安徽泥河铁矿深部找矿综合地质地球物理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长江中下游成矿带是我国东部重要的铁、铜多金属矿产资源基地,使用现代地球物理探测技术对该成矿带典型矿床深部结构进行探测,以矿体(容矿岩体)与围岩物性差异为基础,建立地质-地球物理找矿模型进行隐伏矿体定位预测,对认识深部矿床成因、总结找矿方法和深部找矿的实践具有重要意义。
     本文主要立足于全国深部矿产资源勘查现状,选择长江中下游典型深部隐伏矿床—泥河玢岩铁矿为个案,从深部找矿的角度出发,进行地质研究和综合地球物理探测研究。总结了泥河铁矿区域成矿地质背景,分析了泥河铁矿成矿规律,在此基础上,对泥河铁矿进行了重、磁、电综合地球物理探测,并对数据进行了处理、反演和解释,最后,通过重、磁3D反演与电磁测深3D成像,结合成矿模式建立了泥河铁矿3D地质地球物理模型,并提出了泥河铁矿深部综合找矿模式。通过研究,本文取得了如下认识及成果:
     ⑴总结了泥河铁矿区域成矿地质背景,系统分析了该区的成矿作用与成矿规律。根据前人研究总结了泥河式“玢岩铁矿”的成矿模式:泥河铁矿床是与燕山期早白垩世闪长玢岩有关的火山—次火山岩浆热液矿床,矿床的形成受火山构造、基底膏盐层等控制和影响。
     ⑵对泥河矿区1:5万重力数据和1:1万高精度地面磁测数据进行了二阶趋势分析、化极、解析延拓等处理,得到了矿区局部布格重力异常图和局部化极ΔT磁异常图。二者联合解释发现,位场分离后的重磁局部高值异常区吻合极好,体现明显的“重磁同高”特征。
     ⑶对泥河矿区进行了多种电磁测深法(AMT、CSAMT、TEM)探测,并对数据进行了去噪、静态效应校正、近场源校正等处理,对处理后的数据进行了二维、一维反演。结合地质资料和重、磁数据,对矿区电磁探测结果进行了解释,电磁反演剖面的电性特征刻画了砖桥组火山岩地层分布,结合重磁高值异常,分辨出闪长玢岩体的隆起部位和基本形态,预测出矿体的赋存位置。
     ⑷在已有地质资料和钻孔约束的条件下,采用人机交互的方式,重磁联合反演了泥河铁矿体的3D模型。反演结果反映了矿体的三维空间分布,直观显示出矿体的位置、形态及走向等特征。从反演结果可知矿体基本走向与地层走向一致,为北东向。磁铁矿体埋深-600~-1100m范围内,主要位于西南部,黄铁矿主要集中在矿区的东北部,中部少量的硬石膏,黄铁矿和石膏矿埋深相对于磁铁矿较浅。
     ⑸将28条AMT测深数据的2D反演结果进行3D插值平滑处理,建立了矿区地下1500m范围的3D电性模型。通过对不同取值范围的3D电阻率结构体的显示,结合地质及重磁资料可以推断不同岩体分布的范围及形态,深部视电阻率值大于150ohm.m的3D电性模型在深度为-500~-800m存在的向上隆起形态与重磁3D反演结果吻合较好,推测为基岩侵入部位及形态,指示出这些隆起部位为有利的成矿区。
     ⑹在总结前人对泥河矿区成矿地质规律研究的基础上,结合本文地球物理特征的研究,尝试建立了泥河铁矿的3D地质地球物理模型,探讨了泥河铁矿深部综合找矿模式。认为:在正确成矿理论和成矿模式的指导下,重、磁、电等多种地球物理探测手段组合运用,多物性、多参数综合解释的方法对隐伏矿体进行定位和预测是深部找矿行之有效的模式。
Middle-Lower Yangtze Valley is an important poly-metallic mineral deposits base ineastern China. Prospecting the deep structure in typical deposits by advanced geophysicalsurvey methods, forming geological and geophysical model to prognosis of concealed oresbased on the differences between ore-body and surrounding rock is necessary for findingout the origin of deep deposit and strengthening different geophysics technologies inmineral exploration.
     In this paper, based on the present situation of deep exploration of mineral resources,we study the geologic and geophysical survey of Nihe porphyrite iron deposit, which is atypical concealed deposit in Middle-Lower Yangtze Valley. Summarized the regionalgeological background and mineralizing setting, analyzed the metallogeny, formed themetallogenic model of Nihe iron deposit; and did integrative geophysical prospecting suchas gravity, magnetic and electromagnetic prospecting, did data processing, inversion andinterpretation to every method; finally, did gravity and magnetic3D joint inversion andresistivity3D imaging, formed3D geologic-geophysical model of Nihe iron deposit, putforward prospecting model of Nihe iron deposit. After the study, this paper shows thepractice and cognition as follows:
     ⑴Summarized geological background of mineralization and metallogeny of Niheiron deposit, established metallogenic model of Nihe porphyrite iron according topredecessor’s research achievements. Nihe iron deposit is a volcanic-subvolcanicmagmatic hydrothermal deposit which in connection with Yanshanian Early Cretaceousdiorite porphyrite, the form of deposit is controlled by volcanic structure and basement saltbed.
     ⑵Did second-order tendency analysis, reduction to the pole and analyticalcontinuation to large scale gravity data and high-accuracy ground magnetic survey data ofNihe deposit, obtained the local bouguer gravity anomaly map and reduction magneticanomaly map. Combined the both results, the region of high value of gravity and magneticcoinciding good.
     ⑶Conducted multiple magnetotelluric sounding method (AMT,CSAMT,TEM)prospecting, did denoising, static correction, near-field sources correction, and didtwo-dimension or0ne0dimension to the correction data. Interpreted the results ofmagnetotelluric prospecting combined with geology, gravity and magnetic data, thecharacteristics of resistivity profile traced the distribution of zhuanqiao bridge volcanicrock formation, identified the uplift position and shape of diorite porphyrite, predicted thepossibility position of ore-body.
     ⑷Constraint with geological data and well log, did gravity and magnetic3D joint inversion to Nihe iron ore-body by human-computer interaction model. The result ofinversion reflected the distribution of ore-body in three dimension, displayed the position,shape and tendency of ore-body objectively. It shows the tendency of ore-body isconsistent with course of seam, both are north-east. The depth of magnetite in thewest-south part extending from600m to1100m underground, pyrites are mainly in thenorth-east part, anhydrite is mainly in the middle and lower than magnetite.
     ⑸Interpolated and smoothed in3D with the results of28AMT profiles, establishedthe3D resistivity model of mining area beyond the1500m under the ground. Accordingthe different range of resistivity data volume, inferred the distribution of different rockmass combined with gravity and magnetic. The3D model of resistivity higher than150ohm.m shows the shape and position of uplift, which is in accordance with the3Dresults of gravity and magnetic, we inferred it as the position of rock body, and it in favorof mineralization.
     ⑹Based on the research of metallogenic regularity by predecessor, combining withthe study to the geophysical in this paper, established3D geologic-geophysical model ofNihe iron-ore deposit, discussed the prospecting model: guided by metallogenic theory,multiple geophysical exploration method (such as gravity, magnetic, electromagnetic)associated use, comprehensive interpretation by multiple physical property and parameteris an efficient deep prospecting model.
引文
[1]滕吉文.强化开展地壳内部第二深度空间金属矿产资源地球物理找矿、勘探和开发[J].地质通报,2006.25(7):767~771.
    [2]董树文,李廷栋.SinoProbe—中国深部探测实验[J].地质学报,2009.83(7):895~909.
    [3]陈永清,夏庆霖.金属矿产勘查技术发展现状与思考[J].地球物理学展,2002.17(3):540~550.
    [4] Malehmir, A., Tryggvason, A., Juhlin, C., et. al.. Seismic imaging and potential field modeling todelineate structures hosting VHMS deposits in the Skellefte Ore District, Northern Sweden [J].Tectonophysics,2006.426:319~334.
    [5] Malehmir, A., Thunehed and Tryggvason, A. The paleoproterozoic Kristineberg mining area,northern Sweden: Results from integrated3D geophysical and geological modelling, andimplication for targeting ore deposits [J]. Geophysics,2009.74(1):B9~B22.
    [6]刘光鼎,郝天珧.应用地球物理方法寻找隐伏矿[J].地球物理学报,1995.38(6):850~854.
    [7]宁芜研究项目编写小组.宁芜玢岩铁矿[M].北京:地质出版社,1978.1~196.
    [8]常印佛,刘湘培,吴言昌.长江中下游铁铜成矿带[M].北京:地质出版社,1991.1~379.
    [9]邓晋福,刘翠,冯艳芳,戴圣潜,杜建国,吴民安,童劲松,周肃,苏尚国,吴宗絮,姚孝德,吴雪峰.安徽省庐枞与滁州盆地火山岩岩石学特征与Fe—Cu成矿的关系[J].地质学报,2011.85(5):626~635.
    [10]周涛发,范裕,袁峰,张乐骏,马良,钱兵,谢杰.长江中下游成矿带火山岩盆地的成岩成矿作用[J].地质学报,2011.85(5):712~730.
    [11] Pretorius C C, Trewick W F, Fourie A, Irons C. Application of3-D seismic to mine planning at VaalReefs gold mine, number10shaft, Republic of South Africa[J]. Geophysics,2000.65(6):1862~1870.
    [12] Stuart G W, Jolley S J, Polome L G. Application of3-D seismic attributes analysis to mine planning:Target gold deposit, South Africa[J]. The Leading Edge2000.19(7):736~742.
    [13] White D, Boerner D, Wu J J, et al. Mineral exploration in the Thompson nickel belt, Manitoba,Canada, using seismic and controlled-source EM methods[J]. Geophysics,2000.65(6):1871~1881.
    [14] Milkereit B, Berrer E K, King A R, et al. Development of3-D seismic exploration technology fordeep nickel-copper deposits-A case history from the Sudbury basin, Canada[J]. Geophysics,2000.65(6):1890~1899.
    [15]肖骑彬,蔡新平,徐兴旺.浅层地震与MT联合技术在隐伏金属矿床定位预测中的应用—以新疆哈密图拉尔根铜镍矿区为例[J].矿床地质,2005.24(6):676~683.
    [16]吕庆田,廉玉广,赵金花.反射地震技术在成矿地质背景与深部矿产勘查中的应用:现状与前景[J].地质学报,2010.84(6):771~787.
    [17] Australia Geodynamics Cooperative Research Center. Annual Report1998/1999.1999.
    [18] John Wilson. LITHOPROBE: Dancing Elephants&Floating Continents-The story of Canadabeneath your feet[M]. Published by Key Porter Books,2003.
    [19] Heinson G S, Direen N G, Gill R M. Magnetotelluric evidence for a deep-crustal mineralizingsystem beneath the Olympic Dam iron oxide copper-gold deposit, southern Australia[J].GeologicalSociety of America,2006.34(7):573~576.
    [20] Grant N, Rodney K.A progressive geophysical exploration strategy at the Shea Creek uraniumdeposit [J].The Leading Edge,2008.52~63.
    [21]严加永,吕庆田,孟贵祥,赵金花,邓震,刘彦.基于重磁多尺度边缘检测的长江中下游成矿带构造格架研究[J].地质学报,2011.85(5):900~914.
    [22]严加永,吕庆田,孟贵祥,赵金花.铜陵矿集区中酸性岩体航磁3D成像及对深部找矿方向的指示[J].矿床地质,2009.28(6):838~849.
    [23] Douglas W. Oldenburg, Yaoguo Li, and Robert G. Ellis. Inversion of geophysical data over acopper gold porphyry deposit: A case history for Mt. Milligan[J]. Geophysics,1997.62(5):1419~1431.
    [24]田文法,郝俊杰,严加永,李春章,赵新卫.综合地球物理方法在邯邢式铁矿深部找矿中的应用[J].地球物理学进展,2010.25(4):1442~1452.
    [25] Peter G. Lelièvre, Colin G. Farquharson, and Charles A. Hurich. Joint inversion of seismictraveltimes and gravity data on unstructured grids with application to mineral exploration[J].Geophysics,2012.77(1):K1~k15.
    [26]杜建国,常丹燕.长江中下游成矿带深部铁矿找矿的思考[J].地质学报,2011.85(5):687~698.
    [26]林刚,许德如.在宁芜玢岩铁矿深部寻找大冶式铁矿的探讨—以宁芜南段为例[J].矿床地质,2010.29(6):427~436.
    [28]董树文,马立成,刘刚,薛怀民,施炜,李建华.论长江中下游成矿动力学[J].地质学报,2011.85(5):612~625.
    [29]吕庆田,杨竹森,严加永,徐文艺.长江中下游成矿带深部成矿潜力、找矿思路与初步尝试[J].地质学报,2007.81(7):865~881.
    [30]吕庆田,侯增谦,史大年,赵金花,徐明才,柴铭涛.铜陵狮子山金属矿地震反射结果及对区域找矿的意义[J].2004.23(3):390~398.
    [31]王大勇,李桐林,高远,方含珍,赵广茂.CSAMT法和TEM法在铜陵龙虎山地区隐伏矿勘探中的应用[J].吉林大学学报(地球科学版),2009.39(6):1134~1140.
    [32]马光.鄂东南铜绿山铜铁金矿床地质特征、成因模式及找矿方向[D].长沙:中南大学,2005.
    [33]严加永,吕庆田,孟贵祥,朱晓颖.三维可视化及物探新技术在矿山接替资源勘查中的应用—以铜陵狮子山矿田为例[J].地球学报,2008.29(1):116~120.
    [34]吴明安,汪青松,郑光文,蔡晓兵,杨世学,狄勤松.安徽庐江泥河铁矿的发现及意义[J].地质学报,2011.85(5):802~809.
    [35]赵文广,吴明安,张宜勇,王克友,范裕,汪龙云,魏国辉,车英丹.安徽省庐江县泥河铁硫矿床地质特及成因初步分析[J].地质学报,2011.8(5):789~801.
    [36]覃永军,曾键年,曾勇,马振东,陈津华,金希.安徽南部庐枞盆地罗河—泥河铁矿田含矿辉石粗安玢岩锆石LA-ICP-MS U-Pb定年及其地质意义[J].地质通报,2010.29(6):851~862.
    [37]周涛发,范裕,袁峰.长江中下游成矿带成岩成矿作用研究进展[J].岩石学报,2008.24(8):1665~1678.
    [38]吴其斌,王君恒,崔霖沛.勘查隐伏金属矿的新方法[J].地质与勘探,1999.35(6):44~47.
    [39]胡惠民.大比例尺成矿预测方法[M].北京:地质出版社.1995.1~196.
    [40]张均,陈守余,张玉香.隐伏矿体定位预测中的几个关键问题[J].贵金属地质,1998.7(4):293~300.
    [41]彭省临,邵拥军.隐伏矿体定位预测研究现状及发展趋势[J].大地构造与成矿学,2001.25(3):329~334.
    [42]徐兴旺,蔡新平.隐伏矿床预测理论与方法的研究进展[M].地球科学进展,2000.15(1):76~79.
    [43]翟裕生,姚书振,林新多.长江中下游地区铁铜矿床[M].北京:地质出版社.1992.1~120.
    [44]唐永成,吴言昌,储国正,邢凤鸣,王永敏,曹奋扬,常印佛.安徽沿江地区铜金多金属矿床地质[M].北京:地质出版社.1998.60~85.
    [45]周涛发,岳书仓,袁峰,刘晓东,赵勇.长江中下游两个系列铜、金矿床及其成矿流体系统的氢、氧、硫、铅同位素研究[J].中国科学(D辑),2000.30(增刊):122~128.
    [46]毛景文,Holly S,杜安道,周涛发,杨燕雄,李永峰,藏文栓,李进文.长江中下游地区铜金(钼)矿Re—Os年龄测定及其对成矿作用的指示[J].地质学报,2004.78(1):121~131.
    [47]吕庆田,侯增谦,杨竹森,史大年.长江中下游地区的底侵作用及动力学演化模式:来自地球物理资料的约束[J].中国科学(D辑),2004.3(49):783~794.
    [48] Pan Y M and Dong P. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, eastcentral China: Intrusion and wall rock—hosted Cu—Fe—Au, Mo, Zn, Pb, Ag deposits[J]. OreGeology Reviews,1999.15(4):177~241.
    [49]裴荣富,李进文,王永磊,王浩琳.长江中下游成矿带构造岩浆侵位的接触构造体系与成矿[J].地质与资源,2011.20(06):401~412.
    [50]任启江,王德滋,刘孝善,杨荣勇,孙冶东,邱检生.安徽庐极地区巴家滩和矾山一石马滩岩体的时代和岩浆物质来源[J].科学通报,1991.10:771~773.
    [51]周涛发,范裕,袁峰,宋传中,张乐骏,钱存超,陆三明,David RC.庐枞盆地侵入岩的时空格架及其对成矿的制约[J].岩石学报,2010.26(9):2694~2714.
    [52]任启江,刘孝善,徐兆文,邱德同,胡文煊,方昌泉,阮惠础,董火根,李兆麟,吴启志.安徽庐极中生代火山构造洼地及其成矿作用[M].北京:地质出版社.1991.1~206.
    [53]任启江,王德滋,徐兆文,董火根,潘龙泉,杨荣勇,方昌泉,胡进安.安徽庐橄火山—构造洼地的形成、演化及成矿[J].地质学报,1993.67(2):131~145.
    [54] Buddington,A.E&Lindsley,D.H.,Iron-titanium oxide minerals and synthetic cguivalents[J].Jourof Petrol,1964.5:310~357.
    [55]吴明安,张千明,汪祥云.安徽庐江龙桥铁矿[M].北京:地质出版社.1996.
    [56]吴明安,侯明金,赵文广,安徽省庐江地区成矿规律及找矿方向[J].资源调查与环境,2007.28(4):269~277.
    [57]张寿稳.安徽省纵阳县拔茅山铜矿地质特征[J].资源调查与环境,2007.28(3):193~197.
    [58]汤家富,陆三明,李建设,韦导忠.安徽庐枞火山岩盆地与邻区基底构造变形、形成演化及其对矿床分布的控制[J].岩石学报,2010.26(9):2587~2597.
    [59]刘昌涛.安徽庐枞盆地硫铁矿床地质特征及控矿因素[J].化工地质,1994.16(3):163~171.
    [60]周涛发,范裕,袁峰,陆三明,尚世贵,David Cooke, Sebastien Meffre,赵国春.安徽庐枞(庐江-枞阳)盆地火山岩的年代学及其意义[J].中国科学(D辑),2008.38(11):1342~1353.
    [61]王元龙,张旗,王焰.宁芜火山岩的地球化学特征及意义[J].岩石学报,2001.17(4):565~575.
    [62]闫峻,陈江峰,谢智,杨刚,喻钢,钱卉.长江中下游地区蝌蚪山晚中生代玄武岩的地球化学研究:岩石圈地幔性质与演化的制约[J].地球化学,2005.34(5):455~470.
    [63]袁峰,周涛发,范裕,陆三明,钱存超,张乐骏,段超,唐敏慧.庐枞盆地中生代火山岩的起源、演化及形成背景[J].岩石学报,2008.24(8):1691~1702.
    [64]曾华霖.重力场与重力勘探[M].北京:地质出版社,2005.189~234.
    [65]穆石敏,申宁华,孙运生.区域地球物理数据处理方法及其应用[M].长春:吉林科学技术出版社,1990.
    [66] Pawlowski R S, Hansen R O. Gravity anomaly separation by Wiener filtering[J]. Geophysics,1990.55(5):539~548.
    [67] Pawlowski R S. Preferential continuation for potential-field anomaly enhancement[J]. Geophysics,1995.60(2):390~398.
    [68]王四龙,宁书年,李郴.用三维趋势面分析分离位场异常[J].煤田地质与勘探,1993.21(5):60~64.
    [69]徐世浙,张研,文百红.切割法在陆东地区磁异常解释中的应用[J].石油物探,2006.45(3):316~318
    [70]许德树,曾华霖.优选延拓技术及其在中国布格重力异常图处理上的应用[J].现代地质,2000.14(2):215~222.
    [71]侯遵泽,杨文采.中国重力异常的小波变换与多尺度分析[J].地球物理学报,1997.40(1):85~95.
    [72]杨文采,施志群.离散小波变换与重力异常多重分解[J].地球物理学报,2001.44(4):534~541.
    [73]邱宁,何展翔,昌彦君.分析研究基于小波分析与谱分析提高重力异常的分辨能力[J].地球物理学进展,2007.22(1):112~120.
    [74] AGOCS W B. Least-squares residual anomaly determination[J]. Geophysics,1951.16(4):686~696.
    [75] SIMPSON S M., Jr. Least-squares polynomial fitting to gravitational data and density plotting bydigital computers[J]. Geophysics,1954.19(2):255~269.
    [76] OLDHAM C H G., SUTHERLAND D B. Orthogonal polynomials: their use in estimating theregional effect[J]. Geophysics,1955.20(2):295~306.
    [77] FAJKLEWICZ Z. The use of cracovian computation in estimating the regional gravity[J].Geophysics,1959.24(3):465~478.
    [78]张愉才.正交多项式趋势面分析[J].物探化探计算技术,1980.(2):84~97.
    [79]羊春华.筛选-趋势分析法分离区域异常与局部异常[J].物探与化探计算技术,2005.29(2):167~169.
    [80] PETERS L J. The direct approach to magnetic interpretation and its practical application[J].Geophysics,1949.14(3):290~320
    [81]曾华霖,许德树.最佳向上延拓高度的估计[M].地学前缘,2002.9(2):499-503.
    [82]陈乐寿,王光锷.大地电磁测深法[M].北京:地质出版社,1990.1~246.
    [83]樊战军,卿敏,于爱军,李文良,徐德利,陈孝强,吕喜旺.EH4电磁成像系统在金矿勘查中的应用[J].物探与化探,2007.31(10):72~76.
    [84]沈远超,申萍,刘铁兵,李光明,曾庆栋.EH4在危机矿山隐伏金矿体定位预测中的应用研究[J].地球物理学进展,2008.23(1):559~567.
    [85]詹少,沈云发,杨正刚.EH4成像技术在广西某危机矿山外围深部找矿中的应用[J].工程地球物理学报,2009.6(4):470~474.
    [86]孙燕,刘建明,曾庆栋,张作伦,张松,汪在聪,褚少雄,叶杰,于昌明.综合地球物理方法在某多金属矿区找矿中的应用[J].地球物理学进展,2010.25(6):2096~2101.
    [87]何继善.可控源音频大地电磁法[M].长沙:中南工业大学出版社,1998.1~198.
    [88]柳建新,王浩,程云涛,童孝忠.CSAMT在青海锡铁山隐伏铅锌矿中的应用[J].工程地球物理学报,2008.5(3):274~278.
    [89]石昆法.可控源音频大地电磁理论与应用[M].北京:科学出版社,1999.1~82.
    [90]刘红涛,杨秀瑛,于昌明,叶杰,刘建明,曾庆栋,石昆法.用VLF、EH4和CSAMT方法寻找隐伏矿—以赤峰柴胡栏子金矿床为例[J].地球物理学进展,.2004.19(2):276~285.
    [91] Basokur A T, Rasmussen T M, Kaya C, Altun Y, Aktas K. Comparison of induced polarization andcontrolled source audio magnetotellurics methods for massive chalcopyite exploration in avolcanic area[J]. Geophysics,1997.62(4):1087~1096.
    [92] Anderson K E, Dickinson J E, Edge R D, Macy J P, Maraj S, Sternberg B K, Stokes P J, Thurner SM. Controlled source audio magnetotelluric (CSAMT) geophysical investigation in the upper SanPedro basin, southeastern Arizona[J]. Abstracts with Programs Geological Society of America,2008.40(6):129~137.
    [93]于昌明.CSAMT方法在寻找隐伏金矿中的应用[J].地球物理学报,1998.41(1):133~138.
    [94]李茂,杜建农,余水泉.CSAMT法在松辽盆地四平地区铀矿勘查中的应用.物探与化探[J],2006.30(4):298~302.
    [95]杨瑞西,马振波,司法祯,李志勋,许国丽.CSAMT法在铝土矿勘查中的应用[J].工程地球物理学报,2008.5(4):400~407.
    [96]刘国印,燕长海,赵健敏,王纪中,李中明.微重力法与可控源音频大地电磁法组合在豫西寻找隐伏铝土矿中的应用[J].地质通报,2008.27(5):641~648.
    [97]陈清礼,张翔,胡文宝.南方碳酸盐岩区大地电磁测深曲线静态偏移校正[J].江汉石油学报,1999.21(3):30~32.
    [98]阎述,陈明生.频率域电磁测深的静态偏移及校正方法[J].石油地球物理勘探,1996.3(2):238~247.
    [99]雷达,孟小红,王书民,李汝传,方慧,赵富刚.复杂地形条件下的可控源音频大地电磁测深数据二维反演技术及应用效果[J].物探与化探,2004.28(4):323~326.
    [100]牛之琏.时间域电磁法原理[M].长沙:中南工业大学出版社,1992.1~241.
    [101] Rodi W L, Mackie R L. Nonlinear conjugate gradients algorithm for2D magnetotelluricinversion[J]. Geophysics,2001.66(1):174~187.
    [102] Polak,E. Computational methods in optimization: A unified approach: Academic Press.1971.
    [103] Constable S C.Parker R L.Constable C G Occam’s inversion:a practical algoritlm for generatingsmooth modes from electromagnetic sounding data[J]. Geophysics,1987,52(2):289~300.
    [104] Katsuble T J, Williamson M A. Shale petrophysics and basin charge modeling; in CurrentReasearch, Part D[J]. Geological Survey of Canada,1994.94~1D:179~188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700