青海共和盆地水分时空分异与水土资源生产力
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青海共和盆地地处青藏高原的东北缘,属于高寒干旱和半干旱气候区。近年来,由于环境变化和人口剧增,青海共和盆地的荒漠化问题已日益严重。为了做到对本区的水土资源的可持续利用、防治本区的荒漠化和保护龙羊峡水库,所以基于DEM和已有的气象、水文长短期观测和实测数据,首先构建了青海共和盆地降雨、径流、蒸散和区域水分平衡的分布式模型;进一步在此基础上,构建了青海共和盆地草地生产力的模型和基于作物水分耗散与放牧因子校正的青海共和盆地草地生产力模型;利用草地载畜能力和现有牲畜量以及社会经济因子等统计数据,结合实地调查,分析了青海共和盆地草地生产力、物种构成、生境变化和荒漠化成因及其内在驱动因子,并对草地可持续利用做了评价。研究的主要结论如下:
     1.在青海共和盆地,近50年的年降雨量序列是平稳的、无周期,其时空变化与径流、蒸发、潜在蒸散和土壤水分的关系表明,气候干燥和严重的荒漠化不是由于降雨量减少直接引起,龙羊峡水库对共和盆地年降雨量变化没有影响;但是年气温序列是非平稳的,茶卡、恰卜恰和贵南的年气温平均每年升高0.0247、0.0422和0.0272℃,且气温升高2℃,年潜在蒸散增加57mm,盆地内气候逐渐变干燥,但影响比较小;由于历年潜在蒸散序列是平稳的,因此气候变化对盆地的作物潜在蒸散的影响在研究期内是较小的。
     2.在青海共和盆地,降雨产流主要在山区和水域附近,而且雨季产流占总径流量的90%;盆地降雨的总产流量为7.08亿m~3,丰水年为9.06亿m~3,枯水年为5.66亿m~3,因此径流量受降雨量年变率的影响很大。尤其枯水年径流量的减少可能成为影响盆地荒漠化的原因之一。
     3.在青海共和盆地,历年潜在蒸散平均974mm,各月潜在蒸散与降雨和温度之间是很好的正相关,所以雨热同季有利于作物生长:年潜在蒸散的空间分布范围从485—1174mm,平均1027mm,而且年潜在蒸散空间分布与降雨和坡度是负相关,与温度和大气外层辐射正相关,因此水分和温度的是影响作物水分耗散的重要因子,决定了共和盆地植被的气候生产力。
     在共和盆地,牧草的年蒸散量从95-680mm,平均494mm,它的总量为80.4亿m~3,比年降雨量高27.6亿m~3,其中山地约为9.1亿m~3,低于降雨量6.5亿m~3,滩地约为52.9亿m~3,较降雨量高25.1亿m~3,河谷约为18.8亿m~3,较降雨量高10.2亿m~3;牧草的年实际蒸散量为41.7亿m~3,较年降雨量低10.3亿m~3,其中山地约为7.3亿m~3,低于降雨量8.3亿m~3,滩地约为25.2亿m~3,低于降雨量1.6亿m~3,河谷约为9.1亿m~3,高于降水量0.5亿m~3。如果考虑径流,降雨在山地基本能满足牧草生长的水分需求,在河谷滩地不能满足牧草最大生长,但仅在河谷降雨可能不能满足牧草实际水分耗散。
     共和盆地牧草的生态需水量约为77.7亿m~3,生态耗水量约为40.1亿m~3,生态最低需水量和耗水量分别为11.6和5.6亿m~3。目前正常年份牧草的生态耗水量能够基本满足,所以共和草地退化和荒漠化需要进一步分析。
     4.基于水分平衡模型,青海共和盆地土壤水分在黄河以西的乌兰县茶卡、共和县沙珠玉和黄河谷地及部分滩地降雨不能满足牧草实际蒸散的水分需求,其中茶卡盆地缺50-300mm,沙珠玉和恰卜恰河谷、滩地0-100mm,而河卡和贵南降水能够满足牧草实际水分需求,存在0-150mm的水分盈余,塔拉滩、木格滩土壤水分基本平衡或略有盈余,山区土壤水分是略有盈余,基本上
    
    平衡的。盆地的河谷滩地不能满足牧草蒸散的水分需求,山地略有亏缺,基本平衡。
     5.在共和盆地,6一9月的累积NDVI值与年降雨量的空间分布之间是正相关,与年潜在蒸散
    和高程是负相关;草地生物量和降雨量之间也是正相关,与年潜在蒸散也是负相关,因此盆地内
    水分的时空分异是决定草地生产力的关键因子之一:另一方面,草地的光温生产潜力15.3比a,
    约为光合生产潜力的53%,而且在山区约为44%,滩地约为54%,河谷约为58%,所以温度应当
    是限制牧草生产能力的一个重要的因子,尤其在山区。
     共和盆地牧草的气候生产潜力约6.6比a,约为光温生产潜力的43%,光合生产潜力的23%;
    而且河谷、滩地牧草的气候生产潜力分别约为光温生产潜力的34%和41%,山地约为69%,水分
    对牧草的气候生产潜力影响在河谷和滩地要大于山地,尤其是草原化荒漠和荒漠化草原气候生产
    力相对较低;共和盆地的实际等级草地生产力是气候生产力的1巧一1/12;经过作物水分需求和放
    牧的校正,草地生产力平均2.2比a,约为气候生产力的33.3%,已基本接近草地实际的生产力;
    作物水分需求和放牧对共和盆地草地生产力有很大影响,而且放牧已成为草地生产力降低和草地
    退化的重要原因之一。
     6.依据青海共和盆地围栏内外草地生物量的调查,未封育草场的生物量是封育草场的
    57.7%,而且沙生和荒漠植被入侵,使未封育草场优势物种生物量降低;过牧会造成草地退化和
    环境恶化,围栏封育有利于草地恢复;依据社会经济统计资料,不合理的土地利用使共和盆地的
    草地退化,而且人口增长及其外部效应是内在驱动因子;共和盆地草地可持续利用的综合指数从
    33一39,平均38,草地是不可持续利?
Gonghe Basin is located in the north eastern part of Qinghai-Tibeten Plateau, belong to arid and semi-arid climate region. Because of the environmental change and population rise, the issue of desertification becomes very serious in Gonghe Basin, Qinghai. In order to maintain the sustainable use of land and water resource, to protect the land from desertification and to make Longyangxia reservoir safe, firstly, the spatially disturbed model has been established in which includes DEM-based precipitation and runoff, regional transpiration and regional water balance modules in Gonghe. Secondly, the model of grassland climate potential productivity and the model of grassland productivity modified by plant water demand and stocking intensity factors has been constructed in Gonghe. According to the carrying capacity and the actual amount of animals on the grassland, coupled with actual grassland investigation, and by using social-economic data, the grassland productivity, species composition, biotope and the cause
     of desertification has been analyzed. Finally, the evaluation of grassland sustainable use has been performed. The main research results are as follows:
    1. Annual precipitation series about 50 years is stable and no period; further, the climate drying and desertification aren't caused directly by the decrease of precipitation during the period of the research according to the relational analysis among precipitation temporal-spatial change, runoff, evaporation, potential evapotranspiration and soil water; Longyangxia reservoir which was built in 1986 doesn't have influence on precipitation up to now; but annual temperature series in Gonghe is unstable, having a linear upward trend, and it increases about 0.0247,0.0422 and 0.0272C per year, and temperature rise must be having an influence on desertification, but there is a very little temperature change , so that the effect is very small; annual potential evapotranspiration series is stable too, so climate change has little influence on plant water consumption.
    2. The runoff has been created in mountain and waters or neighboring regions, and it is 90 percent of the total in rainy season; the total amount of precipitation is 7.08X109m3 in accordance with real amount, about 6.46 X 109m3or so, and it is 9.06 X 109m3in the rainy years, 5.66 X 109m3 in the drying years. There is 3.46 X 109m3 difference between them. So precipitation has a great influence on runoff. Especially, river retreat in drying year becomes one of the main causes of desertification because of the decrease of runoff.
    3. Temporally, annual potential evapotranspiration is from 882 to 107 lmm, with a mean value of 974mm at Qiabuqia; and it is positively correlational to precipitation and temperature, so it is beneficial for plant growth because precipitation and heat ocurs at the same growth period.; spatially, annual potential evapotranspiration is from 485mm to 1174mm, with a mean value of 1027mm, and it's spatial distribution is negatively correlational to precipitation and slope, whereas positively correlational to temperature and extra solar radiation, therefore the spatio-temporal difference of water become the key factors to plant growth and plant climate potential productivity.
    The grass evapotranspiration is from 95 to 680mm in space, 494mm on average; and it's total amount is 80.4 X 109 m3, which is 27.6 X 109 m3 higher than annual precipitation; grass evapotranspiration is 9.1 X 109 m3, which is 15.6 X 109 m3 lower than annual precipitation, there is a balance between water demand and supply with annual runoff included in the mountainous area; it is 52.9X 109m3, which is 25.1 X 109m3 less than annual precipitation in the terrace; it is 18.8X 109m3,
    
    
    10.2X109m3 less than annual precipitation in the valley, water becomes a main limiting factors for plant growth..
    The grass actual evapotranspiration is from 75 to 331mm in space, 255mm on average; and it's total amount is 41.7X 109m3, which is 10.3X 109m3 lower than annual precipitation; it is 7.3X 109m\ which is 15.6X
引文
1. Ali R., Sepaskhah,M., Andam. Crop coefficient of Sesame in a semi-arid region of I.R. Iran. Agricultural water management,2001, 49(10): 51-63.
    2. Allen R.G.Using the FAO 56 dual crop coefficient method over an evapotranspiration intercomparison study. Journal of hydrology, 2000, 229:27-41.
    3. Anthony Fowler. Assessment of the validity of rising mean potential evaporation in computation of the long-term soil water balance. Journal of Hydrology, 2002, 256: 248-263.
    4. Band L.E. Scale:landscape attributes and geographical information systems. Hydrological Processes,1999, 9 (3) :401-422.
    5. Bandyopadhyay P.K., Mallick S. Actual evapotranspiration and crop coefficients of wheat under varying moisture levels humid tropical canal command area. Agricultural water management, 2003, 59: 33-47.
    6. Barr A.G., Kite G.W., Granger R. Evaluating three evapotranspiration methods in the SLURP macroscale hydrological model. Hydrological Processes, 1997, 11(13) :1685-1705.
    7. Beven K.J., Kirkby M.J. A physically based,variable contributing area model of basin hydrology. Hydrol. Sci. Bull. Sci. Hydrol., 24:1-3.
    8. Biftu G.F. Assessment of evapotranspiration models applied to a watershed of Canadian prairies with mixed land-uses. Hydrological Processes,2000, 14 (7) : 1305-1325.
    9. Bruneau P., Gascuel Odoux C., Robin P. Sensitivity to space and time resolution of a hydrological model using digital elevation data. Hydrological Processes,1995, 9(1) :69-81.
    10. Bultot F., Dupriez G. L., Gellens D. Simulation of land use changes and impacts on the water balance-a case study for Belgium. Journal of Hydrology Amsterdam,1990, 114 (3) :327-348.
    11. Chang FiJohn, Chen YenChang, Chang E J., et., al. counterpropagation fuzzy neural network modeling approach to real time stream flow prediction. Journal of Hydrology Amsterdam ,2001, 245 (1) :153-164.
    12. Christoph Daly, Overview of PRISM[EB/OL]. http://www.ocs.orst.edu/prism/docs/overview.html, 2004-2-27.
    13. Coronaro F.R. & Bertiller M.B.. Precipitation and landscape related effects on soil moisture in semi-arid rangelands of Patagonia. Journal of Arid Environments, 1996,34: 1-9.
    14. Crosby G.S. Remote sensing inputs and a GIS interface for distributed hydrological modelling. Remote sensing and hydrology 2000. Selected papers from a conference held at Santa Fe,New Mexico, USA, 27 April 2000.421-426.
    15. Daolan Zheng, E.R. Hunt, Jr. and Steven W.Running. Comparison of available soil water capacity estimated from topography and soil series information. Landscape Ecology, 1996, 11(1): 3-14.
    16. Driessen P.M., Konijin N.J. Land-use System Analysis. Wageningen: Wageningen Agricultural University, 1992.
    17. Droogers P., Bastiaanssen W. Owe M., et., al. Combining remote sensing and hydrological models to enhance spatial and temporal variability. Remote sensing and hydrology 2000. Selected papers from a conference held at Santa Fe, New Mexico, USA,2001, 574-579.
    18. Duchon C.E., Salisbury J. M., Williams Th. L., et., al. An example of using Landsat and GOES
    
    data in a water budget model. Water-Resources-Research,1992, 28 (2) :527-538.
    19. Dunn S.M., McAlister E., Ferrier R1 C. Development and application of a distributed catchment scale hydrological model for the river Ythan, NE Scotland. Hydrological Processes, 1998, 12(3) :401-416.
    20. Elidrissi A., Ruthy I., Hang P., et., al. Regionalistation of rainfall-runoff parameters in the catchment of the Dyle(Belgium). Modelling of transport processes in soils at various scales in time and space. International Workshop of EurAgEng's Field of Interest on Soil and Water, Leuven, Belgium, 24-26 November 1999. 666-674.
    21. Famiglietti J.S., Wood E.F. Multiscale modeling of spatially variable water and energy balance processes. Water resources Reseach, 1994,30(11):3061-3078.
    22. FAO. Penman-Monteith equation [EB/OL]. http://www.fao.org/docrep/X0490E/x0490e07. htm, 2003-5-16.
    23. Feng Qi, Endo Kunihiko, Cheng Guodong. Soil water and chemical characteristics of sandy soils and their significance to land reclamation. 2002, 51: 35-54.
    24. Fuhlendorf. Samuel D., etc. Effect of Grazing on Restoration of Southern Mixed Prairie Soils. Restoration Ecology, 2002, 10(2): 401.
    25. Funke R. Regionalization of parameters in mesoscale hydrological models. Regionalization in hydrology. Proceedings of an International Conference held at the Technical University of Braunschweig, Germany,1999. 171-179; IAHS Publication no. 254.
    26. Gellens D., Barbieux k., Schadler B., et.al.,2000,Snow cover modelling as a tool for climate change assessment in a Swiss Alpine catchment. Nordic Hydrology. 31(2) :73-88.
    27. Georges-Marie Saulnier. Keith Beven, Charles Obled. Including spatially variable effective soil depths in TOPMODEL. Journal of Hydrology, 1997, 202:158-172.
    28. Geyer J., Schumann A. H., Hall A. J., et.,al. Large-scale modelling and spatial heterogeneity of landscape characteristics--experience from the Upper Danube River basin. Soil vegetation atmosphere transfer schemes and large scale hydrological models. Proceedings of an international symposium, held during the Sixth IAHS Scientific Assembly, Maastricht, Netherlands, 18-27 July 2001.81-89.
    29. Goodchild M.F.,Hanning R.P., Wise S.M. Integrating GIS and spatial data analysis: problems and Possibility.Intel.J.Geogr. Info..Syst., 1992, 6:407-423.
    30. Guo ShengLian, Wang JinXing, Yang Jin, et., al. A semi-distributed hydrological model and its application in a macroscale basin in China. Soil vegetation atmosphere transfer schemes and large scale hydrological models.Proceedings of aninternational symposium,held during the Sixth IAHS Scientific Assembly, Maastricht,Netherlands,18-27July,2001. 167-174.
    31. Gwangseob Kim, Ana P.Barros. Space-time characterization of soil moisture from passive microwave remotely sensed imagery and ancillary data. Remote Sensing of Environment, 2002, 81 393-403.
    32. Hailiang Fu and Stanistaw J. Tajchman. Toography and Radiation Exchange of a Mountainous Watershed. Journal of Applied Meteorology, 1995, 34:890-901.
    33. Hamaji M.. Snowmelt runoff analysis at the southern slope of Mt. Bandai. Forest Resources and Environment, 1998,36:35-43.
    34. Harper J.L. Self-effacing Art:Restoration ecology and invasions. In:Saunders DA, Hobbs and Ehrlich PR, eds. Nature eonservation 3 :Reconstruction of Fragmented Ecosystems, Global and Regional Perspectives Surrey Beattyand Sons, Chipping Norton, New South Wales, Australia, 1
    
    987.
    35. Hashmi M.A., Garcia L.A., Fontane D.G.Spatial estimation of regional crop evapotranspiration. Transactions of the ASAE, 1995, 38(5): 1345-1351.
    36. Hatch, Daphne A., etc. Effects of Burning and Grazing on a Coastal California Grassland, 1999, 17(4): 376.
    37. Hawkins R.H. The inprtance of accurate curve numbers in the estimation of storm runoff. Water Resources Bulletin, 1975, 11: 887-891.
    38. Herbst M., B. Diekkruger. Modelling the spatial variability of soil moisture in a micro-scale catchment and comparison with field data using geostatistics. Physics and Chemistry of the Earth, 2003,28: 239-245.
    39. Hollis G.E., Adams W.M.,Aminu Kano M. The Hadejia-Nguru wetlands: environment, economy and sustainable development of aSahelian floodplain wetland. Gland(Switserland): International Union for Conservation of Nature and Natural Resources, 1993.
    40. Hudson N. Soil conservation. London: Batsford Limited, 1995.
    41. Hughes D.A., Murdoch K.A, Sami K., et.al. A hydrological model application system - a tool for integrated river basin management. Integrated river basin development, 1994,397-406.
    42. Hugo A. Loaiciga, Juan B. Valdes, et al. Global Warming and the Hydrologic Cycle. Journal of Hydrology, 1996, 174:83-127.
    43. Jain S. K., Kumar N., Ahmad T, and Kite G W. Slurp Model and GIS for Estimation of Runoff in a Part of Satluj Catchment, India. Hydrological Science Journal, 1998, 43/6, pp875-884.
    44. Jenson K., Dominique J.O. Extracting topographic structure from digital elevation data for geographical information system analysis. Photogrametric engineering and remote sensing, 1988,54(11): 1593-1600.
    45. Jeson S.K. Application of Hydrologic information Automatically extract from Digital Elevation models. Hydrological Processes, 1991, (5): 31-44.
    46. Jingyun Fang, Shilong Piao, Zhiyao Tang, et.,al. Interannual Bariability in Net Primary production and precipitation. Science, 2001,293(7): 1723-1724.
    47. Jong R.de. Modeling water balance and grass production. Soil Science Society of America Journal,1990,54(6): 1725-1732.
    48. Jurgens C., Owen M., Brubaker K., et.al. Application of a hydrological model with integration of remote sensing and GIS techniques for the analysis of land-use change effects upon river discharge. Remote-sensing-and-hydrology-2000. Selected papers from a conference held at Santa Fe, New Mexico, USA,2001, 598-600.
    49. Kabayhashi T. Studies on ecology and water relations of revegetation plants in the Mu-us sandy district. China. Technical Bulletin of Faculty of Horticulture, (48): 329-381.
    50. Kavvas M.L., Soong S. T., Saquib M. N., et.al. Integrated modeling of hydrologic and atmospheric processes at regional scale. Hydrological interactions between atmosphere, soil and vegetation. IAHS Publication. No. 204, 21-29; Proceedings of an international symposium held at Vienna, 11-24 August 1991.
    51. Keeley R.Costigan, James E. Bossert, David k. Langley. Atmospheric/hydrologic models for Rio Grande Basin: simulations of precipitation variability. Global and Planetary Change,2000, 25: 83-110.
    52. Kite G.W. Scaling of input data for macroscale hydrologic modeling. Water Resources Research, 1995, 31 (11) :2769-2781.
    
    
    53. Kite G.W., Kouwen N. Integrating atmospheric and vegetation succession data in a macroscale hydrological model.Hydrology in a changing environment. Volume 1. Proceedings of the British Hydrological Society International Conference, Exeter, UK, July 1908.43-52.
    54. Konstanine R Georgakakos, Deg-hyo Bae. Climatic variability of soil water in the American Midwest: Part 2 Spatial-temporal analysis. Journal of Hydrology, 1994, 162:379-390.
    55. Krajewski W.F.. , Lakshmi V., Georgakakos K. R, et., al. A Monte Carlo study of rainfall sampling effect on a distributed catchment model. Water Resources Research,1991, 27(1):119-128.
    56. Limin Yang, Bruce K. Wylie,Larry L. Tiezen, et. al. An Analysis of Relationship among Climate Forcing and Time-Integrated NDVI of Grassland over the U.S. Northern and Central Great Plains. Remote Sens. Environ., 1997, 65: 25-37.
    57. Lohmann D., Raschke E., Nijssen B., Lettenmaier D. P. Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrological Sciences Journal.1998, 43 (1) :131-141.
    58. Mahjoub M.R., Vanclooster M., Bergaoui M.Z., et.al. Comparing the performance of conceptual rainfall runoff models of different complexity in a Tunisian catchment. International Workshop of EurAgEng's Field of Interest on Soil and Water, Leuven, Belgium, 24-26 November 1999. 736-744.
    59. Matheussen B., Kirschbaum R. L., Goodman I. A.,et., al. Effects of land cover change on streamflow in the interior Columbia River basin (USA and Canada). Hydrological-Processes, 2000, 14 (5) : 867-885.
    60. Meixue Yang, Tandong Yao, Xiaohua Gou, et, al. The soil moisture distribution,thawing-freezing process and their effects on the seasonal transition on the Qinghai-Xixang(Tibetan) plateau. Journal of Asian Earth sciences, 2003, 21: 457-465.
    61. Molders N., Raabe A., Beckmann T., et., al. technique to downscale meteorological quantities for use in hydrological models: description and first results. Regionalization in hydrology. Proceedings of an International Conference held at the Technical Univrsity of Braunschweig, Germany, 10-14 March 1997. Wallingford(UK): IAHS press,1999, 87-96.
    62. Naden P. S., Blyth E.M., Broadhurt P., et., al. Modelling the spatial variation in soil moisture at the landscape scale: an application to five areas of ecological interest in the UK. Hydrological Processes,2000, 14 (4) :785-809.
    63. Nash L.L., Gleich P. H,. Sensitivity of stream flow in the Colorado basin to climatic changes. Journal of Hydrology Amsterdam,1991,125 (3) 221-241.
    64. Nunzio Romano. Mario Palladino. Preduction of soil water retension using soil physical data and terrain attributes. Journal of Hydrology, 2002, 265:56-75.
    65. O'Callaghan E, Mark D.M. The extraction of drainage networks from digital elevation data. Computer Visoin Graphics and Image Processing, 1984,28: 323-344.
    66. Oleg Antonic, Josip Krizan. Spatio-Temporal Interpolation of Climatic Variables Over Large Region of Complex Terrain Using Neural Networks. Ecological Modeling, 2001,138:255-263.
    67. Ottle C, Vidal Madjar D. Assimilation of soil moisture inferred from infrared remote sensing in a hydrological model over the HAPEX-MOBILHY region. Journal of Hydrology Amsterdam,1994. 158 (3) :241-264.
    68. Ottle C.et.al. Introduction of a realistic soil vegetation component in a hydrological model: application to HAPEX MOBILHY experiment. Land surface evaporation: measurement and
    
    parameterization. 1991,137-144.
    69. Parkin G, O' Donnel G, Ewen J. et al. Validation of Catchment Models for Predicating Landuse and climate Change Impact. Case Study for a Miditerraneam Catchment. Journal of Hydrology, 1996,175/1-4, pp595-613.
    70. Paruel. J.M.et.al. Water losses in the Patagonian steppe: a modelling approach. Ecology,1995,76 (2:510-520.
    71. Pietroniro A. A framework for coupling atmospheric and hydrological models. Soil vegetation atmosphere transfer schemes and large scale hydrological models. Proceedings of an international symposium, held during the Sixth IAHS Scientific Assembly, Maastricht, Netherlands, 18 27 July 2001.27-34.
    72. Privette J. L., Myneni R. B., Knyazikhin Y., Mukelabai M., et. al. Early spatial and temporal [] validation of MODIS LAI product in the Southern Africa Kalahari. Journal of Hydrology, 2002, 83:232-243.
    73. Quinn P., Beven K.J., Planchon O. The predication of hillslope flow paths for distributed hydrological modeling using digital terrain models. Hydrol Process, 1991, 5(1): 59-79.
    74. Ramussen M.S. Assessment of millet yields and production in north Burkina Faso using integrated NDVI from AVHRR. International Journal of Remote Sensing, 1992, 13(18):3431-3442.
    75. Savabi M.R.et.al. Application of WEPP and GIS-GRASS to a small watershed in Indiana.Journal of Soil and Water Conservation, 1995,50 (5:477-483.
    76. Schell G.S.,Madramootoo C. A., Austin G. L., et. al. Use of radar measure rainfall for hydrological modeling. Water Resources Reseach,1992,28(2):527-538.
    77. Schoorl. modeling soil&water redistribution in a dynamic landscape.soil sci.soc.AM.J,2002, 66(6):1610-1619.
    78. Schultz G.A., Kovar K, Machnebel H. R Application of GIS and remote sensing in hydrology. Application of geographic information systems in hydrology and water resources management. 1993, 127-140
    79. Schwab G.O., Fangrneier D., Elliot W.J., et al. Soil and Water Conservation Engineer. New York: John Wiley & Sons Inc., 1993, p79-82.
    80. Singh V. P. Water Resource. Colorado(USA): Water Resource Publication,1995.
    81. Sorman U., Uzunoglu E., Kaya H. I. Remote sensing and hydrology-2000. Selected papers from a conference held at Santa Fe, New Mexico USA, 2001, 81-92.
    82. Stephen J. Jeffrey, John O. Carter, et., al. Using Spatial Interpolation to Construct a Comprehensive archive of Australian Climate Data. Environmental Modeling & Software, 2001,16:309-330.
    83. Stephen K. Walsh, Thomas W. Crawford, William G.Welsh, et., al. A multiscale analysis of LULC and NDVI variation in Nang Rong district, northeast Thailand. Agriculture, Ecosystems and Environment,2001,85:47-64.
    84. Suwanwerakamtorn R. GIS and hydrologic modelling for the management of small watersheds. ITC Journal, 1994, No. 4, 343-348.
    85. Sylla M. et.al. Spatial variability of soil actual and potential activity in the mangrove agroecosystem of west Africa .soil sci.soc.Am.J, 1996,60(2):219-229.
    86. Takeuchi k., Ao T. and Ishidaira H. Introduction of Blockwise Use of TOPMODEL and Muskingum-Cunge Method for the Hydro-environmental Simmulation of a large ungagauged basin. Hydrological Science Journal, 1999,44/4, pp633-646.
    87. Tim U.S., Jolly R. Evaluating agricultural non-point source pollution using integrated geographic
    
    information system and water quality modeling .J. environ.Aual., 1994, 23: 25-35.
    88. Titmarsh G.,Connolly R., Mclatchey J. Predicting the influence of cropping patterns on discharges from a distributed stream, in a brigalow landscape. Australian Journal of Soil And Water Conservation,1991, 4 (4) :30-37.
    89. Tong Changjiang, Wu Qingbai. The Effect of Climate Warming on the Qinghai-Tibet Highway, China. Cold Region and Technology, 1996,24:101-106.
    90. Vandewiele G. L. & Elias A.. Monthly water balance of ungauged catchments obtained by geographical regionalization. Journal of Hydrology, 1995, 170(1-4), pp277-291.
    91. Vehvilainen B., Lohvansuu J. The effects of climate change on discharges and snow cover in Finland. Hydrological Sciences Journal,2000,36(2) : 109-121.
    92. Vijay.P.Singh. 水文系统流域模拟.郑州:黄河水利出版社,2000.
    93. Wilby R., Greenfield B., Glenny C. A coupled synoptic-hydrological model for climate change impact assessment. Journal of Hydrology Amsterdam, 1994, 153 (1) :265-290.
    94. Wood E.F. Effects of spatial variability and scale with inplications to hydrological modeling [J].J Hydrol, 1988,102,29-47.
    95. Yang Dawen, Kanae S., Oki T., et., al. Expanding distributed hydrological modeling to the continental scale. Soil vegetation atmosphere transfer schemes and large scale hydrological models.Proceedings of an international symposium, held during the Sixth IAHS Scientific Assembly, Maastricht, Netherlands, 18-27 July,2001. 125-134.
    96. Yokoo Y., S. Kazama, M. Sawamoto, H. Nishimura. Regionalization of lumped water balance model parameters based on multiple regression. Journal of Hydrology, 2001, 246: 209-222.
    97. Yoshitani J., Kavvas M. L., Chen Z.,Q., et., al. Coupled regional scale hydrological atmospheric model for the study of climate impact on Japan. Soil vegetation atmosphere transfer schemes and large scale.hydrological models. Proceedings of an international symposium, held during the Sixth IAHS Scientific Assembly, Maastricht, Netherlands, 18-27July,2001. 191-198.
    98. Yu Z. Assessing the response of subgrid hydrologic processes to atmospheric forcing with a hydrologic model system. Global and Planetary Change,2000, 25 (1) :1-17.
    99. Zierl B. A water balance model to simulate drought in forested ecosystems and its application to the entire forested area in Switzerland. Journal of Hydrology Amsterdam,2001, 242 (1) :115-136.
    100.包亮.基于GIS/SORTER数据库的区域土地利用系统分析.中国农业大学博士论文,2003.
    101.包文忠.我国北方草地资源面临的生态危机及对策.中国草地,1998,(2);68-71.
    102.常存礼.科尔沁沙地降水量变化对草场植被组成和初级生产力的影响.中国草地,2000,(3):7-11.
    103.陈百明.中国农业综合资源生产能力与人口承载力.北京:气象出版社,2001.
    104.陈华.基于修正的山区土地生产潜力研究.中国农业大学硕士论文,2002.
    105.陈家琦,张恭肃.小流域暴雨洪水计算.北京:水利电力出版社,1985.
    106.陈杰,龚子同,高尚玉.干旱地区草场荒漠化及其评价.地理科学,2000,20(2):176-181.
    107.陈述彭,鲁学军,周成虎.地理信息系统导论.北京:科学出版社,2000.
    108.陈英旭.环境经济学,中国农业出版社,2000.
    109.陈有君,李立民,李绍良,等.大针茅草原生物量动态与土壤贮水量关系模型.内蒙古农牧学院学报,1993,14(4):1-6.
    110.陈佐忠,王诗平等.中国典型草原生态系统.北京:科学出版社,2000.106-120.
    111.慈龙骏,杨晓晖,陈仲新.未来气候对中国荒漠化的潜在影响.地学前缘,2002,9(2):287-294.
    
    
    112.戴加洗.青藏高原气候.北京:气象出版社,1990.173-176.
    113.旦木加人甫.从水文过程的绿洲环境与气候效应谈干旱区生态水文学.新疆水利,2000,(5):40-55.
    114.邓自旺,倪绍祥 周晓兰等.基于数字高程模型的环青海湖地区可能太阳辐射的计算.高原气象,2003,22(1):92-95.
    115.丁裕国,江志华.气象数据时间序列信号处理[M].北京:气象出版社,1998.
    116.董光荣,高尚玉,金炯,等.青海共和盆地土地沙漠化与防止途径.北京:科学出版社,1993.
    117.董玉祥,刘毅华.我国沙漠化研究的回顾与展望.地理研究,1993,12(2):94-102.
    118.杜庆.初探青海湖地区生态环境演变的起因.生态学报,1990,10(4):7-10.
    119.段建南,李旭霖,王改兰.黄土高原土壤变化及其过程模拟.北京:中国农业大学出版社,2001.
    120.范青慈,杜铁瑛,王立亚,等 青海省海南州自然因素和载畜量对牧草产量的影响[J] 草业科学,2002,(2):16-18
    121.傅抱璞.不同地形下辐射收支各分量的差异.大气科学,1998,22(3):178-190.
    122.傅抱璞.山地气候.北京:科学出版社,1986.
    123.傅小峰.吐鲁番盆地水资源利用和绿洲经济发展.地理科学,1996,15(4).
    124.关世英,齐沛钦,康师安,等.不同牧压强度对草原土壤养分含量的影响初析.见:草原生态系统研究(第五集).北京:科技出版社,1997.
    125.郭武.柴达木盆地水资源开发利用现状分析.干旱区地理,1996,1(3):82~89.
    126.韩念勇.锡林郭勒盟生物圈保护区退化生态系统管理.北京:清华大学出版社,2002.
    127.洪银兴,高波,曲福田,等.可持续发展经济学.北京:商务印书馆,2000.
    128.黄秉维.中国农业生产潜力—光合潜力.见:地理集刊(17),.北京:科学出版社,1985,15-22.
    129.季国良,江灏,吕兰芝.青藏高原的长波辐射特征.高原气象,1995,14(4):451-457.
    130.贾宝全,慈龙骏.新疆生态用水量的初步估算.生态学报,2000,20(2):243-250.
    131.贾宝全,许英勤.干旱区生态用水的概念和分类-以新疆为例.干旱区地理,1998,21(2):8-12.
    132.贾宝全,张志强,张红旗,等.生态用水现状、问题分析与基本构架探索.生态学报,2002,22(10):1735-1740.
    133.贾树海,崔学明,李绍良,陈有君,王芳玖.牧压梯度上土壤理化性质的变化.见:草原生态系统研究(第五集).北京:科学出版社,1995.12~16.
    134.江爱良,张副春.中国农业气候生产力的一个模式.中国农业气象,1988,9(1):16-18.
    135.江小蕾,张卫国,杨振宇.不同干扰类型对高寒草甸群落结构和植物多样性的影响.西北植物学报,2003,23(9):1479—1485.
    136.蒋德明,刘志明,曹成有,等.科尔沁沙地荒漠化过程与生态恢复.北京:中国环境科学出版社,2003.
    137.蒋忠信.山地降水垂直分布模式讨论.地理研究,1998,7(1):73-77.
    138.康师安,齐沛钦,何婕平,等.退化草场土壤性状变化的研究.见:草原生态系统研究(第五集.北京:科技出版社,1997.
    139.孔凡哲,芮孝芳.TOPOMODE1中地形指数计算方法的探讨.水科学进展,2003,14(1):41-45.
    140.李保国,龚元石,左强,等.农田土壤水的动态模拟及应用.北京:科学出版社,2000.
    141.李保国.区域性水盐动态系统预报模型研究.北京:中国农业大学博士学位论文,1990.
    142.李保国.区域性水盐动态系统预报模型研究.中国农业大学学报,1990.
    143.李保国.土壤变化及其过程的定量化.土壤学进展,1995,23(2):33-42.
    144.李并成.沙漠地理科学的几个理论问题—以我国河西走廊历史上沙漠化研究为例.地理科学,1999,19(3).
    145.李博,雍世鹏,李忠厚.锡林河流域植被及其利用.见:草原生态系统研究(第三集):北京:科
    
    学出版社,1988.
    146.李博.中国北方草地退化及其防治对策.中国农业科学,1997,30(6):1-9.
    147.李纪人,黄诗峰,张行南,等.“3S”技术水利应用指南.北京:中国水利水电出版社,2003.
    148.李纪人.遥感和地理信息系统在分布式流域水文模型研制中的应用.水文,1997,3:8-12.
    149.李林,张国胜,汪青春等,黄河上游蒸散量及其影响因子研究[J].气象,2000,26(2):6-10.
    150.李明辉,彭少麟,申立军.景观生态学与退化生态系统恢复.生态学报,2003,23(8)1623-1627.
    151.李文龙,李自珍.荒漠化针茅草原退化机制与可持续利用放牧对策研究.兰州大学学报(自然科学版),2000,36(3):
    152.李英年.王启基,赵新全.气候变暖对高寒草甸气候生产力的影响.草地学报,2000,8(1):23-29.
    153.李英年.王启基,周兴民.矮嵩草草甸地上生物量与气象因子的关系及其预报模式的建立.见:高寒草甸生态系统.北京:科学出版社,1995.
    154.李永宏.内蒙古锡林河流域羊草草原河大针茅草原在放牧影响下的分异和趋同.植物生态学与地植物学学报,1988,12(3):189-196.
    155.李玉霖,崔建垣,张铜会.奈曼旗地区灌溉麦田蒸散量及作物系数的确定.应用生态学报,2003,14(6):930-934.
    156.林斯雷 R.K.,寇乐M.A.,保罗赫斯 J.L.H.工程水文学.北京:水利出版社,1981.
    157.林之光.地形降水气候学.北京:科学出版社,1995.
    158.刘建国.当代生态学博论.北京:中国科学技术出版社,1992.
    159.卢琦.中国沙情.北京:开明出版社,2000.
    160.马铁民,邵兰霞,曹艳秋.吉林省辉发河流域遥感水文模型的建立与应用.东北师大学报(自然科学版),2001,33(4):93-98.
    161.马兴旺,李保国,吴春荣,等.民勤绿洲现状土地利用模式影响下地下水时空变化的预测.水科学进展,2003,14(1):85-90.
    162.马志福,谭芳.塔里木盆地日照时数分布规律研究及应用.资源科学,2000,22(2):40-44.
    163.聂庆华.土地生产潜力和土地承载能力研究进展.水土保持通报,1996,13(3):53-58.
    164.牛振国,李保国,张凤荣,等.参考作物蒸散量的分布式模型.水科学进展,2002,13(2):303-307.
    165.牛振国.沙质沙漠化地区水分时空分异与土地利用优化模式.北京:中国农业大学博士论文,2001.
    166.彭少麟,鲁宏发.恢复生态学焦点问题.生态学报,2003,23(7):1250-1255.
    167.秦大河,丁一汇.中国环境演变评估.北京:科学出版社,2002,(2):17-94.
    168.青海省农业资源区划办公室.青海土壤.北京:中国农业出版社,1997.
    169.全志杰.森林立地条件遥感分类自组织神经树模型研究.林业资源管理,1997,(5),68—71.
    170.任立良.流域数字水文模型研究.河海大学学报,2000,28(4):1-7.
    171.戎郁萍.韩建国,王培,等.放牧强度对草地土壤理化性质的影响.中国草地,23(4):41-47.
    172.沈振荣.张瑜芳,杨诗秀,等,水资源科学实验与研究-大气、水、地表气、土壤水、地下水相互转化关系.北京:中国科学技术出版社,1992.
    173.施雅凤.乌鲁木齐河流域水资源承载力及其合理利用.北京:科学出版社,1992,210-220.
    174.施雅凤.中国气候与海面变化及其趋势.山东科学技术出版社,1995,277-281.
    175.石玉林.中国土地资源的人口承载能力研究.北京:中国科学技术出版社,1992.
    176.石元春,李韵珠,陆锦文,等.区域水盐运动监测预报.石家庄:河北人民出版社,1992.
    177.石元春,辛德惠.黄淮海平原的水盐运动和旱涝盐碱的综合治理.石家庄:河北人民出版社,1983.
    178.石元春.走出治沙与退耕的误区[EB/OL].http://www.swcc.org.cn/new/20023.5-7.htm.2004-5-21.
    179.舒尔茨 G.A..地理信息系统和遥感在水文上的应用.人民长江,1994,25(10):57—60.
    
    
    180.水利部水文司.水文站网规划技术导则.北京:水利电力出版社,1992.
    181.宋其昌.植被生态学.上海:华东师范大学出版社,2001.
    182.苏永中,赵哈林,文海燕.退化沙质草地开垦和封育对土壤理化性状的影响.水土保持学报,2002,16(4):5-8.
    183.孙睿,刘昌明,李小文.利用累积NDVI估算黄河流域年潜在蒸散量.自然资源学报,2003,18(2):155-160.
    184.孙武,李森.土地退化与监测技术路线的研究.地理科学,2000,20(1):93-96.
    185.汤奇成.中国河流水文.北京:科学出版社,1998.59-60.
    186.唐华骏,陈佑启.土地生产潜力方法论比较研究.北京:中国农业科技出版社,1997.
    187.田国良.遥感估算水稻产量-Ⅱ用光谱数据和陆地卫星图像估算水稻产量.环境遥感,1989,4(1):73-79.
    188.仝川.草地退化指数的研究.内蒙古大学学报(自然科学版),2000,31(5).
    189.万洪涛,周成虎,万庆.流域水文模型计算域离散方法.地理科学进展,2001,20(4):347-354.
    190.万育彬,王龙明.青海省草地退化现状及其恢复途径.中国草地,1990,13(6):58~60
    191.汪诗平,李永宏,王艳芬.不同放牧率对内蒙古冷蒿草原植物多样性的影响.植物学报,2001,43(1):89-96.
    192.王根绪,程国栋.干旱区河流生态需水量及其估算.中国沙漠,2001,22(3):129-134
    193.王礼先.植被生态用水与生态建设-以西北为例.水土保持研究,2000,7(3):5-7.
    194.王启基,周兴民,沈振西,等.不同调控策略下退化草地植物群落结构及其多样性的研究.高寒草甸生态系统第4集.科学出版社,1995,269-280.
    195.王庆锁.科尔沁沙地固定沙丘植被多样性对降水变化的响应.植物生态学报,2000,24(2):141-148.
    196.王诗平,李永宏,王艳芬,等.不同放牧率冷蒿小禾草草原放牧演替规律与数量分析.草地学报,1998.6(2):299-305.
    197.王万邦,刘书杰,薛白,等.添食复合尿素砖对冬春期放牧牦牛藏羊的饲喂试验.见:胡令浩.牦牛营养研究论文集.西宁:青海人民出版社,1997.
    198.王永兴.绿洲生态系统及其环境特征.干旱区地理,2000,23(1).
    199.王宁.云南山区日照时数的垂直分布.山地研究,1993,11(1):1-8.
    200.王政权.地统计学及其在生态学中的应用.北京:科学出版社,1999.
    201.韦志刚,黄荣辉.青藏高原气温和降水的年际和年代际变化.大气科学,2003,27(2):158-170.
    202.翁笃鸣,罗哲贤.山区地形气候.北京:科学出版社,1990.
    203.乌云娜、张云飞.锡林郭勒盟草原植物物种多样性的水分梯度特征.内蒙古大学学报(自然科学版),1998,29(3):407-413.
    204.吴险峰,刘昌明.流域水文模型研究的若干进展.地理科学进展,2002,21(4):341-348.
    205.谢俊奇,贾克敬.作物生产潜力评定.内部资料,1995.
    206.徐叔鹰.青海湖东岸的风沙堆积.中国沙漠,1983,2(3):5-25.
    207.徐叔鹰.青海共和盆地地貌发育和环境演化探讨.中国沙漠,兰州大学学报,1984,(1):
    208.杨正礼,杨改河.中国高寒草地生产潜力与载畜量研究.资源科学,2000,22(4):72-77.
    209.杨志峰,崔保山,刘静玲,等.生态环境需水量理论、方法与实践.北京:科学出版社,2003.
    210.叶笃正,高由禧.青藏高原气象学.北京:科学出版社,1979.
    211.曾远志.江西潋水河流域自然过程的计算机模拟研究.见:流域管理科学化的探索与实践.南昌:江西科学技术出版社,2000.
    212.詹志明,冯兆东.区域遥感土壤水分模型的方法初探.水土保持研究,2002,9(3):227-230.
    
    
    213.张登山.青海共和盆地土地沙漠化影响因子的定量化分析.中国沙漠,2000,20(1):59-62.
    214.张凤荣,王静,陈百明等.土地持续利用评价指标体系与方法.北京:中国农业出版社,2003.187-231.
    215.张国胜,徐维新,董立新等,青海省旱地土壤水分动态变化规律研究.干旱区农业研究,1999,17(1):50-56.
    216.张金屯.山西高原草地退化及其防治对策.水土保持学报,2001,15(2):49-52.
    217.张强,赵雪,赵哈林.中国沙区草地.北京:气象出版社,1998.
    218.张瑞斌,陈玉华.共和盆地构造背景及发震构造探讨.高原地震,1994,6(4):39—44.
    219.张正康,胡凤彬,廖劲红,等.小河配套雨量站网密度分析.水文(增刊),1997,20-24.
    220.章淹.暴雨预报.北京:气象出版社,1990.
    221.赵成义.荒漠绿洲植被变化与土壤水盐运动的关系研究.北京:中国农业大学博士论文,2002.
    222.赵文智,程国栋.干旱区生态水文过程若干问题的评述.科学通报,2001,46(22):1851-1857.
    223.中国科学院青藏高原综合科学考察队.西藏草原.北京:科学出版社,1992.2,66-70.
    224.中国科学院塔克拉马干综考队.塔克拉马干地区水资源利用与评价.北京:科学出版社,1989.
    225.周华坤,周立,赵新全,等.放牧干扰对高寒草场的影响.中国草地,24(5):53-61.
    226.周兴民,王质彬,杜庆等.青海植被.西宁:青海人民出版社,1987.
    227.周兴民等.青藏高原退化草地的现状、调控策略和可持续发展.高寒草甸生态系统第4集.科学出版社,1995.263-268.
    228.朱桂林,卫智军,杨静,等.放牧制度对短花针茅群落植物种群地上生物量的影响.中国草地,2002,24(3):15-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700