基于分形地质统计学的草地土壤空间变异
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间变异与格局及其尺度效应问题是当前科学发展的前沿热点。地质统计学(GS)被公认为揭示空间变量变异性的先进科学。然而,研究者在肯定GS优势的同时,也认识到其某些不足。如虽然可表征随机变量的结构。但多从数理统计角度进行,不是严格物理或自然意义上变化规律和结构的揭示;克里格法(kriging)求解会产生“平滑效应”,得不到两点间的局部变化特征。对多数自然变量,相邻两信息点间通常并非是线性变化或光滑过渡的,存在局部、非线性变化特征,传统的地质统计学不能很好的处理这种非线性问题,分形地质统计学(FS)则善于解决这一问题。
     FS借助分形的自相似性和克里格法的无偏最优插值,从分形的角度定量刻画变量空间分布的特征,揭示变量的局部非线性变化并实现预测模拟。目前,FS尚未形成系统理论,本文总结了其发展历程,提出其理论体系框架,并以干旱区草地土壤、植被为研究对象,应用FS对土壤(含水量、盐分、有机质、全氮)、植被地上生物量的空间结构和变异性进行研究,并与传统GS进行比较,认为:
     (1)FS是传统GS的发展,分形维数能够表征变量分布的复杂性。方位-分维估值与多维分形克里格均以克里格法为基础,能够较好的模拟区域变量的空间分布。方位-分维估值法与克里格插值结果相近,实质是一种角度变换的分形插值,其约束条件少,计算简单,但估计标准方差大于克里格法。多维分形克里格在反映变量总体分布趋势的同时,得到变量更多的局部变化,减少了克里格法的“平滑效应”,实质是滑动加权平均基础上加入了奇异性校正的结果。
     (2)草地土壤、植被在空间上存在明显的空间变异特征并具有多级变异结构,只有在同一级结构中较大尺度的变化性才包含较小尺度的变化性,即使是同一级的结构,随着采样尺度的增加,插值的精度也会降低,因此,采样尺度的增加和减小与所研究问题的性质密切相关,不能盲目改变。
     (3)土壤颗粒含量的分形维数与沙粒含量呈显著的线性负相关关系,与粘粉粒含量呈显著的线性正相关关系,并与土壤N、有机质、盐分含量正相关。分形维数可表征土壤颗粒物质损失状况和化学元素含量,作为土壤特性的综合性定量指标并反映土壤沙质荒漠化程度。
     本研究进一步发展了FS理论体系,有助于GS的非线性发展,从分形的角度对土壤、植被特性空间分布进行分析与模拟,有可能创造学科新的增长点。
Pattern of spatial variability and the problem of scale effect is a hot point in the forefront of the scientific development. Geostatistics (GS) is recognized as an advanced science which can reveal the variability of the space variables. However, when many researchers definite the advantages of the GS, they also discovered some of the disadvantages. For example, it can characterize the structure of the random variables. But from the view of mathematical statistics, it can not revealed strictly which from the physical or the regulation and the structure of nature. Kriging method will have a "smooth effect”, while it can not get the characteristics of partial changes between two points. Typically, for the most natural variables, it is not linear or smooth transition between two adjacent points, it exists a partial, non-linear, changes of characteristics. For traditional geostatistics, it can not be well deal with the nonlinear problems, but Fractal Geostatistics (FS) can solve this problem well.
     From the perspective of the fractal spatial to describe the distribution of characteristically variables, FS reveals partial non-linear changes in variables and realizes the forecast and simulation with the help of self-similar fractal and Unbiased Kriging optimal interpolation. At present, FS has not yet formed theories; this article summarized the development of its history and established a theoretical frame. FS takes soil and vegetation to study and it does research on soil (moisture, salt, organic matter, total nitrogen), the spatial structure and variability of vegetation biomass above ground, and compared with the traditional GS, the conclusions are:
     (1) FS is the development of traditional GS; the fractal dimension can characterize the complexity of the variable distribution. The valuation of fractal dimension orientation and multi-dimensional fractal are based on Kriging, they can simulate the distribution of the spatial variables better. The result of the valuation of Fractal dimension orientation and the Kriging interpolation are similarly, essentially, it is a Perspective transformation of fractal interpolation, it has less restrictive conditions and a simple calculation, but its estimated variance is bigger than Kriging variance. multi-dimensional fractal Kriging reflect the overall distribution of the trend variables, meanwhile, it can get more variable changes and high-frequency information, and reduce the "smooth effect" of Kriging, essentially ,it is based on the slide which weighted average by adding a correct result of singular.
     (2) There is an obvious spatial variability and variability with multi-level structure in space of the soil and vegetation of grassland, only with the primary structure , the changes of large-scale can contain the small-scale, even if the structure is at the same level, with the increasing of Random sampling scale, the accuracy of the interpolation will reduce, therefore, we can not be blind to change, the increasing and reducing of the sampling scale which is closely related to the problem that we do.
     (3) The fractal dimension of particle content and sand content in soil showed a significant linear negative correlation, viscosity content was showed a significant positive correlation, at the same time; it is relevant to the soil nitrogen, organic matter, and salt content. Fractal dimension can characterize the loss of situation of soil particulate matter and chemical element content, as comprehensive and quantitative indicators, it reflects the degree of soil desertification.
     This study developed the FS theoretical system more perfectly. It contribute to the non-linear development of GS, from the view of fractal, soil and vegetation characteristics of the spatial distribution analysis and simulation, it is possible to create a new point of growth disciplines.
引文
1陈亚新,史海滨,魏占民,等.土壤水盐信息空间变异的预测理论与条件模拟[M].北京:科学出版社,2005.12.
    2徐冰,陈亚新,刘全明.分形理论在空间变异研究中的应用[R].内蒙古农业大学,2006.
    3沈中原,李占斌,李鹏,等.流域地貌形态特征多重分形算法研究[J].水科学进展,2009,20(3):385-391.
    4申维.分形混沌与矿产预测[M].北京:地质出版社,2002.5
    5徐冰,赵淑银,郭克贞,等.半干旱草地土壤特性空间变异性与分形特征[J],中国农村水利水电,2008,11. 19-21.
    6徐英,陈亚新.史海滨,等.土壤水盐空间变异尺度效应研究[J],农业工程学报,2004, 20(2):1-5.
    7孙庆先,李茂堂,路京选,等.地理空间数据的尺度问题及其研究进展[J],地理与地理信息科学,2007,23(4):53-56.
    8王军,邱杨.土地质量的空间变异与尺度效应研究进展[J],地理科学进展,2005, 24(4):28-35.
    9茆智,崔远来,李远华.水稻水分生产函数及其时空变异理论与应用[M],北京:科学出版社,2003.5
    10成秋明.多重分形与地质统计学方法用于勘查地球化学异常空间结构和奇异性分析[J],地球科学,2001,26(2):161-166
    11李庆谋,多重分形克立格方法[J].地球科学进展,2005,20(2):248-256.
    12王仁铎.地质统计学与分形理论的某些结合应用[J],地质科技情报,1993,12(3):93-97
    13侯景儒.地质统计学在我国的应用及其发展[J],地质与勘探,1991,27(4):36-38
    14陈亚新,史海滨.渠床土壤入渗率局部估计的点Kriging插值问题[J],水利学报,1991, 2:11-18
    15陈亚新,徐英,魏占民,等.基于稳健统计学的水盐空间变差函数逼近方法[J],水利学报, 2004,9:44-49
    16王政权.地统计邪恶及其在生态学中的应用[M].北京:科学出版社, 1999.2
    17张仁铎.空间变异理论及应用[M].北京:科学出版社, 2005.1
    18 Tilman, D. Species richness of experimental productivity gradients: how important is colonization limitation? [J].Ecology, 1993,74(8): 2179-2191
    19 Ritz, K; McNicol, W; Nunan, N; etc.I Spatial structure in soil chemical and microbiological properties in an upland grassland[J]. Fems Microbiology Ecology, 2004,49 (2): 191-205
    20 Maestre, Fernando T.; Bradford, Mark A.; Reynolds, James F. Soil heterogeneity and community composition jointly influence grassland biomass[J], Journal of VegetationScience,2006, 17 (3) : 261-270
    21 Reynolds, HL; Mittelbach, GG; Darcy-Hall, TL,etc.No effect of varying soil resource heterogeneity on plant species richness in a low fertility grassland[J]. Journal of Ecolgy, 2007,95 (4): 723-733
    22 Gallardo, A,Parama, R. Spatial variability of soil elements in two plant communities of NW Spain [J],Geoderma, 2007.139 (1-2): 199-208
    23吕贻忠,李保国,崔燕.不同植被群落下土壤有机质和速效磷的小尺度空间变异[J].中国农业科学, 2006,39(8):1581-1586
    24 Su, YZ; Li, YL; Zhao, HL.Soil properties and their spatial pattern in a degraded sandy grassland under post-grazing restoration, inner Mongolia, northern China[J].BIOGEOCHEMISTRY, 2006,79 (3): 297-314.
    25徐冰,郭克贞,思世勇,等.地质统计学及其在草地水土资源研究中的应用[J],水土保持研究,2006.13(6):319-321.
    26徐冰,陈亚新,郭克贞.小尺度干旱草地土壤植被空间变异研究[J].水土保持研究,2007, 14(6):173-175.
    27 Tyler S W,Wheatcraft S W.Fractal processes in soil water retention[J]. Water Resources Research,1990,26(5):1047-1054
    28杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报, 1993, 38(20):1896-1899
    29黄冠华,詹卫华.土壤水分特性曲线的分形模拟[J].水科学进展,2002,13(1):55-60
    30王康,张仁铎,周祖昊,等.多孔介质中非均匀流动模式示踪试验与弥散限制聚合分形模拟的应用[J].水利学报,2007,38(6):690-696
    31 North, CP; Hallwell, DI ,Bias in estiming fractal dimension with the rescaled-range (R/S) technique[J], Mathematical Geology, 1994,26 (5): 531-555
    32 Bartoli F; Burtin, G; Royer, JJ. etc. Spatial variability of topsoil characteristics within one silly soil type - effects on clay migration[J],Geoderma, 1995,68 (4): 279-300
    33 B.Yeten, F.Gumrar. The use of fractal geostatistics and artificial neural networks for carbonate reservoir characterization[J]. Transport in Porous Media, 2000,41:173-195.
    34 Bekele, A; Hudnall, WH; Daigle, JJ, etc. Scale dependent variability of soil electrical conductivity by indirect measures of soil properties[J]. Journal of terramechanics, 2005,42 (3-4): 339-351
    35孟宪国,周有武,林碧英.方位-分维估值法[J].地球科学,1992.17(1):63-68
    36侯贵廷.分形地质统计学[J].地质地球化学, 1994,2,68-70.
    37龚元石,廖超子,李保国.土壤含水量和容重的空间变异及其分形特征[J].土壤学报, 1998,35(1):10-15
    38徐冰,陈亚新,郭克贞.半干旱草地土壤粒径分形维数及空间变异特征[J].水利学报,2007(增刊),619-623.
    39李湘凌,白晓宇,袁峰,等.基于多维分形的铜陵地区土壤中P b元素空间分布[J].农业工程学报,2008,24(11):193-196
    40王永森,陈建生,陈亮等.考虑弥散系数尺度效应的溶质运移模型研究[J].人民黄河, 2008,30(11):60-62.
    41邱炳文.福建省耕地多尺度空间分布特征分析[J].农业工程学报,2008,24(11):63-69.
    42陈亚新,史海滨.渠床土壤水入渗率局布估计的点Kriglng插值问题[J].水利学报,1991,(2),54-57
    43陈亚新,史海滨.地质统计学在水资源系统的应用和发展[J].内蒙古水利,1997,1,12-15
    44李庆谋,成秋明.测井曲线分形校正[J].地球科学,2002,27(1):63-66
    45成秋明.空间模式的广义自相似性分析与矿产资源评价[J].地球科学,2004, 29(6):733-743
    46成秋明.多维分形理论和地球化学元素分布规律[J].地球科学,中国地质大学学报,2000, 25(3):311-318
    46丁旭东.几种特异值处理方法的比较[J].物探化探计算技术, 1996,25(1):7l-77
    47杜华强,范文义,赵宪文,等.基于Ma t l a b遥感数据分形及地统计分析软件实现[J].北京林业大学学报,2005,(27)5:92-97
    48杜华强,汤孟平,周国模,等.天目山物种多样性尺度依赖及其与空间格局关系的多重分形[J].生态学报, 2007,27(12):5038-5049
    49范玉红,栾元重,王永,等.分形插值与传统插值相结合的方法研究[J].测绘科学,2005, 30(2):76-80
    50冯国栋.土力学[M].北京:中国水利水电出版社, 1986,5
    51郭素珍,土壤物理学[M].呼和浩特:内蒙古农牧学院,1998,3
    52何东进,洪伟,胡海清,等.武夷山风景区森林景观土壤物理性质异质性及其分形特征[J].林业科学, 2005,41(5):175-179
    53华孟,王坚.土壤物理学[M].北京:北京农业大学出版社,1993.10
    54洪时中,洪时明.一种客观确定分形“无标度区”的方法一自相似比法[J].大自然探索, 1993,12(44):53-57
    55黄昌勇.土壤学[M].北京:中国农业出版社,2000,5
    56黄冠华,詹卫华.土壤水分特性曲线的分形模拟[J].水科学进展, 2002,13(1):55-60
    57黄冠华, ZHAN Hong-Bin,叶自桐.水力传导度空间变异性的分形模拟研究进展[J].水科学进展, 2003,14(2):236-241
    58黄立基,丁菊仁,多标度分形理论及进展[J].物理学进展, 1991,11(8):269-327
    59雷志栋,杨诗秀,许志荣,等.土壤特性空间变异性初步研究[J].水利学报, 1985, 9,11-16
    60李保国,分形理论在土壤科学中的应用及其展望[J].土壤学进展, 1994,22(1):1-10
    61李长江,麻士华.矿产勘测中的分形、混沌与ANN[M].北京:地质出版社, 1999,12
    62李为萍,史海滨..向日葵株高茎粗的空间结构性分析[J].农业工程学报, 2004,4::30-33
    63李为萍,土壤水盐与作物信息空间结构性及其协同关系研究[R].内蒙古农业大学硕士学位论文, 2004,6
    64廖咏拇,陈劲松.米亚罗地区亚高山针叶林在不同人为干扰条件下的土壤分形特征[J].生态学杂志, 2005,24(8):878-882
    65刘建立,徐绍辉.根据颗粒大小分布估计土壤水分特征曲线:分形模型的应用[J].土壤学报,2003,40(1):46-52
    66刘全明.水盐空间变异性与稳健变异函数的初步研究[R],内蒙古农业大学硕士学位论文, 2003,7
    67刘全明,陈亚新,史海滨,等.土壤水盐时空变异数据中特异值处理方法与调控技术[J].灌溉排水学报, 2004,23(2):26-29.
    68刘全明,陈亚新,史海滨,等.非参数统计理论与人工智能技术在水土空问变异中的应用研究[J].灌溉排水学报, 2006,25(1):49-53.
    69刘世梁,郭旭东,连纲,等.黄土高原土壤养分空间变异的多尺度分析—以横山县为例.水土保持学报, 2005,1 9(5):105-108
    70刘雪梅.土壤粒径分布的多重分形描述[J].安徽农业科学, 2008,36(24):10557-10539
    71刘艳妮.变异函数和分形容量维的相关性分析[J].佳木斯大学学报(自然科学版), 2008 ,26(5):702-704
    72吕贻忠,李保国,崔燕.不同植被群落下土壤有机质和速效磷的小尺度空间变异[J].中国农业科学,2006,39(8):1581-1586
    73南京农业大学.田间试验和统计方法[M].北京:农业出版社,1993,4
    74裴金得.多元统计分析与应用[M].北京:北京农业大学出版社,1990,12
    75秦海勤,徐可君,江龙平分形理论应用中无标度区自动识别方法[J].机械工程学报, 2006.42(12):106-109
    76冉占全,李士伦,颜其彬.分形地质统计学在建立定量储层地质模型与储量分布模型中的应用[J].天然气地球科学,1995,32(6):30-35
    77申维. n维自仿射分形及其在地球化学中的应用[J].地质论评, 2005,51(2):208-211
    78史海滨,陈亚新.土壤水空间变异性的套合结构模型及区域信息估计[J].水利学报, 1994,7,70-77
    79史海滨,陈亚新.线性非平稳农田土壤水信息空间变异性及预测研究[J].农业工程学报,1996,12(3):77-82
    80苏里坦,宋郁东,张展羽.天山北麓地下水与自然植被的空间变异及其分形特征[J].山地学报,2005, 23(1):14-20.
    81孙洪泉.分形几何及其分形插值研究[J].河北工业大学学报, 2002,31(1):56-60
    82陶春军,周涛发,邢怀学,等.合肥市大兴地区土壤中镉元素的窒闻分布的多维分形特征研究[J].安徽地质,2008,18(2):138-146
    72王康,张仁铎,王富庆,等.土壤水分运动空间变异性尺度效应的染色示踪入渗试验研究[J].水科学进展,2007,18(2):158-163
    83王珂,沈掌泉, John S. Bailey,等.精确农业田间土壤空间变异与采样方法研究[J].农业工程学报, 2001,17(2):33-36.
    84王仁铎,胡光道.线性地质统计学[M].北京:地质出版社, 1988,11
    85王仁铎,杨明国.地质现象分形统计学研究的若干问题[J].现代地质, 1988,12(1):91-96
    86王雄军,赖健清,孔华,等.太原盆地及太原市重金属元素地球化学分布特征分析[J].地球与环境, 2008,36(1):72-80
    87王永森,陈建生,陈亮.考虑弥散系数尺度效应的溶质运移模型研究[J].人民黄河, 2008,30(11):60-62
    88曹汉强,朱光喜,李旭涛,等.多重分形及其在地形特征分析中的应用[J].北京航空航天大学学报, 2004,30(12):1182-1185
    89巫兆聪,分形分析中的无标度区确定问题[J].测绘学报, 2002,31(3):240-244
    90夏军.水文尺度问题[J]水利学报, 1993, (5):32-37
    91肖斌,赵鹏大,侯景儒等.时空多元协同克立格的理论研究.物探化探计算技术[J].物探化探计算技术,1998, 20(1):1-8
    92肖斌,赵鹏大,侯景儒.归来庄金矿床化探信息金异常的协同克立格法研究[J].地质评论,2000,46(增刊):129-133
    93谢淑云,鲍征宇,苏江玉.新疆塔里木盆地艾协克一桑塔木南地区油气地球化学指标的多重分形性分析[J].地质论评, 2005,51(1):107-112
    94辛晓平,李向林,杨桂霞,等.放牧和收割条件下草山草坡群落空间异质性分析[J].应用生态学报, 2002,13(4):449-453
    95徐英,陈亚新,史海滨,等.冻土水盐时空变异性条件模拟的初步研究[J].地质论评, 2000. 46(增刊):274-279
    96徐英,土壤水盐时空变异的稳健性分析和条件模拟研究[R].内蒙古农业大学博士学位论文, 2002,7
    97朱永清,李占斌,鲁克新.地貌形态特征分形信息维数与像元尺度关系研究[J].水利学报, 2005. 36(3):333-338
    98杨玉玲,田长彦,盛建东,等.灌淤土壤可溶性盐分空间变异性与棉花生长关系研究[J].干旱区地理,2002,25(4):329-335
    99余跃,冯志刚.分块分形插值在农业地学数据模拟中的应用[J].农机化研究, 2007,11,29-37
    83张少文,王文圣,丁晶,等.分形理论在水文水资源中的应用[J].水科学进展, 2005,16(1):141-146
    100张世熔,孙波,赵其国,等.南方丘陵区土壤氮素尺度效应的影响因素[J].生态学报, 2007,27(10):4057-4064
    101赵成义,王玉潮,李子良,等.田块尺度下土壤水分和盐分的空间变异性[J].干旱区研究, 2003,20(4):252-256
    102赵军,刘焕军,隋跃宇,等.农田黑土有机质和速效氮磷不同尺度空间异质性分析[J].水土保持学报, 2006, 2 0(1): 41-44
    103赵鹏大,池顺都.初论地质异常[J].地球科学—中国地质大学学报, 1991, 16(3):241-248
    104仲晓雷,郭成久,范昊明,等.辽宁省土壤侵蚀空间尺度效应初探[J].中国水土保持科学, 2008,6(3):33-37
    105周蒂,陈汉宗.稳健统计学与地球化学数据的统计分析[J].地球科学—中国地质大学学报, 1991, 16 (3):273-279
    106周蒂.地球化学数据的稳健回归分析[J].热带海洋, 1988,(3)
    107朱晓华,李加林,杨秀春,等.土地空间分形结构的尺度转换特征[J],地理科学, 2007, 27(2):58-62
    108 Andras Bardossy:Notes on the Robustness of the Kriging System[J] Mathematical Geology,. 1988,20 (2): 189-203
    109 A.N.Kravchenko. Influence of spatial structure on accuracy of interpolation methods[J]. Soil.Sci.Soc.Am.J, 2003, 67:1564-1571
    110 Burgess,T.M.& Webster,R:Optimal interplation and isarithmic mapping of soil properties[J]. Soil.Sci.,Vol.31,1980,pp.315-341
    111 David B. Lobell, J. Ivan Ortiz-Monasterio, Gregory P. Asner, Rosamond L. Naylor, and Walter P. Falcon. Combining Field Surveys, Remote Sensing, and Regression Trees to Understand Yield Variations in an Irrigated Wheat Landscape[J]. Agron. J., Jan 2005; 97: 241-249.
    112 Davis.M.W.Production of conditional simulations via the LU decomposition of the covariance matrix[J] Math Geol.1987.19:91-98
    113 D. M. Lambert, J. Lowenberg-DeBoer, and G. L. Malzer. Economic Analysis of Spatial-Temporal Patterns in Corn and Soybean Response to Nitrogen and Phosphorus[J]. Agron. J., 2006; 98: 43-54.
    114 Dooge J C I. Looking for Hydrologic[J].Water Resour Res,1986,22(9):300-305
    115 Douglas G.Boyer, Robert J.Wright and Charles M.Feldhake etal. Soli spatial variability relationships in a steeply sloping acid soil environment [J]. Soil Science, 1996, 161(5): 278-287
    116 Dumanski,J.et al:Concept,objective and structure of Canada soil information system[J]. Can.Soil Sci.J,Vol.55,1985,pp.183-187
    117 FAO.Soil survey investigations for irrigation[M]. Soils Bulletin 42,Rome,1979.177-123
    118 Gary,R.et al:On the ralationship between Kriging and state estimation[J]. Water Resour.Res.Vol.18.No.2,1982,pp.432-437
    119 Heeksema R J.Cokriging model for estimation of water-table elevation[J].Water Resour Res,1989,25(3):429-435
    120 H. Shahandeh, A. L. Wright, F. M. Hons, and R. J. Lascano. Spatial and Temporal Variation of Soil Nitrogen Parameters Related to Soil Texture and Corn Yield[J]. Agron. J., Apr 2005; 97: 772 - 782.
    121 Javed Iqbal, John A. Thomasson, Johnie N. Jenkins, Phillip R. Owens, and Frank D. Whisler. Spatial Variability Analysis of Soil Physical Properties of Alluvial Soils[J]. Soil Sci. Soc. Am. J., Jun 2005; 69: 1338 - 1350.
    122 J.G.Davis, L.R.Hossner, L.P.Wilding etal. Variability of soil chemical properties in two sandy dunal soils of niger[J]. Soil Science, 1995 ,159(5):321-330
    123 Jjeffrey.L.Smith,Jonathan.J.Halvorson,Robert.I.Papendick. Using Multiple-Variable Indicator Kriging for Evaluating Soil Quality[J].Soil.Soc.Am.J. 1993,57:743-749.
    124 Journel A.G..Ggeostatics for conditional simulations of ore bodies.Ecom Geo1[J], 1974,69(5):673-678
    125 Journel A.G.Huijibregts C.J.Mining Geostatistics[M]. Academic Press,New York,1978,600
    126 Journel A.G.Conditional simulation of geologically averaged block permeability[J]. Journal of Hydrology,1996,183,23-35
    127 J.W.Biggar and D.R.Nielsen. Spatial analysis of water table salinity and hydraulic conductivity prior to salinization[J].Isrss Chain,1985, 5
    128 J.S.Strock, D.K.Cassel, and M.L.Gumpertz. Spatial variability of water and bromide transport through variably satured soil blocks [J]. Soil.Sci.Soc.Am.J, 2001,65:1607-1617
    129 Kang Wang, Renduo Zhang, and Fuqin Wang Testing the Pore-Solid Fractal Model forthe Soil Water Retention Function[J]. Soil Sci. Soc. Am. J., May 2005; 69: 776 - 782.
    130 M.H.Saddiq, P.J.Wierenga et al. Spatial variability of soil water tension in an irrigated soil[J]. Soil Science, 1985.140(2)
    131 Mohammed S. Lamhamedi, Louise Labbé, Hank A. Margolis, Debra C. Stowe, Louis Blais, and Mario Renaud. Spatial Variability of Substrate Water Content and Growth of White Spruce Seedlings[J]. Soil Sci. Soc. Am. J., Dec 2005; 70: 108 - 120.
    132Oliver.M.A:Some.novel.geostatistical.applications.in.soil.science.Geostatistical Matheods:Recent Developments and Applications in SSH.IHP-IV,UNESCO Paris. 1992,142-153
    133 Painter.S.Numerical method for conditional simulation of levy random fields[J].Math Geol 1998,30(2):163-179
    134 Phil Diamond and Margaret Armstrong:Robustness of Variograms and Conditioning.of.Kriging.Matrices[J],Mathematical Geology, Vol.15,No.8.1984,pp:309-322
    135 P. J. Zarco-Tejada, S. L. Ustin, and M. L. Whiting. Temporal and Spatial Relationships between Within-Field Yield Variability in Cotton and High-Spatial Hyperspectral Remote Sensing Imagery. Agron[J]. J, Apr 2005; 97: 641-653.
    136 Russo D:Statistical analysis of spatial variability in unsaturated flow parameters.Water Resour Res[J],1992,28(70):1991-1925
    137 Robert J.Hoeksema and Peter K.Kitanidis. An application of the Geostatistical approach to the inverse problem in two-dimensional groundwater modeling[J].Water Resources Research, 1984.20(7)
    138 Tompson A.F.Ababou.R,and Gelhar L.w:Implementation of three-dimensional turning.band.random.field.generator[J].Water.Resour.Res.1989,25(10)2227-2243
    139 Vieira,S.R. et al:Spatial variability of field-measured infiltration rate[J]. Soil Sci.J , Vol.18.No.2,1982,pp.183-187
    140 Xu Ying,Chen Yaxin,et al:Study on application of conditional simulation to time-space variability of water-salt during soil freezing and thawing.[C].Proceedings of International Coference on Agriculurdl Engineering.Beijing,China,December, 1999,II-129-133
    141 Zhang Xingyi, Sui Yueyu , Zhang Xudong, etc. Spatial variability of nutrient properties in black soil of northeast China,Soil Science Society of China. 2007.17(1):19-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700