石油储层微孔道纳米减阻机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油储层微孔道的纳米减阻技术是一种降低油田注水压力的新技术,其对于确保和提高油田注水量、进而提高低渗油田原油采收率具有十分重要的意义。尽管室内实验和现场试验结果都表明这种技术可以取得显著的减阻效果,但由于内在机制尚不清楚,使得这项技术的发展和应用受到了严重的制约。本文在此背景下,结合微流动方面的研究成果,针对石油储层微孔道结构的特点,提出了基于纳米滑移效应的减阻机理,并对其进行了较系统的实验验证。具体工作包括:
     1)提出了以纳米滑移效应为核心的石油储层微孔道纳米减阻机理。纳米颗粒与水分子发生竞争吸附,取代水化层在储层微孔道壁面形成强吸附层。该吸附层具有纳米结构和超疏水特性,当水流从纳米层表面流过时,产生了纳米滑移效应,使流道的有效直径超过实际直径,从而使流量提高、流动阻力下降。
     2)根据滑移长度的定义和多孔介质的基本渗流定律,建立了纳米颗粒吸附多孔介质的水流滑移模型,给出了滑移长度和渗透率之间的数学关系。该模型将宏观效应和微观特征联系起来,为纳米减阻机理提供了理论依据。
     3)基于对储层微孔道特性和纳米颗粒表面特性的研究结果,分析了疏水纳米颗粒在地层微孔道中的微观受力特征,归纳和推导了纳米颗粒与孔壁的各种微观作用能公式,并进行了数值计算。计算结果表明,静电引力作用是纳米颗粒克服疏水阻力作用的主要因素,多氢键作用是颗粒牢固吸附在储层微孔道壁面的关键。这一结果为纳米颗粒取代水化层形成纳米颗粒强吸附层提供了理论依据。
     4)采用岩心吸附和SEM扫描相结合的方法,观测了纳米颗粒在岩心表面的吸附特征和分布状态。结果表明,纳米SiO_2颗粒比TiO_2、ZnO颗粒与岩石表面的吸附力更强;颗粒在岩心表面的吸附特征受水膜的影响较小,但储层微孔道壁面的粗糙度对吸附特征有较大影响,粗糙度越大,纳米颗粒吸附层的厚度越大。
     5)利用岩心吸附法和纳米粉体压片法构建了微纳米结构表面,测试了这些表面的接触角和滚动角,采用SEM观测了表面的微观结构。结果表明,这些表面具有微纳米复合结构,其润湿性由强亲水变为超疏水,这说明疏水纳米颗粒的吸附使岩石表面具有了超疏水特性。通过数值计算分析了影响发生去水湿现象的一些规律,揭示了岩石润湿性变化的机制。
     6)基于纳米滑移效应的减阻机理开发了多种纳米增注剂样品,通过岩心流动实验评价了这些样品的减阻效果。结果表明,2种修饰剂改性的纳米SiO_2和两种粒径的ShU2样品均具有明显的减阻效果,水相渗透率平均增幅达24%~59%。
     7)模拟地层温度和压力条件,通过岩心流动实验对不同预处理工艺、以及纳米液注入量、纳米液浓度和关井时间等参数进行了优化,确定了矿场试验技术参数,制定了选井原则。设计了3口井的试验方案,开展了2口注水井的纳米减阻矿场试验。试验结果显示,保持注水量不变,注水压力平均降幅为4~12.5MPa。
     8)在模拟纳米颗粒吸附毛细管内水的流动特性的基础上,采用LBM模拟了纳米液驱替岩心流动实验结果,反演了纳米颗粒吸附引起的实验岩心微孔道壁面的滑移长度。
Drag reduction by hydrophobic nanoparticles (HNPs) is a new technology to enhance water injection or decrease injection pressure in reservoir micro-porous tube. It is of great importance to enhance water injection and then to improve oil recovery for low permeability reservoir. Although results from laboratory and field tests have showed that significant drag reduction could be achieved through this technology, the development and application of the technology is severely constrained because of its unclear mechanism. A drag reduction mechanism based on slip effect on nano-structural interface is proposed according to the characters of porous structure in reservoir and validated by a series of experiments. Specific tasks and their accomplishments are given below.
     1) Based on slip effect on nano-structural interface, a drag reduction mechanism is proposed. After HNPs are poured into formation, emulative adsorption appears between HNPs and water molecules, then HNPs are adsorbed on porous walls and hydrophobic nanoparticles layers (HNPLs) are formed to replace hydrated film. These layers have both micro- and nano-structures' and superhydrophobic properties, and when a driving pressure is applied to the water stream, the slip effect takes place in reservoir microchannels, which leads to larger effective diameter. As a result, the flow rate increases and the flow resistance is greatly reduced.
     2) According to the definition of slip length and basic fluid dynamics law in the porous medium, a slippage model of uniform porous media is introduced with HNPs-adsorbed boundary, and the relative formulas between slip length and permeability is derived. This model combines macroscopical effect with microscopical features , provides a theoretical guidance and makes a good interpretation to the drag reduction mechanism of HNPs.
     3) Based on the characteristics of the porous structure of reservoirs and the surface characteristics of HNPs, microcosmic force analysis of HNPs in reservoir microchannels is performed, and some formulas are deducted to calculate the relative microscopic interaction energy of HNPs with porous walls. The results show the electrostatic attraction is the main factor for HNPs to overcome resistance force, and multi Hydrogen bonding attraction is a key role for HNPs to adsorb firmly on rock porous walls, which can provide a theoretical explaination for HNPLs to be formed instead of hydrated film on porous walls in reservoir.
     4) core adsorbing HNPs method and observation method by Scanning Electron Microscope (SEM) , are used to study the adsorption character and distribution state of HNPs on core surfaces. The results show that the adsorptive power of HNPs SiO_2 is stronger than that of HNPs TiO_2 or ZnO on core surfaces, furthermore the influence of the hydrated film on absorption character is of lesser significance than that of the influence of surface roughness of microporous walls. With walls of increasing roughness, the HNPs-adsorbed layers increase in thickness correspondingly.
     5) Both core adsorbing HNPs method and pressed slice with nanoparticles method are adopted to construct micro- and nano-structural surfaces with HNPs directly. The contact angles and rolling angles of water drops on these surfaces are tested, and SEM or FESEM is used to observe the microstructure of them. The results show that these surfaces are irregular micro- and nano-structural, air-solid compound interfaces and their wettability is changed from strong hydrophobic to superhydrophobic. It suggests that the adsorption of HNPs changes the wettability of core surfaces from hydrophobic to superhydrophobic. Some rules impacting on dewetting phenomenon are studied and the mechanism of wettability change are revealed on the core surface by numerical calculation.
     6) Several samples of injection-argumented HNPs are developed based on the drag reduction mechanism proposed in this paper, and core displacement experiments are used to evaluated drag-reducing effect. The results show that the drag-reducing effect of these samples is evident, which are the HNPs SiO_2 modified by two kinds of hydrophobic material and the one, named ShU2, with two kinds of diameter, and the water-phase effective permeability of cores is increased by 24%~59%.
     7) Core displacement experiments are conducted to determine a pretreatment technique, and to optimize injection volume of HNPs fluid, concentration of HNPs, shut-in time and other parameters under the conditions of reservoir temperature and pressure. Based on the experimental results, the principles to choose the well for filed trial are established, and the technical parameters of filed trial are optimized. Trial projects of three wells were designed, and filed trials of two wells were implemented. The results showed that the injection pressure decrease by 4 to 12.5 MPa while previous water injection rate is maintained.
     8) Based on the successful simulation of water flow through the HNPs-adsorbed capillary, Lattice Boltzmann method is introduced to simulate the results of HNPs-adsorbed core displacement experiment, and then slip length was deduced on the microporous walls of HNPs-adsorbed core samples.
引文
[1]刘静.微米/纳米尺度传热学[M].北京:科学出版社,2001
    [2]李战华,崔海航.微尺度流动特性[J].机械强度,2001,23(4):476
    [3]Lenormand R,Zareone C.Invasion percolation in an etched network measurement of a fractal dimension[J].Phys.Rev.Lett.,1985,54:2226
    [4]Pit R,Hervet H,Leger L.Direct experimental evidence of slip in hexadecane:solid interfaces[J].Physical Review Letters,2000,85(5):980
    [5]Tretheway D C,Meinhart C D.Apparent fluid slip at hydrophobic microchannel walls[J].Phys.Fluids,2002,14(3):L9
    [6]Cecile C B,Barrat J L,Lyderic B,et al.Low-friction flows of liquid at nanopatterned interfaces[J].Nature Material Letters,2003,2:237
    [7]陶然,权晓波,徐建中.微尺度流动研究中的几个问题[J].工程热物理学报,2001,22(5):575
    [8]EringenA.Simple microftuids[J].Int.J.Eng.Sci.,1964,2:205
    [9]李勇,江小宁,周兆英等.微管道流体的流动特性[J].中国机械工程,1994,5(3):24
    [10]江小宁.微量流体测量与控制系统实验研究[D].北京:清华大学精密仪器与机械学系,1996
    [11]王补宣,彭晓峰,胡杭英.V形微槽内沸腾液体的流动阻力特性[J].工程热物理学报,1998,19(3):345
    [12]姜明健,罗晓惠,刘伟力.水在微尺度槽道中单相流动和换热研究[J].北京联合大学学报,1998,12(1):71
    [13]凌智勇,丁建宁,杨继昌等.微流动的研究现状及影响因素[J].江苏大学学报,2002,23(6):1
    [14]李战华,周兴贝,朱善农等.非极性小分子有机液体在微小管中的流量特性[J].力学学报,2002,34(3):432
    [15] Wilding P, Pfaher J, Zemel J N, et al. Manipulation and flow of biological fluids in straight channels micromachined in silicon[J], Clin. Chem., 1994, 40: 43
    [16] Peng X F, Peterson G P, Wang BX. Frictional flow characteristics of water flowing through rectangular microchannels[J], J. Exp. Heat Transfer, 1995, 7: 249
    [17] Churaev N, Sobolev V, Somov A. Slippage of liquids over hydrophobic solid surfaces[J]. J. Colloid and Interface Sci., 1984, 97 (22): 574
    [18] Paranjape BV. Friction at the solid interface in a fluid flow[J]. Phys. Lett. A, 1989, 137 (6): 285
    [19] Pfahler J, Harley J, Bau H, et al. Gas and liquid flow in small channels[J]. DSC, 1991, 32: 49
    [20] Vinogradova O I. Slippage of water over hydrophobic surfaces[J]. Int. J. Miner. Process, 1999, 56: 31
    [21] Yu D, Warrington R O, Barron R, et al. An experimental and theoretical investigation of fluid flow and heat transfer in microtubes[J]. Proceedings of ASME/JSME Thermal Engineering Joint Conference, Maui, HI, 1995
    [22] Jiang X N, Zhou Z Y, Huang X Y, et al. Laminar flow through microchannels used for microscale cooling systems[J]. Proceedings of 97 IEEE/CPMT Electronic Packaging Technology Conference, 1997
    [23] Choi ChangHwan, Westin K J A, Breuer K S, et al. To slip or not to slip-water flows in hydrophilic and hydrophobic microchannels[J]. IMECE2002-33707
    [24] Choi C, Westin J A, Breuer K S. Apparent slip flows in hydrophilic and hydrophobic microchannels[J]. Phys. Fluids, 2003, 15 (10): 2897
    [25] Zhu Y, Granick S. Apparent slip of Newtonian fluids past adsorbed polymer layers[J]. Macromolecules, 2002, 35: 4658
    [26] Lauga E, Brenner M P, Stone H A. Microfluids: the no-slip boundary condition[J]. handbook of experimental fluid dynamics, 2005, 15: 1
    [27]Jin S,Huang P,Park J,et al.Near-surface velocimetry using evanescent wave illumination[J].Exp.Fluids,2004,37:825
    [28]Watanabe K,Yanuar,Udagawa H.Drag reduction of Newtonian fluid in a circular pipe with highly water-repellent wall[J].J.Fluid.Mech.,1999,381:225
    [29]Fukuda K,Tokunaga J,Nobunaga T,et al.Frictional drag reduction with air lubricant over a super-water repellent surface[J].J.Mar.Sci.Tech.,2000,5:123
    [30]Ou J,Blair P,Rothstein J P.Laminar drag reduction in microchannels using ultrahydrophobic surfaces[J].Physics of Fluids,2004,16(12):4635
    [31]张大有.关于Air cavity craft的研究及关键技术分析[J].武汉造船,1997,116(5):21
    [32]张雪花,胡钧.固液界面纳米气泡的研究进展[J].化学进展,2004,16(5):673
    [33]Ou J,Perot B,Rothstein J P.Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces[J].Phys.Fluids,2005,17:103606
    [34]Wenzel R N.Resistance of solid surfaces to wetting by water[J].Ind.Eng.Chem.,1936,28:988
    [35]CassieA,Baxter S.Wettability of poroussurface[J].Trans.Faraday Soc.,1944,40:546
    [36]任露泉,王淑杰,周长海等.典型植物非光滑疏水表面的理想模型[J].吉林大学学报,2006,36(2):97
    [37]郭兴林,谢琼丹,赵宁等.仿生高分子的研究进展[J].化学进展,2004,16(6):1023
    [38]FukushimaH,Seki S,NishikawaT,et al.Microstructure,wettability,and thermal sability of semifluorinated self-assembled monolayers(SAMs) on gold[J].J.Phys.Chem.,B,2000,104:7417
    [39]Nishino T,Meguro M,Nakamae K,et al.The lowest surface free energy based on—CF_3 alignment[J].Langmuir,1999,15:4321
    [40]Blossey R.Self-cleaning surface-virtual realities[J].Nature Materials,2003,2:301
    [41]江雷.从自然到仿生的超疏水纳米界面材料[J].基础科学,2005,23(2):4
    [42]高雪峰,江雷.天然超疏水生物表面研究的新进展[J].物理,2006,35(7):559
    [43]Barthlott W,Neinhuis C.Purity of the sacred louts or escape from contamination in biological surfaces[J].Planta,1997,202:1
    [44]翟锦,李欢军,李英顺等.碳纳米管阵列超双疏性质的发现[J].物理,2002,31(8):483
    [45]Furmidge C G L.Studies at phase interfaces,Ⅰ.The sliding of liquid drops on solid surfaces and a theory for spray retention[J].J.Colloid.Sci.,1962,17:309
    [46]金美花.超疏水纳米界面材料的制备及研究[D].长春:吉林大学,2004:37
    [47]王庆军,陈庆民.超疏水膜表面构造及构造控制研究进展[J].高分子通报,2005(2):63
    [48]郭志光,刘维民.仿生超疏水性表面的研究进展[J].化学进展,2006,18(6):721
    [49]郑黎俊,乌学东,楼增等.表面微细结构制备超疏水表[J].科学通报,2004,49(4):1691
    [50]孙骐,吴广明,周斌等.疏水型SiO_2气凝胶薄膜的制备[J].功能材料,2002,33(4):430
    [51]Wei C,Fadeev A Y,Hsieh M C,et al.Ultrahydrophobic and ultralyophobic surfaces:some comments and examples[J].Langmuir,1999,15:3395
    [52]肖剑荣,徐慧,邓超生等.含氮氟化类金刚石(FN-DLC)薄膜的研究:(Ⅲ)疏水性能分析[J].物理学报,2007,56(5):2998
    [53]沈平平,俞稼镛.大幅度提高石油采收率的基础研究[M].北京:石油工 业出版社,2001:205-211
    [54]Boukadi F,Bemani A,Rumhy M.Threshold pressure as a measure of degree of rock wettability and diagenesis in consoledated omani limestone cores[J].Mar.Petrol.Geol.,1998,15:33
    [55]艾德生,李庆丰,戴遐明.用透过高度法测定粉体的润湿接触角[J].理化检验-物理分册,2001,37(3):110-112
    [56]Lord D L,Bucldey J S.An AFM study of the morphological features that affect wetting at crude oil-water-mica interfaces[J].Colloids and Surfaces,A,2002,206:531
    [57]Standl S,Haavik J,Blokhus AM.Effect of polar organic components on wettability as studied by adsorption and contact angles[J].J.Petrol.Sci.Eng.,1999,24:131
    [58]Hiraga T,Nishikawa O,Nagase T et al.Morphology of intergranular pores and wetting angles in pelitic schists studied by transmission electron microscopy[J].Contrib.Mineral.Petrol.,2001,141:613
    [59]张继超,曹绪龙.聚硅材料改善低渗透油藏注水效果实验[J].油气地质与采收率,2003,10(4):59
    [60]陈兴隆,秦积舜,李治平.表面亲油纳米二氧化硅改变岩石表面润湿性的研究[J].油田化学,2005,22(4):328
    [61]曹炳阳,陈民,过增元.纳米通道内液体流动的滑移现象[J].物理学报,2006,55(10):5305
    [62]Thompson PA,Troian SM.A general boundary condition for liquid flow at solid surface[J].Nature,1997,389:360
    [63]徐超,何雅玲,王勇.纳米通道滑移流动的分子动力学模拟研究[J].工程热物理学报,2005,26(6):912
    [64]蒋开,陈云飞,庄苹等.纳米尺度边界滑移的分子动力学模拟研究[J].摩擦学学报,2005,25(3):238
    [65]Fang H P,Fan L W,Wang Z W,Lin Z F,Qian Y H.Studying the contact point and interface moving in a sinusoidal tube with lattice boltzmann method[J].Int.J.Mod.Phys.B,2001,15:1287
    [66]Li Ding,Di Qinfeng,Li Jingyuan et al.Large Slip Length over a Nanopattemed Surface[J].Chin.Phys.Lett.,2007,24(4):1021
    [67]杨胜来,魏俊之.油层物理学[M].北京:石油工业出版社,2004
    [68]狄勤丰,顾春元.复杂结构微孔道表面水流滑移特征的形成方法与应用[J].中国力学学会学术大会2007,(CCTAM2007):536
    [69]郭尚平,黄延章,胡雅礽.仿真微观模型及其在油藏工程中的应用[J].石油学报,1990,11(1):49
    [70]郭尚平,黄延章.物理化学渗流微观机理[M].北京:科学出版社,1990:100
    [71]刘卫东,李立众,童正新等.大庆油田ASP复合驱油体系微观渗流机理[J].重庆大学学报,2000,23(增):119
    [72]范玉平,刘其成,赵庆辉.分子膜驱油技术[M].北京:石油工业出版社,2001:38
    [73]张凤莲.低渗透油藏表面活性剂驱油数值模拟[J].大庆石油学院学报,2007,31(1):31
    [74]王国锋.活性水驱油数值模拟研究[J].石油天然气学报,2005:27(6):920
    [75]王健,罗平亚,张国庆.表面活性剂驱组分输运过程模拟[J].石油勘探与开发,2001,28(3):77
    [76]王德民,程杰成,吴军政等.聚合物驱油技术在大庆油田的应用[J].石油学报,2005,26(1):74
    [77]隋军,廖广志,牛金刚.大庆油田聚合物驱油动态特征及驱油效果影响因素分析[J].油田化学,1999,18(5):17
    [78]朱怀江,朱颖,孙尚如等.预交联聚合物微凝胶调驱剂的应用性能[J].石油勘探与开发,2004,31(2):115
    [79]张立娟,任国友,岳湘安等.粘弹性流体在油藏孔隙模型中的流动阻力特性[J].大庆石油学院学报,2004,18(1):17
    [80]冯慧洁,聂小斌,徐国勇等.砾岩油藏聚合物驱微观机理研究[J].油田化 学,2007,24(3):232
    [81]宋立新.交联聚合物驱数学模型研究[J].特种油气藏,2003,10(4):38
    [82]汪伟英.注水井解堵增注技术综述[J].钻采工艺,1995,18(4):35
    [83]曲占庆,齐宁,王存强等.低渗透油层酸化改造新进展[J].油气地质与采收率,2006,13(6):93
    [84]王宝峰,汪绪刚,蒋卫东等.低渗欠注井酸化增注技术研究与应用[J].河南石油,2002,16(2):13
    [85]朱桂林,李根生.滨南油田低渗欠注井酸化增注技术研究与应用[J].石油大学学报,2003,27(2):70
    [86]曲乾生,张钦希.酸化磁化振荡增注工艺的应用[J].油气采收率技术,1998,5(3):29
    [87]顾春元,景步宏,时维才等.沙埝低渗砂岩油藏增注技术研究[J].小型油气藏,2004,9(4):26
    [88]许志赫,吴均,姚飞等.柳北低渗区注水井压裂增注技术[J].石油钻采工艺,2007,29(3):49
    [89]唐德亮,金佩强译.在注水井中进行水压裂改善水驱动态—创新方法[J](SPE101156).国外油田工程,2007(7):23
    [90]胡博仲,刘顺生,杨宝君.解除近井地层污染技术[J].石油钻采工艺,1995,17(4):72
    [91]顾春元.砂岩酸压增注技术研究[J].石油勘探与开发,2003:78
    [92]李黎,刘平礼,赵立强等.酸压技术在新场复杂砂岩气藏的应用[J].海洋石油,2006,26(2):33
    [93]唐海军,杲春.江苏油田砂岩酸压增注技术研究与应用[J].小型油气藏,2007,12(3):62
    [94]李根生,马加计,沈晓明等.高压水射流处理地层的机理及试验[J].石油学报,1998,19(1):97
    [95]顾春元,虞建业,任永林等.超声波采油技术研究与应用[J].钻采工艺,2003,26(6):59
    [96]尹文波,王平,董怀荣.大功率超声波采油成套装备的研制及应用[J].石油机械,2007,35(5):1
    [97]唐敬珍,方晓红.表面活性剂降压增注技术在低渗透油田应用研究[J].化工时刊,2004,18(1):51
    [98]邱少玉,陈建民,唐华等.利用表面活性剂降压增注提高采收率技术[J].河南石油,2005,19(6):52
    [99]苏咸涛,闰军,吕广忠等.纳米聚硅材料在油田开发中的应用[J].石油钻采工艺,2002,24(3):48
    [100]孙治国,韦良霞,郭慧等.聚硅纳米材料在纯梁中低渗透油田的增注试验研究[J].石油天然气学报,2006,28(1):105
    [101]蔡国华,王先荣.高压注水对油田套管的损坏及防治分析[J].石油机械,2001,29(3):32
    [102]顾春元,狄勤丰,王掌洪等.N80钢在地层水中的应力腐蚀行为研究[J].石油学报,2006,27(2):141
    [103]杨灵信,郭文军,徐艳伟等.聚硅纳米材料降压增注技术在文东油田的应用[J].江汉石油学院学报,2003,25(增):105
    [104]陆先亮,吕广忠,栾志安等.纳米聚硅材料在低渗透油田中的应用[J].石油勘探与开发,2003,30(6):110
    [105]贺承祖,华明琪.油气藏中水膜的厚度[J].石油勘探与开发,1998,25(2):75
    [106]JU Binshan,Dai Shugao,Luan Zhian et al.A study of wettability and pcrrneability change caused by adsorption of nanometer structured polysilicon on the surface of porous media[J].SPE 77938,Asia Pacific Oil and Gas Conference,2002:915
    [107]易华,孙洪海.聚硅纳米材料在油藏注水井中降压增注机理研究[J].哈尔滨师范大学自然科学学报.2005,21(6):66
    [108]陈兴隆,秦积舜,李治平.表面亲油纳米二氧化硅改变岩石表面润湿性的研究[J].油田化学.2005,22(4):328
    [109]陈兴隆,秦积舜,李治平.聚硅悬浮液对有机物堵塞的溶解作用[J].西南石油学院学报.2006,28(3):92
    [110]Liu Xinghui and Civian F.Charackerization and prediction of formation damage in two-phase flow system[J].SPE25429,U.S.A.,March,1993:21
    [111]Gu Chunyuan,Di Qinfeng,Fang Haiping,et al.Slip velocity model of porous walls absorbed by hydrophobic nanoparticles SiO_2[J].Journal of Hydrodynamics,2007
    [112]狄勤丰,顾春元,施利毅,方海平等.疏水性纳米SiO_2增注剂的降压作用机理[J].钻采工艺,2007,30(4):91
    [113]Rowlinson J S and Widom B.Molecular Theory of Capillarity[M],Oxford Univercity Press,Oxford,1989
    [114]李鼎.人工纳米结构表面的去浸润和对流体的超弱阻尼.博士论文,2007
    [115]Barrat J L and Bocquet L.Influence of wetting properties on hydrodynamics boundary conditions at a fluid/solid interface[J].Faraday Discuss,1999,112:119
    [116]Carman P C.Fluid flow through a granular bed[J].Transactions of the Institution of Chemical Engineers,1937,15:150
    [117]顾春元,狄勤丰,施利毅等.纳米粒子构建表面的超疏水性能实验研究[J].物理学报,2008,57(5)
    [118]马新仿,张士诚,郎兆新.孔隙结构特征参数的分形表征[J].油气地质与采收率,2005,6
    [119]Luna-Xavier J L,Biurgeat-Lami E.The role of initiation in the synthesis of silica/poly(methylmethacrylate) nanocomposite latex particles through emulsion polymerization[J].Colloid Polymer Sci.,2001,279:947
    [120]戚栋明,包永忠,黄志明等.纳米SiO_2粒子静电吸附引发剂及引发甲基丙烯酸甲酯乳液聚合[J].高校化学工程学报,2006,20(2):245
    [121]任俊,沈健,卢寿慈等.颗粒分散科学与技术[M].北京:化学工业出版 社,2005
    [122]张立德.纳米材料和纳米结构[M].北京:科技出版社,2001.
    [123]骆锋,阮建明,万千等.微乳液法制备纳米二氧化硅粉末工艺的研究[J].硅酸盐通报,2004,5:48
    [124]何东铭,张超灿.纳米SiO_2水溶液制备、改性及应用性能研究[J].武汉理工大学学报,2003,25(2):8
    [125]黄可知,熊焰等.亲油型纳米SiO_2的制备及其分散稳定性研究[J].华中科技大学学报,2002,30(12):53
    [126]毋伟,张京玲,郭锴,陈建峰等.阴极电泳涂料用改性超细二氧化硅的表征[J].涂料工业,2004,34(4):48
    [127]谢海安,戴宏程.超微细二氧化硅的改性研究及其应用[J].湖北化工,2001,5:23
    [128]高濂,孙静,刘阳桥.纳米粉体的分散及表面改性[M].北京:化学工业出版社,2003
    [129]Halsey G..Physical adsorption of non-uniform surfaces[J].J.Chem.Phys.,1948,16(10):931
    [130]Gee M L,Healy T W,White L R,et al.Hydrophobicity effects in the condensation of water films on quartz[J].J.Colloid.Interface.Sci.,1990,140(2):4502465
    [131]谭兴文.液体表面张力系数与温度的关系的实[J].西南师范大学学报(自然科学版),2007,32(4):115
    [132]任文辉,林智群,彭道林.液体表面张力系数与温度和浓度的关系[J].湖南农业大学学报,2004,30(1):77
    [133]段世铎,谭逸玲.界面化学[M].北京:高等教育出版社,1990
    [134]崔国文.表面与界面[M].北京:清华大学出版社,1990:93
    [135]郑忠,李宁.分子力与胶体的稳定与聚沉[J].北京:高等教育出版社,1995
    [136]邱冠周,胡岳华,王淀左.颗粒间相互作用与细粒浮选[M].长沙:中南工业大学出版社,1993:28
    [137]Hiemenz P C.Principles of colloid and surface chemistry[J],Marcel Dekker Inc.,1977
    [138]Morrisom编著.表面化学物理(赵壁英等译)[M].北京:北京大学出版社,1984
    [139]胡纪华等编著.胶体与界面化学[M].广州:华南理工大学出版社,2002
    [140]秦积舜,沈平平,陈兴隆等.悬浮液中固相颗粒吸附系数的研究[J].石油勘探与开发,2004,31(增):40
    [141]陈兴隆,李治平,秦积舜.多孔介质内流体扩散系数的计算方法[J].新疆石油地质,2005,26(6):687
    [142]SunT L,Lin F,Gao X F and Jiang L.Bioinspired surfaces with special wettability[J].Acc.Chem.Res.,2005,38:644
    [143]王庆军,陈庆民.超疏水表面的制备技术及其应用[J].高分子材料科学与工程,2005,21(2):6
    [144]徐建海,李梅,赵燕等.具有微纳米结构超疏水表面润湿性的研究[J].化学进展,2006,18(11):1425
    [145]何更生编.油层物理[M].北京:石油工业出版社,1999
    [146]李琴.相对渗透率评定储集层岩石表面润湿性[J].石油实验地质,1996,18(4):454
    [147]鄢捷年.一种定量测定油藏润湿性的新方法[J].石油勘探与开发,2001,28(2):83
    [148]阙洪培译.多孔介质润湿性测定—核磁共振松驰法[J]国外油田工程,1995,6:1
    [149]韩学辉,戴诗华,王雪亮等.油藏润湿性评价方法研究[J].勘探地球物理进展,2005,28(1):19
    [150]Amott E.Observations relating to the wettability of porous rock[J].AIME 219,156
    [151]吴非,狄勤丰,顾春元等.疏水纳米SiO_2降低岩心流动阻力效果的室内实验研究[J].钻采工艺,2008,31(2):102-110
    [152]黄延章.低渗透油层非线性渗流特征[J].特种油气藏,1997,4(1):56
    [153]陈懋章编.粘性流体动力学基础[M].北京:高等教育出版社,2002
    [154]郭照立,郑楚光,李青等.流体动力学的格子Boltzmann方法[M].武汉:湖北科学技术出版社,2002:152
    [155]Guo Zhaoli.Lattice Boltzmann model for incompressible flows through porous media[J].Phys.Rev.,2002,E66:036304
    [156]Dardis O,McCloskey J.Lattice Boltzmann scheme with real numbered solid density for the simulation of flow in porous media[J],Phys.Rev.E,57:4834-7(1998)
    [157]许友生.一种新的模拟渗流运动的数值方法[J].物理学报,2003,52:626
    [158]钱吉裕,李强,宣益民等.确定多孔介质流动参数的格子Boltzmann方法[J].工程热物理学报,2004,25(4):655
    [159]Qian Y H,d'Humires D,Lallemand P,Lattice BGK models for Navier-Stokes equation[J].Europhys.Lett.,1992,17:479
    [160]高瑞民.活性SiO_2纳米粉体改善油田注水技术研究[J].油田化学,2004,21(3):248

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700