487-496.
    [127] 严顺义 水文测验[M].北京,水利电力出版社,1984,pp:191-194.
    [128] 邓绶林 普通水文学[M],高等教育出版社,1979,pp:60-61。
    [129] 丁呈璋,赵秉栎水文学与水资料基础[M],郑州河南大学出版社 1987
    [130] Beven K J, Lamb R, Quinn P F, Romanowicz R, Freer J. TOPMODEL.In Computer Models of Watershed Hydrology, Singh VP(ed.).Water Resources Publications, 1979:627-668.
    [131] Beven K J. TOPMODEL: a critique [J]. Hydrol.Process., 1997,11(9):1069-1086.
    [132] Quinn P F, Beven K J, Lamb R. The In(a/tan β)index: how to calculate it and how to use it in the TOPMODEL framework[J]. Hydrol.Process., 1994,9:161-185.
    [133] Beven K J, Wood E F. Catchment Geomorphology and the Dynamics of Runoff Contributing
    
    Areas[J]. J.Hydrol.,1983,65:139-158.
    [134] Ambroise B ,Beven K J, Freer J. Towards a generalization of the TOPMODEL concepts: topographic indices of hydrological similarity[J]. Water Resour. Res., 1996,32:2135-2145.
    [135] Beven K, Freer J. A dynamic TOPMODEL[J]. Hydrol.Process.,2001,15:1993-2011.
    [136] Moore I D, Machay S M, wallbrink P J, Burch G J, O'Loughlin E M. Hydrologic characteristics and modeling of a small forecasted catchment in southeastern New South Wales: Prelogging condition [J]. J.Hydrol., 1986,83:307-335.
    [137] 赵人俊.流域水文模拟——新安江模型与陕北模型(M),北京:水利电力出版社,1984.
    [138] Morris D G, Heerdegen R G. Automatically derived catchment boundary and channel networks and their hydrological applications[J].Geomorphology, 1988,1:131-141.
    [139] Tarboton D, Bras R L, Rodriguez-Iturbe I. On the extraction of channel networks from digital elevation data[J]. Hydrol.Process., 1991,5(1):81-100.
    [140] Robson A J, Whitehead P G, Johnson R C. An application of a physically based semidistributed model to the Balquhidder catchments. [J]. J.Hydrol, 1993,145:357-370.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700