鄂尔多斯及其毗邻地区生物结皮层苔藓植物物种组成、地理分布及生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过对31个样地的调查,鄂尔多斯地区苔藓植物有17科、41属、102种,其中2个中国新记录属,7个中国新记录种,8个内蒙古新记录种;沙坡头地区有苔藓植物3科、11属、24种,其中1个中国新记录属,2个中国新记录种。鄂尔多斯地区典型草原区有苔藓96种,占总种数的95%,荒漠草原区种类明显下降,仅12种,占11.9%;半荒漠区有10种,占9.9%。
     苔藓物种景观上的分布规律主要表现为:1)种数由东向西随着降雨量的减少而减少,中旱生及旱生生态型逐渐成为的主要成分,由南向北随着纬度的增加而减少,符合生物多样性随纬度增加而递减的规律;2)生境多样性(空间异质性)的变化对物种分布影响巨大,不仅表现在大尺度上,在样地微生境上表现的更明显,多样的生境增加了物种的多样性。在生境尺度上主要表现为:1)环境湿度、土壤含水量与种类密切相关,阴湿和中湿环境物种数目明显多于干旱生境,坡底的种类明显高于坡顶;2)土壤的理化性质(PH值、土壤机械组成、盐分含量)直接影响苔藓的生长和分布;3)维管植物的种类和分布影响苔藓的生长和分布模式,其创造的微生境为苔藓的定居创造了避难所,但维管植物产生的地被物(枯枝、落叶)又抑制了苔藓在其下的分布。
     苔藓α多样性的变化不仅与生境变化有关,而且还与构成生境的结构要素有关,这些结构要素包括群落的层片结构,维管植物的郁闭度、盖度、种类组成,地被物的盖度和分布格局,藻类盖度和分布格局。苔藓β多样性的变化与群落结构的关系更为密切,相似群落结构间的多样性相似系数明显高于结构存在差异的群落。盖度变化分析表明,随着坡地海拔高度的增加,藓类的盖度呈现下降的趋势,藻类的盖度则呈现小幅度上升趋势,结皮层藓类的盖度与藻类、维管植物的盖度存在不显著负相关。随着沙丘固定年限的增加,藓类和藻类植物的盖度都呈
    现上升的趋势,老固定沙丘鲜结皮盖度大于藻结皮盖度,而新固定沙丘藻结皮盖度则大于鲜结皮盖度。不同地带性植被区随着年均降雨量减少,鲜类和藻类盖度都明显降低;同一地区年季降雨量的波动也直接影响着鲜类和藻类盖度的波动。 不同鲜类单位生物量明显不同,同种鲜类随着海拔高度增高、干扰强度增人、地区降雨量的降低,单位生物量显著降低,主要是由于环境的变化影响了苔鲜植物的株高和密度,结皮厚度与株高存在明显的正相关(P<0.01)。随着沙rf..固定年代的增加,固沙量也显著增加:鲜类稳定沙丘表层土壤重量是自身重量的30一50倍,极大增强了结皮机械强度和抵御外界干扰和侵蚀的能力,同时鲜类吸水后能达到自身干重的6一10倍多,一方面为鲜类自身的生存和繁殖创造了条件,另方面对于提高土壤的保水能力,促进维管植物的萌发和定居有着垂要的才卜态作用。 真鲜和土生对齿鲜无性繁殖是其首要的繁殖策略,对种群的发展和维持及种群的扩散极为重要,营养繁殖的多样性增加了对多变的自然环境的适应性,抱子繁殖对稳定物种遗传多样性非常重要,也是植物体增强环境适应性的进一步表现。在土壤营养贫膺的半荒漠区很难看到优势鲜类的抱子体,表明其性表达的比例低,而伴生种和稀有种都存在有性繁殖和无性繁殖两种方式,在性表达的比例_}:明显高于优势种,可能的解释是由于生态位竞争的不平等,‘造成种群人而积发展的机会降低,物种消耗本身大量的资源产生抱子体,进而产生大量的饱子以扩人散布的空间距离和生境类型,其机理有待于进一步研究。鲜类多样的无性繁殖力一式为人工培养苔鲜植物技术及恢复鲜类结皮提供了多种选择。受损结皮层的自然恢复实验表明未受干扰的自然状态下受损鲜类结皮层样方在3一4年内达到70%的恢复率,主要依靠结皮层中优势种的茎、叶碎片、芽胞进行传播和克隆繁殖。人工恢复培养的醉类生长快,成活率高,但维持差,其原因可能与培养方法有关。野外及室内培养的真鲜形态和大小有显著差异,是真醉在不同环境条件的生态变异,但两种条件下真鲜繁殖特性完全相同,能够揭示生物结皮层形成过程中鲜类植物萌发和定居的繁殖生物学机理。 苔鲜形态解剖结构表明,旱生鲜类具有明显防止紫外线辐射和水分散失的适应性结构,在一定程度上减缓组织细胞内生理条件的剧烈变化,减弱细胞器受损伤的程度,加快其生理功能的恢复速度,使其更好的适应环境变化。 鲜类体内氨基酸分析表明氨基酸组成大部分与维管植物相同,其中天门冬氨酸、谷氨酸、丙氨酸、亮氨酸和精氨酸的含量最高,约占总氨基酸的50%。脯氨酸含量在所有氨基酸中处于较低水平,平均只占氨基酸总量的3.12%。半荒漠区分布的真鲜与草原区分布的真蓟有10种氨基酸(包括脯氨酸)含量有显著的均数差异(p<0.05),而土生对齿鲜只有脯氨酸有显著的差异(p<0.05),脯氨酸的含量在同一地区没有显著的差异,但在不同地区却有显著性差异(p<0.05),真鲜平均总氨基酸含量大于土生对齿鲜。 生物结皮土壤Ca2+含量明显高于其他3种离子,Na+、r离子含量较少。苔鲜植物生物量与土壤P、土壤有机质明显正相关(P<0.05),土壤PH值与土壤P含量和苔鲜植物生物量显著负相关(P分别<0.01和<0.05),表明高的PH值显著影响土壤P含量和植物生物量。P含量还与N含量显著相关(P<0.05),醉类结皮土壤中有机质、?
Through several years of studying in 31 plots in fields, mosses of 17 families, 41 genera and 102 species were found in Erdos region. In the meanwhile, 2 genera and 7 species were newly recorded in china, and 8 species were newly recorded in Inner Mongolia. Mosses of 3 families, 11 genera and 24 species were found in Shapotou, Zhongwei County, Ningxia Hui Autonomous Region, 1 genus and 2 species were newly recorded in china. In Erdos region there were 96% species in steppe which counted for 95% of all the species, only 12 species in desert steppe counting for 11.5% and only 10 species in semi-desert counting for 9.9%.
    The distributive features of moss species on landscape were mainly as followed: (1) species number became smaller as the rainfall decreased from the east to the west; mesic xerophyre and xerophyre types ecologically came to be the major components, which would decreased in number as the latitude became high. And the biodiversity was consistent with the decreased law of the biodiversity respect to the latitude. (2) The change of habitat diversity (spatial heterogeneity) played a great role on the distribution of species, not only on the large scale but more noticeably on the microhabitat of plots as well. Diverse habitates would produce a higher diversity of species. On habitat scale, the main features were: (1) Environmental humidity, the content of water in soil and number of species were closely related to each other. Species in humid or semi-humid environment were much larger in number than in arid land and larger in bottom of a slope than on the top of a slope. (2) The physical and chemical characteristi
    c of soil (pH value, soil mechanical component, salt content) would directly influence the ,rowth and distribution of moss. (3) The sorts and distribution of vascular plants affected in growth and distribution pattern. The microhabitat accordingly provide refuges for the establishment of mosses, but the ground layers (litter), Which were produced by vascular plants would prevent moss from the distributive below. The habitat difference (including temperature, moisture, and light etc.) was the main reason that leads to the richness difference of bryophyte species.
    The change of Alpha diversity of bryophytes not only had to do with the change of habitat; but also had much to do with the structural agents, which constituted the habitat. These structural agents contained the synusia structure of community, the
    IV
    
    
    canopy density; cover degree and specific composition of vascular plants; the cover degree and distribution pattern of aphyllae. The change of beta diversity of bryophyte was more closely linked with the community structure, with the similarity index of the diversity of similar community structures being obviously higher than that of communities with different structures. Analysis of cover showed that with the increase of the altitude of the slope, the coverage of mosses decreased quickly and that of algae increased slowly. And the cover of moss crusts and that of algae and vascular plants are in insignificant negative relation. With the increase of the fixed-sand time, the cover of mosses and algae tends to enhance, the cover of old fixed dunes moss crusts is thicker than that of algae crusts and the cover of the new fixed dunes is thicker than that of moss crusts .in different zonal vegetation the cover of mosses and algae both decreases with the decrease of average annual precipitation. The fluctuation of annual precipitation in the same area directly affects the cover of mosses and algae.
    Unit biomass differs in different mosses; and unit biomass of the same specie of moss dramatically decreases with the increase of altitude and the disturbance intensity and the decrease of region precipitation. This was because the change of environment influenced the height and density of mosses, and there were remarkable correlated relationships between the thickness and the height of different species and types of mosses (P<0.01). Binding-sand quantity increased when the fixed sand time prolonged .
引文
1.李博主编.内蒙古鄂尔多斯高原自然资源与环境研究.北京:科学出版社,1990,119-125.
    2.张新时.毛乌素沙地的生态背景入其草地建设与优化模式,植物生态学报,1994,18(1):1-6.
    3.王荷生,张镱锂.中国种子植物特有属的生物多样性的特征,云南植物研究,1994,16(3):209—220.
    4.朱宗元.阿拉善-鄂尔多斯生物多样性中心的特有植物和植物区系的性质,干旱区资源与环境,1999,13(2):1~16.
    5.李博.鄂尔多斯高原的自然条件与草地资源概况.李博文集编辑委员会,李博文集.北京:科学出版社,1999,373-379.
    6.白学良.内蒙古苔藓植物志.呼和浩特:内蒙古大学出版社,1997.
    7. Kidron, G. J.. Microclimate control upon sand microbiotic crusts, Western Negev Desert, lsrae. Geomorp, 2000, 36(1-2): 1-15.
    8. Harper K.T., Pendleton R.L. Cyanobacteria and cyanolichens: can they enhance availability of essential minerals for higher plants? Great Basin Naturalist, 1993, 53:59-72.
    9. Harper K T. The influence of biological soil crusts on mineral uptake by assobiated vascular plants. Journal of Arid Enivironment, 2001,47: 347~357.
    10. St. Clair L.L.,.Webb B.L, Johansen J.R. et al..Cryptogamic soil crusts: enhancement of seedling establishment in disturbed and undisturbed areas. Reclamation and Revegetation Research, 1984, 3: 129-136.
    11. Anderson D.C., Harper K.T., Rushforth S.R. Recovery ofcryptogamic soil crusts from grazing on Utah winter ranges. Journal of Range Management, 1982, 35:355-359.
    12. Isichei, A.O..The role of algae and cyanobacteria in arid lands: a review. Arid soil Research and Rehabilitation 1990, 4: 1-17.
    13. West N.E. Structure and function of microphytic soil crusts in wildland ecosystems of arid to semi-arid regions. Advances in Ecological Research, 1990, 20:179-223.
    14. Belnap J., Wiliams J., Kaltenecker J. Structure and function of biological soil crusts. In: Meurisse RT, Ypsilantis WG, Seybold C (eds) Pacific Northwest Forest and Rangeland Soil Organism Symposium. USDA Forest Serivce, Pacific Northwest Research Station, Portland, OR, Oregon State University, Corvallis, OR, 1998, pp 161-178
    15. Belnap J., Gillette D.A. Vulnerability of desert biological soil crusts to wind erosion: the influences of crust
    
    development, soil texture, and disturbance. Journal of Arid Environments, 1998, 39:133-142.
    16. Williams J.D., Dobrowolski J.P., West N.E Microbiotic crust influence on unsaturated hydraulic conductivity. Arid Soil Research and Rehabilitation, 1999, 13:145-154,
    17. Belnap J. Impacts of off-road vehicles on nitrogen cycles in biological soil crusts: resistance in different U.S. deserts. Journal of Arid Environments, 2002, 52:155-165.
    18. Li X.R., Zhang J.G., WangX.P., et al. Study on soil microbiotic crust and its influences on sand-fixing vegetation in arid desert region[J]. Acta Botanica Sinica (植物学报), 2000, 42: 965~970.
    19.王世冬,白学良,雍世鹏.沙坡头地区藓类植物区系初步研究.中国沙漠,2001,21(3):244—249.
    20.胡春香.刘永定.宁立荣等.半荒漠藻结皮藻类的种类组成和分布.应用生态学报,2000,11(1):61—65.
    21.张萍.白学良,徐杰等.干旱区固定沙丘结皮层藓类植物繁殖生物学特性研究.中国沙漠.2002,22 6):553-558
    22.白学良,王瑶,徐杰等.沙坡头地区固定沙丘结皮层藓类植物的繁殖和生长特性研究.中国沙漠,2003,23(2):170~173.
    23.徐杰,白学良,杨持,等.固定沙丘结皮层藓类植物多样性及固沙作用研究.植物生态学报,2003,27(4):545~551.
    24.蒋高明.何维明等.毛乌素沙地若干植物光合作用、蕉腾作用和水分利用效率及生境间筹异,植物学报,1999,41(10):1114-1124。
    25. Rodes B., Donders S., Marinus J.A. et al. Relation of wind-induced sand displacement to plant biomass and plant sand-binding capacity. Acta Botanica sinica (植物学报), 2001, 43(9): 979~982.
    26.陈玉福,宋明华,董鸣.鄂尔多斯高原覆沙坡地植物物落格局,植物生态学报,2002,26(4):501-505。
    27. Vitt D.H. Patterns of growth of the drought tolerant moss, Racomitrium microcarpon, over a three year period. Lindbergia, 1989, 15:181-187.
    28.仝治国.中国几种旱生藓类的新分布.内蒙古大学学报自然科学版,1963,5(2):73~85.
    29. Rosentreter R, Belnap J. Biological soil crusts of North America. In: Belnap J, Lange OL(eds) Biological Soil Crusts: Structure,Function,and management, vol 150.Springer-Verlag, Berlin,2001, 31~50
    30. Galun M, Garty J. Biological soil crusts of the Middle East[A]. In: Belnap J, Lange OL(eds) Biological Soil Crusts: Structure, Function, and management, vol 150 Springer- Verlag, Berlin 2001, 95~106.
    31.张元明,曹同,潘泊荣.新疆古尔班通古特沙漠南缘土壤结皮中苔藓植物的研究.西北植物学报,2002,
    
    22(1):18-23.
    32.吴鹏程.苔藓植物生物学.北京:科学出版社,1998,23-148.
    33. Moore C J, Lufi S E & Hallum N R..Fine structure and physiology of the desiccation-tolerant mosses, Barbula torquata and Triquetrella papillata(Mook.F.and Wils.)Broth., during desiccation and rehydration. Bet.Gazatte. 1982, 143: 358~367.
    34.王虹,阿不都拉阿巴斯,范兆田等.四种旱生藓类植物的比较结构学观察.云南植物研究,2000,22(1):38-40.
    35.王虹.五种紫萼藓科植物茎及叶的解剖学观察.植物研究,2002,22(1):19~22.
    36.王虹,阿不都拉.阿巴斯,赵建成,新疆三种旱生藓类植物的比较解剖观察,干旱区研究,1999,16(4):28-31。
    37.韩留福,刘伟,赵建成等.十种藓类植物茎的比较解剖学观察.干旱区研究,2003,20(1):20-24。
    38. Gehrke C. Impacts of enhanced uItraviolet-b radiation on mosses in a subarctic heath ecosystem. Ecology, 1999, 80 (9): 1-9.
    39. Eldridge D.J., Rosentreter R. Morphological groups: a framework for monitoring microphytic crusts in arid landscapes. Journal of Arid Environments, 1999, 41:11-25.
    40. Eldridge D.J., Greene R.S.B. Microbiotic soil crusts: a review of their roles in soil and ecological processes in the rangelands of Australia. Australian Journal of Soil Research, 1994, 32:389-415.
    41. Williams J.D., Dobrowolski J.P., West N.E.et al. Microphytic crust influence on wind erosion. Transactions of the American Society of Agricultural Engineers, 1995, 38:131-137.
    42. Eldridge D.J. & Kinnell P.I.A. Assessment of erosion rates from microphyte-dominated monoliths under rainimpacted floe. Austrlian Journal of soil Research, 1997, 32: 389~345.
    43. Loope W.L., Gifford G.F. Influence of a soil microfloral crust on select properties of soils under pinyonjuniper in southeastern Utah. Journal of Soil and Water Conservation, 1972, 27:164-167.
    44. Brotherson J.D., Rushforth S.R. Influence of cryptogamic crusts on moisture relationships of soils in Navajo National Monument, Arizona. Great Basin Naturalist, 1983, 43:73-78.
    45. Eldridge D.J., Tozer M.E., Slangen S. Soil hydrology is independent of microphytic crust cover: further evidence from a wooded semiarid Australian rangeland. Arid Soil Research and Rehabilitation, 1997, 11:113- 126.
    46. Skujins J. Microbial ecology of desert soils. In: Marshall CC (ed) Advances in Microbial Ecology, vol Volume
    
    7. New York: Plenum Press, 1984, pp 49-91
    47. Belnap J,, Harper K.T., Warren S.D. Surface disturbance of cryptobiotic soil crusts: nitrogenase activity, chlorophyll content, and chlorophyll degradation. Arid Soil Research and Rehabilitation, 1994, 8: 1-8.
    48. Harper K.T., St. Clair L.L. Cryptogamic soil crusts on arid and semiarid rangelands in Utah: effects on seedling establishment and soil stability. In. Bureau of Land Management, Provo, UT, 1995, p 32,
    49. Zaady E., Gutterman Y., Boeken B. The germination effects of cyanobacterial soil crust on mucilaginous seeds of three desert plants: Plantago coronopus, Reboudia pinnata and Carrichtera annua. Plant and Soil, 1997, 190: 247-252.
    50. Whitford W. C. The importance of the biodiversity of soil biota in arid ecosystems. Biodiversity and Conservation, 1996, 5:185~195.
    51. Box E.O. Macroclimate and Plant Forms: An Introduction to Productive Modeling in Phytogeography. W. Junk, The Hague, 1981.
    52. Ponzetti J., Youtie, B., Salzer D. & Kimes T.. The effects of fire and herbicide on microbiotic crust dynamics in high desert ecosystems. Final Report to the Nature Conservancy of Oregon,. Forest and Rangeland Ecosystem Science Center. Biological Resources Division. US Geological Survey. Portland, Oregon. 1998.
    53. Schofield W. B. Introduction to Bryology. New York: Macmillan Publishing Company. 1995.
    54. Belnap J. Recovery rates of cryptobiotic crusts: inoculant use and assessment methods. Great Basin Naturalist, 1993, 53:89-95
    55. Duckett, J. G. Studies of protonemal morphogenesis in mosses.Ⅵ. The foliar rhizoids of Calliergon stramineum (Brid.) Kindb. function as organs of attachment. Journal of Bryology, 1994, 18:239~252.
    56. Vashistha, B, D, & R. N. Chopra. In vitro studies on spore germination, protonemal differentiation and bud formation in three Himalayan mosses. Journal of the Hattori Botanical Laboratory, 1987, 62:121~136.
    57. Sharma P., Chopra R. N. In vitro production and behaviour of protonemal gemmae in Hyophila in voluta(Hook. ) Jaeg. Journ. Hattori Bot. Lab. 1986, 60: 137~141.
    58. Hedwig J. Fundamentum Historiae Naturalis Muscorum.Lipsiae.1782.
    59. Nishida Y. Studies on the sporing types in mosses.J.Hattorri. Bot. Lab, 1978, 44.
    60.高谦,张钺.中国藓类植物孢子萌发和原丝体发育的初步研究.武汉植物学研究,1986,4(2):123-133。
    61.赵建成,李秀芹,张慧中.十种藓类植物孢子萌发与原丝体发育的初步研究.干旱区研究,2002,19(1):32~38
    
    
    62.张朝晖,刘宁,钟本固等.培养基pH对苔藓孢子发育及原丝体生长的影响.CHINA,1997,(3-4):57-62。
    63. Wagner T.A., Cove D.J. & Sack F.D. A positively gravitropic mutant mirrors the wild-type protonema response in the moss Ceratodon purpureus.Planta, 1997, 202(2):149~154.
    64. Walker L.M.& Sack F.D., Microlilament distribution in protonema of the moss Ceratodon. Protoplasma, 1995, 189(3~4): 229~237.
    65. Kuznetsov O.A., Sxhwuchow J., Sack F.D.et al. Curvature induced by amyloplact magnetophoresis in protonema of the moss Ceratodon purpureus. Plant Physiol., 1999, 119(2): 645~650.
    66. Schnepf E. & Reinhard C. Brachycyres in Funaria protonema: Induction by abscisic acid and time structure. J. Plant Physiol., 1997, 151 (2):166~175.
    67. Lamparter T., Esxh H., Cove D. et al. Aphototropiic mutants os the moss Ceratodon purpureus with spectrally noemal and with spectrally dysfunctional phytochrome. Plant Physiol., 1995, 147(3~4): 426~434.
    68. Stark L.R., Castetter R.C. A gradient analysis of bryophyte populations in a desert mountain range. Memoirs of the New York Botanical Garden, 1987, 45:186-197.
    69. Stark L.R. Phenology and reproductive biology of Syntricia inermis (Bryopsida, Pottiaceae) in the Mojave Desert. The Bryologist, 1997, 100:13-27.
    70. Stark L.R., Mishler B.D., McLetchie D.N. Sex expression and growth rates in natural populations of the desert soil crustal moss Syntrichia caninervis. Journal of Arid Environments, 1998, 40:401-416.
    71. Stark L.R., Mishler B. D.,McLetchie D.N. The cost of realized sexual reptoduction: Assessing patterns of reproductive allocation and sporophyte aboration in a desert moss. America Journal of Botany, 2000, 87(11): 1599-1608.
    72. Bowker M.A., Stark L. R, McLetchie D. N, el al. Sex expression, skewed sex ratios, and microhabitat distribution in the dioecious desert moss Syntrichia caninervis (Pottiaceae).American Journal of Botany, 2000, 87(4): 517-526.
    73. Stark L.R., McLetchie D. N., Mishler B.D. Sex expression and sex dimorphism in sporophytic populations of the desert moss Syntrichia caninervis. Plant Ecology, 2001, 157(2): 181-194.
    74. Stark L.R. Widespread sporophyte abortion following summer rains in Mojave Desert population of Grimmia orbicularis. Bryolohist, 2001, 104(1): 115-125.
    75.李博(主编).生态学.北京:高等教育出版社,2000.
    
    
    76. Williams G.C. Adaptation and natural selection. Princeton, N.J.: Princeton University Press,1966
    77. Charnov E.L.& Krebs LR. On clutch size and fitness. Ibis,1974, 116: 217~219.
    78. Bell G. The costs of reproduction and their consequences. Am. Nat., 1980, 116: 45~76.
    79. Ehrlen J, Bisang I, Hedenas L. Costs of sporophyte production in the moss Dicranum polysetum. Plant Ecology, 2000, 149(2): 207~217.
    80. Mcletchie D N. Sex ratio from germination through maturity and its reproductive consequences in the liverwort Sphaerocarpos texanus. Oecologia, 1992, 92: 273~278.
    81. Irene B., Johan E. Reproductive effort and cost of sexual reproduction in female Dicranum polysetum. Bryologist, 2002, 105(3): 384~397.
    82. Kimmerer, R.W. Reproductive ecology of Tetraphis pellucida I. Population density and reproductive mode. Bryologist, 1991, 94:255~260.
    83.王中生,安树青,方炎明.苔藓植物生殖生态学研究.生态学报,2003,23(11):2444-2452.
    84. Ingerpuu, N., Vellak K, Kukk T. et al. Bryophyte and vascular plant species richness in boreo-nemoral moist forests and mires. Biodiversity and conservation, 2001, 10: 2153-2166.
    85. Vellak K. and Paal J. Diversity of bryophyte vegetation in some forest types in Estonia: a comparison of old unmanaged and managed forests. Biodiversity and Conservation, 1999, 8:1595~1620.
    86. Bewley J. D. Physiological aspects of desiccation tolerance. Annual Review of Plant Physiology, 1979, 30:195-238
    87. Bewley J.D., Krochko J.E. Desiccation-tolerance. In: Lange O.L. Nobel P.S. Physiology. Vol. 13. Berlin: springer-verlage, 1982,325~378.
    88. Proctor M.C.F. The physiological basis of bryophyte production. Botanical Journal of the Linnean Society, 1990, 104: 61-77.
    89. Proctor M.C.F. The bryophyte paradox: tolerance of desiccation, evasion of drought. Plant Ecology, 2000, 151: 41-49.
    90. Proctor M.C.F. Pattern of desiccation tolerance and recovery in bryophytes. Plant Growth Regulation, 2001, 3. 147-156.
    91. Oliver M.J.and Bewley J.D. Desiccation-tolerance of plant tissues: a mechchanistic overview. Horticulture Reviews, 1997, 18: 171~212.
    92. Smirnoff N. The carbohydrates of bryophytes in relation to desiccation tolerance. Bryologist, 1992, 18:
    
    185~191.
    93. Marschall M., Proctor M.C.F.& Smirnoff N. Carbohydrate composition and invertase activity of the leafy liverwort Porella platyphylla. New phytol., 1998, 138: 343~353.
    94. Seel W.E., Baker N.R., Lee J.A. Analysis of the decrease in phototsynthesis on desiccation of mosses from xeric and hydric environments. Physiol Plant, 1992, 86:451~458.
    95. Seel W.E., Hendry G.A.E& Lee J.E. Effects of desiccation on some activated oxygen processing enzymes and anti-oxidants in mosses.J. Exp.Bet. 1992, 43: 1031-0137.
    96. Seel W.E., Hendry G.A.E, Lee J. A. The combine effects of desiccation and irradiance on mosses from xeris and hydric habitats. J. Exp. Bot., 1992, 43(253): 1023~1030.
    97. Smirnoff N. The role of active ocygen in the response of plants to water deficit and desiccation.New Phytol., 1993, 125: 27~58.
    98. Bewley, J.D.&Oliver, M. J..Desiccation-tolerant in vegetative plant tissues and seeds: Protein synthesis in relation to desiccation and a potential role for protection and repair mechanisms. In: Osmond, C.B.&Somero,G.(eds),Water and life: A comparative analysis of water relationship at the organismic,cellular and molecular levels.Springer-Verlag, Berlin, 1992, Pp. 141-160.
    99. Oliver M.J. Influence of protoplasmic water loss on the control of protein synthesis in the desiccation-tolerant moss Tortula ruralis. Plant Physiology, 1991, 97:1501-151 I.
    100. Oliver M. J. Desiccation-tolerance in plant cells.A mini review. Physiol. Plant, 1996, 97: 779-787.
    101. Oliver M.J., Wood A.J. & O.'Mahony P.'To dryness and beyond'-preparation for the dried state and rehydration in vegetative desiccation-tolerant plants. Plant Growth Regul., 1998, 24: 193-201.
    102. Tuba Z. Csintain Z., Proctr M.G.F., Photosynthetic responses of a moss. Tortulassp. Ruralis, and the lichens Cladonia convoluta and C..furcate to water deficit and short period of desiccation, and their ecophysiological significance: a baseline study at present-day CO_2 concentration. New phytologist. 1996, 133: 353~361.
    103. Csintalan Z.S., Proctor, M.C.F. & Tuba Z. Chlorophyll fluorescence during drying and rehydration in the mosses Rhytidiadelphus loreus(Hew.) Warnst., Anomodon vitieulosus(Hedw.) Hook. & Tayl. And Grimmia pulvinata(Hedw.) Sm. Ann. Bot., 1999, 84: 235~244.
    104. Marschall M.& Proctor M.C.F. Desiccation tolerance and recovery of the leafy liverwort Porella platyphylla(L.)Pfeiff.: chlorophyll-fluorescence measurements. J. Bryol., 1999, 21: 261-267.
    105.曹日强,周志明.地钱、肾蕨和中山柏中的NADP硫氧还蛋白系统.植物生理学报,1989,15(2):
    
    205-209。
    106.陈蓉蓉,刘宁,杨松等.Ca_(2+)浓度对黔灵山喀斯特生增中苔藓植物生长的影响.贵州师范大学学报(自然科学版),1998,16(1):4~7.
    107.刘应迪,朱杰英,陈军等.3种藓类植物水分含簧与光合作用、呼吸作用和水势的关系.武汉植物学研究,2001,19(2):135~142.
    108.刘应迪,曹同,向芬等.高温胁迫下两种藓类植物过氧化物酶活性的变化.广西植物,2001,21(3):255~258.
    109.唐礼俊.杨思河,林继惠等.长白山藓类植物在失水干燥及再水化过程中的CO_2同化能力和呼吸速率的变化.应用与环境生物学报,1998,4(1):6-9.
    110. Leys J.F., Eldridge D.J. Influence of cryptogamic crust disturbance to wind erosion on sand and loam rangeland soils. Earth Surface Processes and Landforms, 1998, 23:963-974.
    111. Lesica P., Shelly J.S. Effects of cryptogamic soil crust on the population dynamics of Arabis fecunda(Brassicaceae). American Midland Naturalist, 1992, 128: 53-60.
    112. Belnap J, Harper KT (1995) Influence of cryptobiotic soil crusts on elemental content of tissue of two desert seed plants. Arid Soil Research and Rehabilitation 9: 107-115.
    113. Memmott E.L. Seasonal grazing impact on crytogramic crust in a cold desert ecosystem. J. Range Man., 1998, 51 (5): 547~550.
    114. Virtanen, R., Johnston A.E., Crawley M.J. et al.. Bryophyte biomass and species richness on the Park Grass Experiment, Rothamsted, UK. Plant Ecology, 2000, 151: 129-141.
    115. Zechmeister, H. G. & Moser D. The influence of agricultural land-use intensity on bryophyte species richness. Biodiversity and conservation, 2001,10:1609-1625.
    116. Gignac L.D.,. Niche structure, resource partitioning, and species interactions of mire bryophyte relative to climatic and ecological gradients in Western Canada. The bryologist, 1992, 95(4): 406-418.
    117. McCune B..&.Antos J.A. Epiphyte communities of Swan Valley, Montana. The bryologist, 1982,. 85(1):1-12.
    118. Odass A,M. Bryophyte vegetation and habitat gradients in Tikhaia bay region: Hooker island, Franz Josef lan(?) Arctic Russia. The bryologist, 1996, 99(4): 407-415.
    119. Timoney K.P. and Robinson A.L. Old-growth white spruce and balsam poplar forests of the Peace river lowland Wood Buffalo National Park, Canada: development,structure and diversity. Forest Ecology and Management 1996. 81: 179-196.
    
    
    120. Sadler K.D..& Bradfield G.E. Microscale distribution patterns of terrestrial bryophytes in a subalpine forest: the use of logistic regression as an interpretive tool. Community Ecology, 2000, 1(1): 57-64.
    121. René van der Wal, Suzan M. j. van Lleshout and Maarten J. J. E. Looner. Herbivore impact om moss depth, soil temperature and arctic plant growth. Polar Biology, 2000, 24: 29-32.
    122. Romero C. Reduced-impact logging effects on commercial non-vascular pendant epiphyte biomass in a tropical montana forest in Costa Rica. Forest Ecology and Management, 1999, 118: 117-125.
    123. Beesea W. J. and. Bryantb A.A..Effect of alternative silvicultural systems on vegetation and bird communities in coastal montane forests of British Columbia, Canada. Forest Ecology and Management, 1999, 115:231-242.
    124. Hedens L. Environmental factors potentially affecting character states in Pleurocarpous Mosses. The bryologist, 2000, 104(1): 72-9 I.
    125.吴玉环,高谦,程国栋等.生物土壤结皮的生态功能.生态学杂志,2002,21(4):41-45.
    126. Damman A.W.H. Distribution and movement of elements in ombrotrophic peat bogs. Oikos, 1978,.30: 480-495.
    127. Mahner N. Patterns in the growth and the accumulation of norganic constituents in the Sphagnum cover on ombrotrophic bogs in Scandinavia. Oikos, 1988,. 53:105-120.
    128. Maimer N. Constant or increasing nitrogen concentrations in Sphagnum mosses on mires in Southern Sweden during the last few decades. Aquilo Serie Bot., 1990, 28: 57-65.
    129. Aerts R., Wallén B, & Maimer N. Growth-limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. J. Ecol. 1992, 80:131-140.
    130. Evans R.D., Ehleringer J.R. A break in the nitrogen cycle in arid lands? Evidence from δ15N of soils. Oecologia, 1993, 94:314-317.
    131. Evans R.D., Belnap J. Long-term consequences of disturbance on nitrogen dynamics in an arid ecosystem, Ecology, 1999, 80: 150-160.
    132. Belnap J. Factors influencing nitrogen fixation and nitrogen release in biological soil crusts, In: Belnap J, Lange OL (eds) Biological Soil Crusts: Structure, Function, and Management, vol 150. Springer-Verlag, Berlin, 2001pp 241-261
    133. Shields L.M., Durrell L.W. Algae in relation to soil fertility. Botanical Review, 1964, 30:92-128.
    134. Rogers S L, Burns R G. Changes in aggregate stability, nutrient status, indigenous microbial populations, and seedling emergence, following inoculation of soil with Nostoc muscorum. Biology and Fertility of Soils, 1994,
    
    18: 209-215.
    135. DeFalco L.A. Influence of cryptobiotic crusts on winter annuals and foraging movements of the desert tortoise. In: Department of Biology. Colorado State University, Fort Collins, CO, 1995, p 48.
    136. Belnap J., Prasse R., Harper K.T. Influence of biological soil crusts on soil environments and vascular plants. In: Belnap J, Lange OL (eds) Biological Soil Crusts: Structure, Function, and Management, vol 150. Springer-Verlag, Berlin, 2001, pp 281-300.
    137. Lange W. Speculations on a possible essential function of the gelatinous sheath of blue-green algae. Canadian Journal of Microbiology, 1976, 22:1181-1185.
    138. Geesey G, Jang L. Extracellular polymers for metal binding. In: Ehrlich H.L., Brierley C.L.(eds) microbial mineral recovery. New York: McGrraw-Hill, 1990, pp223~247.
    139. Jauhiainen J, Vasand H & Silvola J. Nutrient concentration in Sphagna at increased N-deposition rates and raised atmospheric CO_2 concentrations. Plant Ecology, 1998, 138: 149~160.
    140. Samecka-Cymerman A, Kempers A J & Winter B. Metal and macroelement concentration and effect of nutrient addition in terrestrial bryophytes growing on serpentine msssifs in Lower Silesia, Poland. Environment Geology, 2002, 43: 79~86.
    141. Rühling., Rasmussen L., Pilegaard K.et al. Survey of atmospheric heavy metal deposition in the Nordic countries in 1985-monitored by moss analyses. Nord. Ministerrd NORD, 1987, 21, 1-44.
    142. Steinnes E.,Frantzen F.,Johansen O. et ai. Atmosfrisk nedfall av tungmetaller i Norge. Landsomfattende underkelse 1985. St. rogm. Forurensningsoverking Rapp., 1988, 334: 1-33.
    143. Steinnes E., Hanssen J. E., Rambk J.. P. et al. Atmospheric deposition of trace elements in Norway: temporal and spatial trends studied by moss analysis.Water Air Soil Pollution, 1994, 74:121-140.
    144. Gjengedal E. and Steinnes E. Uptake of metal ions in moss from artificial precipitation. Environm. Monit. Assessment, 1990, 14: 77-87.
    145. Eldridge, D. J. & Koen T.B. 1998. Cover and floristics of microphytic soil crusts in relation to indices of landscape health. Plant Ecology, 137:101-114.
    146.杨晓晖,张克斌,赵云杰.生物土壤结皮—荒漠化地区研究的热点问题.生态学报,2001,21(3):474-480
    147.凌裕泉,屈建军,胡攻等.沙面结皮形成与微环境变化.应用生态学报,1993,4:393-398。
    148. Li X.-R., Wang X.-P. & Zhang J.-G.. Microbiotic soil crust and its effect on vegetation and habitat on artificially stabilized desert dunes in Tengger Desert, North China. Biol. Fertil. Soils, 2002, 35: 147-154.
    
    
    149.王新平,李新荣等.沙坡头人工植被固沙区天然降水的入渗的分配研究,中国沙漠,2002,22(6):534-539。
    150.李守中,肖洪浪等.腾格里沙漠人工植被固沙区生物土壤结皮对降水的拦截作用.中国沙漠,2002,22(6):612~616.
    151. Hu C.X., Liu Y. D., Song L. R. et al.. Effect of desert soil algae on the stabilization of fine sands. Journal of Applied phycology, 2002, 14: 281-292.
    152.周志刚,程子俊,刘志礼.沙漠结皮中藻类生态的研究.生态学报,1995,15(4):385-391.
    153. Büdel B. Diversity and ecological crusts In: Progress in Botany Vol. 63 Berlin: Springer-Verlag Berlin Heidelberg 2002, 2002.
    154. Friedmann E.I., Lipkin Y., Ocampo-Paus R. Desert algae in the Negev (Israel). Phycologia, 1967, 6: 185-200.
    155. Komárimy Z.P. Soil algal growth types as edaphic adaptations in Hungarian forest and grass steppe ecosystems. Acta Bot. Acad. Sci. Hung., 1976, 22: 373-379.
    156. Golubic S., Friedmann E.I., Schneider J. The lithobiontic ecological niche, with special reference to microorgnisms. J. Sediment Petrol, 1981, 51: 475~478.
    157. Reynaud P.A., Lumpkin T,A. Microalgae of the Lanzhou (China) cryptogamic crust. Arid Soil Research and Rehabilitation, 1988, 2: 145-155.
    158.石庆辉,刘家琼,李玉俊.沙坡头铁路人工植被的演变与恢复措施.中国沙漠,1996,16(增刊1):258—29.
    159.李博.鄂尔多斯高原植被.李博文集编辑委员会,李博文集.北京:科学出版社,1999,263-316.
    160.贾志斌,孙旺,刘书润.内蒙古两个不同温度刑草原站点植物科属组成及生态类群对比.内蒙古大学学报自然科学版,2001,32(3):327-332.
    161. Ignatov M.S.,Hisatsugu A.& Ignatova E.A..Bryophyte flora of Altai Mountains.Ⅶ.Hypnaceae and related Pleurocarps with Bi-Or ecostate leaves. Arctor, 1996, 6:21-112.
    162. Howard A.C. & Anderson L.E. Mosses of Eastern North America. Volum 1 NewYork: columbia university press, 1981,345-348.
    163.傅星.中国北方沙区苔藓植物的研究—符藓植物分类、区系、生态[博士论文].沈阳:中国科学院沈阳应用生态研究所,1997.
    164.陈灵芝.生物多样性保护现状及其对策.中国科学院生物多样性委员会,生物多样性研究的原理与方法.北京:科学技术出版社,1994.
    165.贺金生,陈伟烈.陆地植物群落物种多样性的梯度变化特征.生态学报,1997,17(1):91-99.
    
    
    166.胡人亮,苔藓植物学,北京:高等教育出版社,1987,1-19.
    167. Zander R.H. Genera of the Pottiaceae: mosses of harsh environments. Bulletin of the Buffalo Society of Natural Sciences, 1993, 32:1-378.
    168. Redfearn P L. Jr. Tan B. C, & S. He. A newly updated and annotated checklist of Chinese Mosses. Journal Hattori Botanical Laboratary, 1996, 79:163-357.
    169.高谦(主编).中国藓类植物表(第二卷).北京:科学出版社,1996.
    170.陈邦杰,万宗铃,高谦等.中国苔藓植物属志(上册).北京:科学出版社,1963.21.
    171. Proctor M.C.P Diffusion resistances in bryophytes. In: Grace J., Ford E D, Jarvis P G.(eds) Plants and their atmospheric environment 21st Symposium of the British Ecological Society. Oxford: Blackwell, 1980, 129~229.
    172. Eldridge D.J. Cryptogams, Vascular plants, and soil hydrological relations: some preliminary results from the semi-Arid woodlands of eastern Australia. Great Basin Naturalist, 1993, 53(1): 48~58.
    173. Crowe J. H., Clegg J. S. Dry biological systems [M]. Academic Press, London, New Youk 1978, 53~73.
    174.赖明洲.苔藓植物学研究手册.台湾南投:台大实验林管理处,1995。
    175. Erikson, M. & G. E. Miksche. On the occurrence of lignin or polyphenols in some mosses and liverworts. Phyto-chemistry, 1974, 13: 2295~2299.
    176. Saito K.A. Monograph of Japanese pottiaceae (Musci). Journal of Hattori Botanicalt. Laboratary, 1986, 73: 177~208.
    177. Whittaker R H.Communities and ecosystems. 2nd ed. New York: Macmillan, 1975.
    178. Slack N. G. Species diversity and community structure in Bryophytes: New York State studies. New York: Albany, 1977.
    179. Magurran A. Ecological diversity and its measurement. Princeton: Princeton University press, 1988.
    180.李新荣.石庆辉,张景光,等.沙坡头地区人工植被演变过程中植物多样性变化的研究.中国沙漠,1998,18(Suppl.4):23~29.
    181.石庆辉.腾格里沙漠东南缘沙坡头地段铁路北侧人工植被演替动态.中国科学院沙坡头沙漠试验研究站年报(1991-1992),1993,89-107。
    182.石庆辉,刘家琼.沙坡头铁路两侧人工植被区天然植被动态.见:中国科学院沙坡头沙漠沙漠实验站编,沙漠生态系统研究。兰州:甘肃科学技术出版社,1995,105-115.
    183.冯金朝,刘立超,李金贵.腾格里沙漠东南缘沙地凝结水的形成特点及其生态环境意义.中国沙漠,
    
    1996,16(增刊1):70-75。
    184. Thones s.& Rudolph H. Tehna. 1983, 13: 201.
    185.鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000.
    186.郑玉桂,马青枝.内蒙古阿拉善荒漠区64中牧草氮基酸成分的分析研究.内蒙古农牧学院学报,1988.9(1):107~112.
    187.李小梅,赵俊琳,孙立广.南极地区苔藓剖面中地球化学元素的营养运营特征.生态学报,2001,21(7):1079~1083.
    188. Oechel W. C. & Sveinbjornsson B. Primary production processes in arctic bryophytes at Barrow, Alaska. In: Vegetation and Production Ecology of an Alaskan Arctic Tundra. Ecological Studies 29. New York: Springer-Verlag, New York Inc., 1978, 269~298.
    189. Skre O. & Oechel W. C. Moss production in a black spruce Picea mariana forest with permafrost near Fairbanks, Alaska, as compared with two permafrost-free stands. Holarctic Ecol., 1979, 2: 249~254.
    190. Brown D.H. Mineral nutrition. In Bryophyte ecology. Ed. A.J.E. Smith. London: Chapman and Hall, 1982, pp 384-444.
    191. Steinnes E. A critical evaluation of the use of naturally growing moss to monitor the deposition of atmospheric metals. Sci. tot. Environm., 1995, 160-161: 243-249.
    192. Lewis Smith R.I. Summer and winter concentrations of sodium, potassium and calcium in some maritime Antarctic cryptogams. J. Ecol., 1978, 66: 891-909.
    193. Brown D. H. and Bates J .W. Bryophytes and nutrient cycling. Bot. J. Linn. Sot., 1990, 104: 129-147.
    194. Bates J. W. and Farmer A. M. An experimental study of calcium acquisition and its effects on the calcifuge moss Pleurozium schreberi. Ann. Bot., 1990, 65: 87-96.
    196. van Tooren B.F., van Dam D. and During H.J. The relative importance of precipitation and soil as sources of nutrients for Calliergonella cuspidata in chalk grassland. Funct. Ecol. 1990, 4: 101~107.
    196. kland T., kland H. and Steinnes E. Element concentrations in boreal forest moss Hylocomium splendens: variation related to gradients in vegetation and local environmental factors. Plant and soil, 1999, 209: 71~83.
    197. Angelone M, Vaselli O, Bini C, Coradossi N. Pedogeochemical evolution and trace elements availability to plants inophiolitic soils. Sci. Total Environ. 1993, 129: 291~309.
    198. Lee B. D., Graham R. C., Laurent T. E. et al. Spatial distributions of soil chemical conditions in a serpentinitic wetland and surrounding landscape. Soil sci. 2001,65: 1183~1196.
    
    
    199. V. Van. den Driessche R,. Prediction of mineral nutrient status of trees by foliar analysis. Bot. Rev., 1974, 40: 347-394.
    200. Ingestad T. Nitrogen stress in birch seedlings. II. N, K, P, Ca, and Mg nutrition. Physiol. Plant., 1979, 45: 149-157.
    201. Koerselman W. & Meuleman A.F.M. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J. Appl. Ecol., 1996, 33: 1441-1450.
    202. Verhoeven J.T,A., Koersehnan W. & Meuleman A.F.M..Nitrogen- or phosphorus-limited growth in herbaceous, wet vegetation: relations with atmospheric inputs and management regimes. Tree, 1996, 11: 494-497.
    203. Ater M, Lefebvre C., Gruber W., Meerts P. A phytogeo-chemical survey of the flora of ultramafic and adjacent normal soils in North Morocco. Plant Soil, 2000, 218: 127-135.
    204. Stewart G. R. and Lee T.A. The role of proline accutnulation in halophytes. Planta, 1974, 120: 279~289.
    205.汤章城,逆境条件下植物游离脯氨酸的积累及其可能的生态学意义,植物生理学通讯),1984,(1):15~26.
    206. Chen Y. Roles of carbohydrates in desiccation tolerance and memberane behavior in maturing seed. Crop Sci.,1990, 30: 971~975.
    207. Tucker E.B., Costerton J.W., Bewley J.D. The ultrastructure of the moss Tortula ruralis on recovery from desiccation. Canadian Journal of Botany, 1975, 53: 94-101.
    208. Oliver M J, Wood AJ (1997) Desiccation tolerance in mosses. In: Koval T (ed) Stress-Inducible Processes in Higher Eukaryotic Cells. Plenum Press, New York, pp 1-26
    209. Romney E.M., Wallace A.& Hunter R.B. Plant response to nitrogen fertilization in the northern Mojave Desert and its relationship to water manipulation. In: West N.E. & Skujins J.(Eds), Nitrogen in Desert Ecosystems, Stroudsburg, PA: Dowden, Hutchinson, and Ross., 1978, pp. 232~243.
    210.郭志清.我国沙漠地区沙丘的易溶性盐含量分布特征.中国沙漠,1987,7(4):50-62
    211. Kalapos T. and Mzsa. Juniper shade enables terricolous lichens and mosses to maintain high photochemical efficiency in a semiarid temperate sand grssland. Photosynthetica. 2001, 39 (2): 263~268.
    212.段争虎,刘新民.屈建军.沙坡头地区土壤结皮形成机理的研究.干旱区研究,1996,13(2):31-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700