水稻主要病虫害胁迫遥感监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过对浙江省和黑龙江省6个县(市、区)5种水稻病虫害的观测,运用多种数据处理方法,选择对水稻病虫害响应的敏感光谱区域和谱段,构建病虫害胁迫指数,探索对水稻不同病虫害的危害等级分类和色素含量、病害严重度指数、虫情指数等危害指标的估算方法研究,运用QuickBird影像提取稻飞虱危害面积和产量损失评估。研究内容和研究结果,概述如下:
     (1)受病虫害胁迫水稻的光谱特征变化分析
     除稻飞虱和穗颈瘟引起的倒伏外,水稻植株受病虫害胁迫后,光谱反射率在可见光范围内上升,在近红外和短波红外区域内下降。水稻在受到病虫害胁迫后,“红边”和“蓝边”均发生蓝移,向短波方向偏移10nm左右;“绿峰”和“红谷”则均发生红移,向长波方向偏移8nm左右。
     (2)水稻病虫害响应敏感的光谱波段选择及病虫害胁迫光谱指数的构建
     运用连续统去除法、光谱敏感度分析法和农学参数-光谱相关系数法等三种方法,对健康的和受病虫害胁迫水稻的原始光谱、反对数光谱、一阶、二阶微分光谱进行分析,从各种变换形式的光谱数据中筛选出对病虫害响应敏感的光谱区域为460-520 nm、530-590 nm、620-680 nm和红690-730 nm,并构建了22个水稻病虫害胁迫光谱指数.
     (3)水稻不同病虫害危害等级的识别方法研究
     运用聚类分析CA、概率神经网络PNN、学习矢量量化LVQ神经网络和支持向量分类机SVC(C-SVC)等四种分类方法,开展对水稻不同病虫害的危害等级识别研究,并从分类精度、使用方便程度和消耗时间三个方面来评判分类方法的优劣。其中,分类精度排序为PNN网络(93.5%)>C-支持向量分类机(90.5%)>聚类分析CA(84.3%)>LVQ网络(83.2%),使用方便程度来排序为PNN网络>C-SVC>LVQ网络>聚类分析CA,消耗时间排序为C-SVC     (4)色素含量和病害严重度指数的估算方法研究
     运用多元逐步回归分析MSR、偏最小二乘回归法PLS、径向基函数RBF神经网络、后向传播BP神经网络、支持向量回归机SVR等五种回归模型,以及现有的14个光谱植被指数、17个高光谱三边特征参数和本研究提出的22个病虫害胁迫指数的简单线性回归、二次多项式回归模型等多种估算方法,对受病虫危害的叶片色素含量和稻胡麻斑病病害严重度指数进行估算方法研究,并使用相关系数R、方差分析F检验值、均方根误差RMSE、平均绝对误差MAE和平均相对误差MRE等五个指标,对不同的估算方法进行综合评价.
     (5)基于QuickBird影像的稻飞虱危害评估研究
     通过目视解译提取研究区内的土地利用类型专题图,选择水稻种植典型样区.研究发现:倒伏的、收割的和受稻飞虱危害而尚未倒伏的稻田与健康稻田相比,其影像色调及NDVI、EVI均发生了巨大的变化。对典型样区内受稻飞虱不同危害状况的稻田进行矢量化,结合实地调查的产量损失数据,确定2005年夏秋之际爆发的稻飞虱,对当年晚稻的产量造成的损失比例为40%。
The specific objectives of this research were threefold. The first objective was to select the spectral region and wavebands, which were sensitive to rice disease and insect stress, and to develop the stressed spectral indices with the multiform data processing methods through five species of rice disease and insect in Zhejiang Province and Heilongjiang Province. The second objective was to explore the discrimination of different endangered categories of rice disease and insect and estimation of harm indices such as pigment content and disease severity index. The third was to extract the endangered paddy area caused by rice planthopper and assess the yield loss from the QuickBird images. The summary study content and result were presented as follows:
     (1) Change analysis of hytperspectral characterization caused by rice disease and insect stress
     When disease and insect stressed rice, with the exception of lodged rice caused by rice planthopper and rice panicle blast, the hyperspectrl reflectance increased in the visible region and the hyperspectrl reflectance decreased in the near infrared and shortwave infrared regions. The red edge and blue edge also shifted toward the short spectral region about 10 nanometers. The green peak and red trough also shifted toward the longer waveband 8 nanometers.
     (2) Selection of sensitive spectral region and development of stressed spectral indices responding to rice disease and insect stress
     The raw spectra, inverse logarithmatic spectra, first-order and second-order derivative spectra of healthy and non-healthy rice leaves caused by disease and insect was analyzed with three analysis methods, which are the continuum removal, spectral sensitivity analysis and correlation coefficients between agricultural parameters and spectral reflectance. The sensitive spectral regions, which were more sensitive to rice disease and insect, were located in the blue region (460 -520 nm), green region (530-590 nm), red region (620 - 680nm) and the red edge region (690-730 nm) in despite of different transformation spectral reflectance. And then 22 stress indices of disease and insect were developed in this study.
     (3) Study of discrimination method on the endangered categories of different rice disease and insect stress
     Cluster analysis (CA), probabilistic neural network (PNN), learning vector quantization neural network (LVQ) and C-support vector classification (C-SVC) machine were utilized to discriminate the endangered categories of different rice disease and insect stress consisting of rice brown spot, rice Aphelenchoides besseyi Christie, rice panicle blast, rice planthopper and rice leaf roller. Three indices such as classification accuracy, convenient utilization degree and consuming time were applied to assess the above-mentioned four discrimination methods. The successive order of classification accuracy were PNN (93.5%),C-SVC (90.5%),CA (84.3%) and LVQ (83.2%). The successive order of convenient utilizations degree were PNN>C-SVC>LVQ>CA, the anterior the position, the higher the convenient utilization degree. The successive order of consuming time were C-SVC     (4) Study of estimation method on the foliar pigment content and disease severity index (DSI)
     Three kinds of regression methods were utilized to estimate the foliar pigment (i.e. total chlorophyll) content of rice Aphelenchoides besseyi Christie and disease severity index (DSI) of rice brown spot. The one kind was data mining techniques consisting of radial basis function (RBF) neural network, back-propagation (BP) neural network and support vector regression (SVR) machine. The second was multiple regression analysis including the multiple stepwise regressions (MSR) and partial least squares (PLS) regression. The third was simple linear regression and binomial regression equation, which were composed by the 14 existing spectral vegetation indices, 17 hyperspectral feature parameters and 22 stress indices of disease and insect developed in this study. The correlation coefficient (R), analyze of variance (F test), root mean square of prediction error (RMSE), mean absolute error (MAE) and mean relative error (MRE) were applied to assess comprehensively the above mentioned three kind of regression methods.
     (5) Study on yield loss assessment due to rice planthopper based on QuickBird images
     The thematic map of land use was extracted from the fused wavelet image by visual interpretation, and the sample rice planting area was chosen from the thematic map of land use. The image tones, normalized difference vegetation index (NDVI) an ratio vegetation index (RVI) of lodged rice, harvested paddy field and potential endangered rice changed heavily compared with healthy rice. The yield loss caused by rice planthopper in 2005yr accounted for 40% of the total rice production through quantifying the different endangered categories of paddy field and combining with the data of rice yield loss from one farmer to the others.
引文
1.蔡成静,王海光,安虎,史延春,黄文江,马占鸿.小麦条锈病高光谱遥感监测技术研究.西北农林科技大学学报(自然科学版),2005,33(1):31-36(增刊).
    2.陈鹏程,张建华,雷勇辉,李眉眉.高光谱遥感监测农作物病虫害研究进展.中国农学通报,2006,22(2):388-341.
    3.陈瑞鹿,暴祥致.草地螟迁飞活动的雷达观测.植物保护学报,1992,19(2):171-174.
    4.陈述彭,赵英时.遥感地学分析.北京:测绘出版社.1990,pp1-297.
    5.池天河,苏亚芳.重大自然灾害遥感监测评估集成系统.北京:中国科学技术出版社.1995,pp71-75.
    6.戴昌达,雷莉萍,胡德永,王述生.卫星遥感监测松毛虫灾.遥感信息,1991,3:32-34.
    7.戴振东,王珉,薛群基.摩擦体系热力学引论.北京:国防工业出版社.2002,pp1-243.
    8.邓聚龙.灰色系统基本方法.武汉:华中工学院出版社.1987,pp1-169.
    9.邓乃扬,田英杰.数据挖掘中的新方法--支持向量机.北京:科学出版社.2004,pp1-381.
    10.飞思科技产品研发中心.神经网络理论与Matlab7实现.北京:电子工业出版社.2006,pp116-127.
    11.高永刚,刘丹,张福娟,杨晓丽.卫星遥感在森林病虫害监测上的研究进展.中国农学通报,2006,22(2):113-117.
    12.高占国,张利权.盐沼植被光谱特征的间接排序识别分析.国土资源遥感.2006,68(2):51-56.
    13.国家环境保护总局.2006年中国环境状况公报.2007.http://www.sepa.gov.cn/plan/zkgb/06hjzkgb/
    14.韩最蛟,万世基.雷达图像特征信息提取及多源数据复合处理的地质应用研究.遥感技术与应用,1996,11(4):8-14.
    15.洪剑鸣,童贤明,徐福寿,王国迪.中国水稻病害及其防治.上海:上海科学技术出版社.2006,pp1-334.
    16.黄敬峰,王人潮,胡新博.新疆北部天然草地产草量遥感监测模型研究.浙江农业大学学报,1999,25(2):125-129.
    17.黄木易,王纪华,黄文江,黄义德,赵春江,万安民.冬小麦条锈病的光谱特征及遥感监测.农业工程学报,2003,19(6):154-158.
    18.季荣,张霞,谢宝瑜.用MODIS遥感数据监测东亚飞蝗灾害--以河北省南大港为例.昆虫学报,2003,46(6):713-719.
    19.贾永红,李德仁刘继林.四种IHS变换用于SAR与TM影像复合的比较.遥感学报1998,2(2):103-106.
    20.贾永红.TM和SAR影像主分量变换融合法.遥感技术与应用,1998,13(1):46-49.
    21.金瑞华,张宏名,林培.浅谈生物灾害遥感监测.遥感信息,1991,3:35-37.
    22.靳文戟,刘政凯.多类别遥感图像复合分类方法.环境遥感,1995,10(4):298-302.
    23.李朝峰,曾生根,许磊.遥感图像智能处理.北京:电子工业出版社.2007,pp1-293.
    24.李崇贵,赵宪文,李春干.森林蓄积量遥感估测理论与实现.北京:科学出版社.2006,pp1-201.
    25.李大庆,杨再学,李大群.稻纵卷叶螟的发生规律及其防治技术.贵州农业科学,2007,35(1):44-47.
    26.李德仁,关泽群.空间信息系统的集成与实现.武汉:武汉大学出版社.2000,pp1-244.
    27.李克鲁,王霞,郭敏茹.小波变换的信息融合方法及结果评价.国土资源遥感,1999,42(4):46-52.
    28.刘建平,赵英时.高光谱遥感数据解译的最佳波段选择方法研究.中国科学院研究生院学报,1999,16(2):153-161.
    29.刘开第.未确知数学.武汉:华中理工大学出版社,1997,pp1-263.
    30.刘良云,王纪华,宋晓宇,李存军,黄文江,赵春江.小麦倒伏的光谱特征及遥感监测.遥感学报.2005,9(3):323-327.
    31.刘伟东,项月琴,郑兰芬,童庆禧,吴长山.高光谱数据与水稻叶面积指数及叶绿素密度的相关分析.遥感学报,2000,4(4):279-283.
    32.刘玉洁,杨忠东.MODIS遥感信息处理原理与算法.北京:科学出版社.2001,pp1-346.
    33.刘占宇,黄敬峰,孙华生.基于LVQ神经网络的水稻白穗和正常穗的高光谱识别.中国水稻科学,2007,21(6):658-662.
    34.刘占宇,黄敬峰,吴新宏,董永平,王福民,刘朋涛.天然草地地上生物量的高光谱遥感估算模型.农业工程学报,2006,22(2):111-115.
    35.刘占宇,黄敬峰,吴新宏,董永平,王福民,刘朋涛.天然草地植被覆盖度高光谱遥感估算模型研究.应用生态学报,2006,17(6):997-1002.
    36.马建文,韩秀珍,哈斯巴干,王志刚,燕守勋,戴芹.基于东亚飞蝗生育周期的遥感蝗灾监 测新模式.遥感学报,2004,8(4):370-377.
    37.梅安新,彭望琭,秦其明,刘慧平.遥感导论.北京:高等教育出版社.2001,pp1-324.
    38.倪金生,李琦,曹学军.遥感于地理信息系统基本理论和实践.北京:电子工业出版社.2004,pp11.
    39.倪绍祥.环青海湖地区草地蝗虫遥感监测与预测.上海:科学技术出版社.2002,pp1-246.
    40.彭望琭.遥感概论.北京:高等教育出版.2002,pp1-328.
    41.浦瑞良,宫鹏.高光谱遥感及其应用.北京:高等教育出版社.2003,pp1-245.
    42.乔红波,程登发,孙京瑞,田喆,陈林,林芙蓉.麦蚜对小麦冠层光谱特性的影响研究.植物保护,2005,31(2):21-26.
    43.沈宁泽,倪绍祥,查勇.使用连续的MODIS遥感数据监测东亚飞蝗的发生.南京师大学报(自然科学版),2005,28(2):122-126.
    44.沈掌泉.神经网络集成技术及其在土壤学中应用的研究.浙江大学博士学位论文.浙江省杭州市,浙江大学.2005.5,pp1-140.
    45.施润和,牛铮,庄大方.叶片生化组分浓度对单叶光谱影响研究--以2100nm吸收特征的碳氮比反演为例.遥感学报,2005,9(1):1-7.
    46.孙丹峰.IKONOS全色与多光谱数据融合方法的比较研究.遥感技术与应用,2002,17(1):41-45
    47.孙国昌,柴荣耀,杜新法,陶荣祥,孙漱沅.水稻品种与稻瘟病菌群体互作的选择作用研究.植物病理学报,1999,29(1):45-49.
    48.孙家柄,刘继林,李军.多源遥感影像融合.遥感学报,1998,2(1):17-50.
    49.汤国安,张友顺,刘咏梅.遥感数字图像处理.北京:科学出版社.2004,pp1-274.
    50.唐延林,王人潮,王秀珍.对水稻微分光谱和植被指数的探讨.上海交通大学学报(农业科学版),2003,21(3):199-204.
    51.万余庆,谭克龙,周日平.高光谱遥感应用研究.北京:科学技术出版社.2006,pp1-248.
    52.王福民.水稻参数高光谱反演方法研究及其系统开发和水稻面积遥感提取.浙江大学博士学位论文.浙江省杭州市,浙江大学.2007.6,pp153-159.
    53.王惠文.偏最小二乘回归方法及其应用.北京:国防工业出版社.1999,pp1-274.
    54.王丽珍,周丽华,陈红梅,邹力鹍.数据仓库与数据挖掘原理及应用,北京:科学技术出版社.2005,pp157-158.
    55.王人潮,黄敬峰.水稻遥感估产.北京:中国农业出版社.2002,pp1-282.
    56.吴曙雯,王人潮,陈晓斌,沈掌泉,史舟.稻叶瘟对水稻光谱特性的影响研究.上海交通大学学报(农业科学版),2002,20(1):73-77.
    57.武红敢,乔彦友,黄建文.利用陆地卫星TM数据评估森林病虫害.遥感技术与应用,1994,9(4):46-51.
    58.武红敢,石进.松毛虫灾害的TM影像监测技术.遥感学报,2004,8(2):172-177.
    59.武红敢.卫星遥感技术在森林病虫害监测中的应用.世界林业研究,1995,2(2):24-29
    60.徐俊峰.IKONOS信息提取的尺度效应研究.浙江大学博士学位论文.浙江省杭州市,浙江大学.2006.7,pp36-38.
    61.徐希孺.遥感物理.北京:北京大学出版社.2005,pp1-533.
    62.杨存建,陈德清,魏一鸣.遥感和GIS在森林病虫害监测管理中的应用模式.灾害学,1999,14(1):6-10.
    63.杨可明,陈云浩,郭达志,蒋金豹.基于PHI高光谱影像的植被光谱特征应用研究.西安科技大学学报.2006,26(4):494-498.
    64.姚建仁,董丰收,郑永权.绿色安全农产品发展对农药工业的要求--谈我国农作物农药残留问题.世界农药,2003,25(2):5-8.
    65.于贵瑞.全球变化与陆地生态系统碳循环和碳蓄积.北京:气象出版社.2003,pp1-269.
    66.余华波,宁秀珍,吴新明,吴增军.2005年江山市晚稻褐飞虱暴发成因浅探.浙江农业科学,2007,12(3):326-329.
    67.袁志发,周静芋.多元统计分析.北京:科学出版社.2002,pp138-200.
    68.张兵.时空信息辅助下的高光谱数据挖掘.中国科学院遥感应用研究所博士学位论文.北京市,中国科学院.2002,pp1-135.
    69.张凤丽,尹球,匡定波,李风霞,周秉荣.环青海湖地区天然草地时序光谱特征参量分析.生态学报.2005,25(12):3155-3160.
    70.张良培,张立福.高光谱遥感.武汉:武汉大学出版社.2005,pp1-3.
    71.浙江省国土资源厅.浙江省土地利用现状更新调查技术规范.北京:中国环境科学出版社.2003,pp8-11.
    72.郑兰芬,王晋年.成像光谱遥感技术及其图像光谱信息提取分析研究.环境遥感,1992,7(1):49-58.
    73.中国农业年鉴编委会.中国农业年鉴.北京:中国农业出版社.2007.
    74.中华人民共和国畜牧兽医司、全国畜牧兽医总站主编.中国草地资源.北京:中国科学技 术出版社.1996,pp190-196.
    75.周世文,毛海平,郭勇军,季兴祥,李丰平,李国宝.稻飞虱发生特点及特大发生原因分析.湖北农业科学,2007,46(3):403-404.
    76.朱述龙,张占睦.遥感图像获取与分析.北京:科学技术出版社.2000,pp1-176.
    77.朱雪龙.应用信息论基础.北京:清华大学出版社.2001,pp1-339.
    78.Adams M L,Philpot W D and Norvell W A.Yellowness index:an application of spectral second derivatives to estimate chlorosis of leaves in stressed vegetation.International Journal of Remote Sensing,1999,20(18):3663-3675.
    79.Addink E A and Stein A.A comparison of conventional and geostatistical methods to replace clouded pixeis in NOAA-AVHRR images.International Journal of Remote Sensing,1999,20(5):961-977.
    80.Ahern F J.The effects of bark beetle stress on the foliar spectral reflectance of lodge pole pine.International Journal of Remote Sensing,1988,9(9):1451-1468.
    81.Ahern F J,Erdle T,Maclean D A.A quantitative relationship between forest growth rates and Thematic Mapper reflectace measurement.International Journal of Remote Sensing,1991,12(3):387-400.
    82.Allen T R and Kupfer J A.Application of spherical statistics to change vector analysis of Landsat data:Southern Appalachian spruce-fir forests.Remote Sensing of Environment,2000,74(3):482-493.
    83.Allen T R and Kupfer J A.Spectral response and spatial pattern of Fraser fir mortality and regeneration,Great Smoke Mountains,USA.Plant Ecology,2001,15(6):59-74.
    84.Apan A,Held A,Phinn S and Markley J.Detecting sugarcane 'orange rest' disease using EO-1 Hyperion hyperspectral imagery.International Journal of Remote Sensing,2004,25(2):489-498.
    85.Appel D N and Maggio R C.Aerial survey for oak wilt incidence at three locations in central Texas.Plant Disease,1984,68(6):661 - 664.
    86.Appel D N,Maggio R C,Nelson E L and Jeger M J.Measurement of expanding oak wilt centers in live oak.Phytophthology,1989,79(11):1318-1322.
    87.Ardo J,Pilesjo and Skidmore A.Nearal networks,multitemporal Landsat Thematic Mapper data and topographic data to classify forest damages in the Czech Republic. Canadian Journal of Remote Sensing. 1997,23 (2): 217 - 229.
    88. Aronoff S and Goodfellow W. Advanced technology for monitoring and processing global environmental data. Conference on Remote Sensing Society, London, 1985, 8: pp572.
    89. Ashley M D, Bea J and Wright I. Spruce budworm damage evaluation using aerial photography.Photogrammetric Engineering & Remote Sensing,1976, 42 (11): 1265-1272.
    90. Asner G P and Lobell D B. A biogeophysical approach for automated SWIR unmixing of soils and vegetation. Remote Sensing of Environment, 2000,74 (1): 99-112.
    91. Atkinson P M and Lewis P. Geostatistical classification for remote sensing: an introduction. Computers and Geosciences, 2000,26 (4): 361-371.
    92. Awrejcewicz J. Bifurcation and chaos in simple dynamical systems. Singapore: World Scientific, 1989, pp1-126.
    93. Blackburn G A. Relationships between Spectral Reflectance and Pigment Concentrations in Stacks of Deciduous Broadleaves.Remote Sensing of Environment, 1999a, 70 (2): 224-237.
    94. Blackburn G A and Steele C M. Towards the remote sensing of matorral vegetation physiology: Relationships between spectral reflectance, pigment, and biophysical characteristics of semiarid bushland canopies. Remote Sensing of Environment, 1999b, 70 (3): 278-292.
    95. Blackburn G A. Quantifying chlorophylls and caroteniods at leaf and canopy scales: An evaluation of some hyperspectral approaches. Remote Sensing of Environment, 1998, 66 (2): 273-285.
    96. Bowers W W, Franklin S E, Hudak J and McDermid G. Forest structure damage analysis using image semivariance. Canadian Journal of Remote Sensing, 1994, 20 (1):28-36.
    97. Brenchley G H. Aerial photography for the study of plant diseases. Annual Review of Phytopathology, 1968,6:1-22.
    98. Brockhaus J A, Khorram S, Bruck R I, Campbell M V and Stallings C. A comparison of Landsat TM and SPOT HRV data for use in the development of forest defoliation models. International Journal of Remote Sensing, 1992, 16 (16): 3235-3240.
    99. Bryceson K P. The use of Landsat MSS data to determine the distribution of locust egg beds in the River in a region of New South Wales, Australia. International Journal of Remote Sensing, 1989, 10(11): 1749-1762.
    100. Buchheim M P, Maclean A L and Lillesand T M. Forest cover type mapping and spruce budworm defoliation detection using simulated SPOT imagery. Photogrammetry Engineering & Remote Sensing, 1985, 51 (6):1115 - 1122.
    101. Campbell P K, Rock B N, Martin M E, Neefus C D, Irons J R, Middleton E M and Albrechtova J. Detection of initial damage in Norway spruce canponies using hyperspectral airborne data. International Journal of Remote Sensing, 2004, 25 (24):5557-5583.
    102. Card D H, Peterson D L and Matson P A. Prediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy. Remote Sensing of Environment, 1988, 6 (2): 123-147.
    103. Carper W J, Lillesand T M and Kieffer R W. The use of Intensity-Hue-Saturation transformations for merging SPOT Panchromatic and multispectral image data. Photogrammetric Engineering & Remote Sensing, 1990, 56 (3):459-467.
    104. Carr J R and Miranda F P. The semivariogram in comparison to co-occurrence matrix for classification of image texture. IEEE Transactions on Geoscience and Remote Sensing, 1998,36(6): 1945-1952.
    105. Carter G A. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. International Journal of Remote Sensing, 1994, 15 (6):697-703.
    106. Carter G A and Miller R L. Early detection of plant stress by digital imaging within narrow stress sensitive wavebands. Remote Sensing of Environment, 1994, 50 (3):295-302.
    107. Carter G A and Young D R. Foliar spectral reflectance and plant stress on a barrier island. International Journal of Plant Sciences, 1993, 154 (3): 298-305.
    108. Carter G A. Responses of leaf spectral reflectance to plant stress. American Journal of Botany, 1993, 80 (2): 239-243.
    109. Carter G A. Reflectance wavebands and indices for remote estimation of photosynthesis and stomatal conductance in pine canopies. Remote Sensing of Environment, 1998, 63 (1): 61-72.
    110. Chander G and Markham B. Revised Landsat-5 TM radiometric calibration procedures and post calibration dynamic ranges. IEEEE Transactions on Geoscience and Remote Sensing, 2003,41 (7): 2674-2677.
    111. Chavez P S, Sides S C and Anderson J A. Comparison of three different methods to merge multiresolution and multispectral data: TM & SPOT pan. Photogrammetric Engineering & Remote Sensing, 1991, 57 (2):295-303.
    112. Chica-Olmo M and Abrca-Hernandez F. Computing geostatistical image texture for remotely sensed data classification. Computers & Geosciences, 2000, 26 (3): 373-383.
    113. Ciesla W M, Dull C W and Acciavatti R E. Interpretation of SPOT-1 color composites for mapping defoliation of hardwood forests by gypsy moth. Photogrammetric Engineering & Remote Sensing, 1989, 55 (8): 1465 -1470.
    114. Clark R N and Roush T L. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research, 1984, 89 (27): 6329-6340.
    115. Cloutis E A. Hyperspectral geological remote sensing: evaluation of analytical techniques. International Journal of Remote Sensing. 1996, 17(12): 2215-2242.
    116. Cole C V, Cerri C, Minami K, Mosier A, Rosenberg N and Sanerback D. Agricultural options for mitigation of greenhouse gas emission, Chapter23, Climate Change 1995 :Impacts, Adaptations and Mitigation of Climate Change: Report of IPCC Working Group II, UK, Cambridge: Cambridge University Press. 1996, pp745-771.
    117. Collins J B and Woodcock C E. An assessment of several linear change detection techniques for mapping forest mortality using multitemporal Landsat TM data. Remote Sensing of Environment, 1996, 56 (1): 66-77.
    118. Collins J B and Woodcock C E. Change detection using the Gramm-Schmidt transformation applied to mapping forest mortality. Remote Sensing of Environment, 1994, 50 (2): 267 - 279.
    119. Collins J B and Woodcock C E. Modeling the distribution of cover fraction of a geophysical field. In: Advances in Remote Sensing and GIS Analysis, Atikonson P M and Tate N J, Chichester: John Wiley and Sons, 1999, pp119-133.
    120. Colwell R N. Determining the prevalence of certain cereal crop diseases by means of aerial photography. Hilgardia, 1956,26 (2): 223-286.
    121. Coops N C, Johnson M, Wulder M A and White J C. Assessment of QuickBird high spatial resolution imagery to detect red attack damage due to mountain pine beetle infestation. Remote Sensing of Environment, 2006, 103 (1):67-80.
    122. Coops N, Stanford M, Old K, Dudzinski M, Culvenor D and Stone C. Assessment of Dothistroma needle blight of Pinus radiata using airborne hyperspectral imagery. Phytopathology, 2003, 93 (12): 1524-1532.
    123. Crist E P and Cicone R C. Application of the tasseled cap concept to simulated thematic map data. Photogrammetric Engineering & Remote Sensing, 1984, 50 (2): 343 - 352.
    124. Curran P J, Dungan J L and Peterson D L. Estimating the foliarbiochemical concentration of leaves with reflectance spectrometry: Testing the Kokaly and Clark methodologies. Remote Sensing of Environment, 2001, 76 (3): 349-359.
    125. Curran P J, Windham W R and Gholz H L. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine leaves. Tree Physiology, 1995, 15 (2):203-206.
    126. Curran P J, Dungan J L, Macler B A and Plummer S E. The effect of a red leaf pigment on the relationship between red-edge and chlorophyll concentration. Remote Sensing of Environment, 1991, 35, 69-75.
    127. Curren P J and Dungan J L. Estimation of signal-to-noise: a new procedure applied to AVIRIS data. IEEE Transactions on Geoscience and Remote Sensing, 1989, 27 (1): 620-628.
    128. Datt B. Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves. International Journal of Remote Sensing, 1999,20 (14): 2741- 2759.
    129. Ehlers M. Multisensor image fusion techniques in remote sensing, ISPRS Journal of Photogrammetry and Remote Sensing, 1991,46 (1):19-30.
    130. Ekstrand S. Assessment of forest damage with Landsat TM: correction for varying forest stand characteristics. Remote Sensing of Environment, 1994, 47 (2): 291 - 302.
    131. Ekstrand S P. Detection of moderate damage on Norway spruce using Landsat TM and digital stand data. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28 (4): 685-691.
    132. Everitt J H, Escobar D E, Appel D N, Riggs W G and Davis M R. Using airborne digital imagery for detecting oak wilt disease . Plant Disease, 1999, 83 (4): 502 - 505.
    133.Fayyad U M, Piatetsky-Shapiro G Smyth P and Uthurusamy R. Advances in kowledge discovery and data mining. Menlopark CA: AAAI/MIT Press, 1996.pp227-352.
    134. Food and Agriculture Organization of the United Nations (FAO). FAO Statistical Databases. Available from World Wide Web: (http://apps.fao.org/). 2001.
    135. Forrest W and Nutter Jr. Detection and measurement of plant disease gradients in peanut with a multispectral radiometer. Phytopathology, 1989, 79 (9):95 8-963.
    136. Franklin S E and Raske A G. Satellite remote sensing of spruce budworm forest defoliation in western Newfoundland. Canadian Journal of Remote Sensing, 1994, 20 (1): 30-48.
    137. Franklin S E. Classification of hemlock looper defoliation using SPOT HRV imagery. Canadian Journal of Remote Sensing, 1989,15 (1): 178-182.
    138. Franklin S E, Waring R H and McCreight R W, Cohen W B and Fiorella M. Aerial and satellite sensor detection and classification of western spruce budworm defoliation in a subalpine forest. Canadian Journal of Remote Sensing, 1995, 21 (2): 299-308.
    139. Fraser R H and Latifovic R. Mapping insect-induced tree defoliation and mortality using coarse spatial resolution satellite imagery. International Journal of Remote Sensing, 2005, 26(1): 193-200.
    140. Fung T and LeDrew E. Application of principal component analysis to change dectection. Photogrammetric Engineering & Remote Sensing. 1987, 53 (12): 1649-1658.
    141.Gastellu E J P and Bruniquel P V. A modeling approach to assess the robustness of spectrometric predictive equations for canopy chemistry, Remote Sensing of Environment, 2001,76(1): 1-15.
    142. Gitelson A A, Kaufman Y J, Stark R and Rundquist D. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 2002, 80 (1):76-87.
    143. Goetz Alexander F H, Clark R N, Gregg A and Swayze K. Imaging spectrometry for earth remote sensing. Science, 1985, 225 (4704): 1147-1153.
    144. Gong P. Change detection using principle component analysis and fuzzy set theory. Canadian Journal of Remote Sensing, 1993,19 (1): 22-29.
    145. Grabmeier J and Rudolph A. Techniques of clustering algorithms in data mining. Data Mining and Knowledge Discovery, 2002,6 (3):303-360.
    146. Grasso D N. Application of the IHS colour transformation for 1:24 000-scale geologic mapping: a low cost SPOT alternative. Photogrammetric Engineering & Remote Sensing, 1993,59(1):73-80.
    147. Green A, Berman M, Switzer P and Craig M. A Transformation for ordering rnultispectal data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26 (1): 65-74.
    148. Green K, Kempka D and Lackey L. Using remote sensing to detect and monitor land-cover and land-use change. Photogrammetric Engineering & Remote Sensing, 1994, 60 (3): 331 -337.
    149. Grossman Y L, Ustin S L, Jacquemoud J Sanderson E W, Schmuck G and Verdebout J. Critique of stepwise mutilple linear regression for the extraction of leaf biochemistry information from leaf reflectance data. Remote Sensing of Environment, 1996, 56 (2): 182-193.
    150. Gupta Ravi P. Remote sensing geology. Springer-Verlag Berlin Heidelberg, 1991, pp 1-356.
    151. Haara A and Nevalainen S. Detection of dead or defoliated spruces using digital aerial data. Forest Ecology and Management, 2002, 160 (1): 97-107.
    152. Hall R J, Crown P H and Titus S J. Change detection methodology for aspen defoliation with Landsat MSS digital data. Canadian Journal of Remote Sensing, 1984, 10 (1):135-142.
    153. Hall R J, Titus S J and Volney W J A. Estimating top-kill volumes with large-scale photos on trees defoliated by the jack pine budworm. Canadian Journal of Remote Sensing, 1993, 23 (7): 1337-1346.
    154. Ham F M and Kostanic I. Principles of neurocomputing for science and engineering.北京:机械工业出版社,2003,pp140-152.
    155. Han J and Kamber M. Data mining: concepts and techniques. San Francisco: Academic Press, 2001.pp 1-197.
    156. Han L and Rundquist D C. Comparison of NIR/RED ratio and first derivative of reflectance in estimating algal-chlorophyll concentration: a case study in turbid reservoir. Remote Sensing of Environment, 1997, 62 (2): 253-261
    157. Harrison J R, Murray R and Hirose T. IHS transform for the integration of radar imagery with other remotely sensed data. Photogrammetric Engineering & Remote Sensing, 1990, 56(12):1631-1641.
    158. Hielkema J U. Application of Landsat data in desert locust survey and control. AGP /LCC /77/11.Rome:FAO, 1977.
    159. Hielkema J U, Roffey J and Tucker C J. Assessment of eco logical conditions associated with the 1980 /81 desert locust plague up surge in West Africa using environment satellite data. International Journal of Remote Sensing, 1986, 11(13): 1609-1622.
    160. Hohn M E, Liebhold A M and Gribko L S. Geostatistical model for forecasting spatial dynamics of defoliation caused by the gypsy moth. Environmental Entomology, 1993, 22 (5): 1066-1075.
    161. Holden H and LeDrew E. Spectral discrimination of healthy and non-healthy corals based on cluster analysis, principal component analysis, and derivative spectroscopy. Remote sensing of Environment. 1998,65 (2): 217-224.
    162. Hopkins P F, Harrison A R and Taberner M. Assessment of Thematic Mapper imagery for forestry applications under Lake States condition. Photogrammetric Engineering & Remote Sensing, 1988, 54 (1): 61-68.
    163. Huang J F and Apan A. Detection of Sclerotinia rot disease on celery using hyperspectal data and partial least squares regression. Journal of Spatial Science, 2006, 52 (1):131-144.
    164. Huang W J, Liu L Y, Huang M Y, Wang J H, Wang J D and Wan H W. Monitoring of wheat yellow rust with dynamic Hyperspectral data. IEEE International Geoscience and Remote Sensing Symposim, 2004,7 (4):4056-4058.
    165. Huang Z, Turner B J and Dury S J. Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis, Remote Sensing of Environment, 2004, 93(1): 18-29.
    166. Huete A R. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 1988, 25 (2):295-309.
    167. Jackson H R and Wallen V R. Microdensitometer measurements of sequential aerial photographs of field beans infected with bacterial blight. Phytopathology, 1975, 65 (8):961-968.
    168. Jackson R D. Remote sensing of biotic and abiotic plant stress. Annual Review of Phytopathology, 1986, 24 (2):265-287.
    169. Jia X and Richards J A. Segmented principal components transformation for efficient hyperspectral remote sensing image display and classification. IEEE Transactions on Geoscience and Remote Sensing. 1999, 37 (1): 538-542.
    170. Jordan C F. Derivation of leaf area index from quality of light on the forest floor. Ecology, 1969, 50 (5):663-666.
    171. Joria P E, Ahearn S C and Connor M A. comparison of the SPOT and Landsat Thematic Mapper satellite systems for detecting gypsy moth defoliation in Michigan. Photogrammetric Engineering & Remote Sensing, 1991, 57 (14): 1605-1612.
    172. Kanemasu E T, Niblett C L, Manges H, Lenhert D and Newman M A. Wheat: Its growth and disease severity as deduced from ERTS-1. Remote Sensing of Environment, 1974a, 3 (2):255-260.
    173. Kanemasu E T, Schimmelpfennig H, Choy E C, Eversmeyer M G and Lenhert D. ERTS-1 data collection systems used to predict wheat disease severities. Remote Sensing of Environment, 1974b, 3 (1):93-97.
    174. Kaufman L and Rousseew P J. Finding groups in data: an introduction to cluster analysis. New York: Johy Wiley and Sons, 1990, pp1-157.
    175. Kaufman Y J and Tanre D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30 (1):261-270.
    176. Kauth R J and Thomas G S. The Tasseled-Cap-a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. Proceedings, Symposium on machine processing of remotely sensed data. West Lafayatte. In: Laboratory for application of remote sensing, 1976, pp41-51.
    177. Kharuk V I, Ranson K J, Kozuhovskaya A G, Kondakov Y P and Pestunov I A. NOAA/AVHRR satellite detection of Siberian silkmoth outbreaks in eastern Siberia International Journal of Remote Sensing, 2004, 25 (24):5543-5555.
    178. Kim M S, Daughtry C S T, Chappelle E W and McMurtrey J E. The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation (APAR). France: Proceeding of ISPRS'94 Val d'Isere, 1994, pp299-306.
    179. Knipling E B. Physical and physiological basis for the reflectance of visible and near-infrared radioation from vegetation. Remote Sensing of Environment, 1970, 1
    180. Kobayashi T, Kanda E, Kitada K, Ishiguro K, and Torigoe Y. Detection of rice panicle blast with multispectral radiometer and the potential of using airborne multispectral scanners. Phytopathology, 2001,91 (3): 316-323.
    181. Kohonen T. Improved versions of learning vector quantization. IEEE International Joint Conference on Neural Networks, San Diego, CA.1990,1: 545-550.
    182. Kohonent T. Exploration of very large databases by self-organizing maps. International Conference on Neural Networks, Houston, US. 1997, 1:1-6.
    183. Kokaly R F and Clark R N. Spectroscopic determination of leafbiochemistry using band-depth analysis of absorption features and stepwisemultiple linear regression. Remote Sensing of Environment, 1999, 67 (3): 267- 287.
    184. Kuhl W E. A method to detect forest decline in Germany results of a color-infrared air photo interpretation. Forestry, 1989, 62 (1): 51 -61.
    185. Lacapra V C, Melack J M, Gastil M and Valeriano D. Remote Sensing of fliar chemistry of inundated rice with imaging spectrometry. Remote Sensing of Environment, 1996, 55 (1): 50-58
    186. Latchininsky A V. Ecology of spatio-temporal grasshopper dynamics in Siberia via GIS and remote sensing. Advances in Applied Acridology, 2002,3 (1): 2.
    187. Lathrop L D. Spectral classification of tomato disease severity levels. Photogrammetric Engineering & Remote Sensing, 1980, 46 (11):1433-1438.
    188. Leckie D G and Ostaff D P. Classification of airborne multispectral scanner data for mapping current defoliation caused by the spruce budworm. Forest Science, 1988, 34 (3): 259-279.
    189. Leckie D G, Ostaff D P, Teillet P M and Fedosjevs G. Spectral characteristics of tree components of balsam for and spruce damaged by spruce budworm. Forest Science, 1989, 35 (5): 582 - 600.
    190. Leckie D G, Yuan X, Ostaff D P, Piene H and Maclean D A. Analysis of high-resolution multispectral MEIS imagery for spruce budworm damage assessment on ssingle tree basis. Remote Sensing of Environment, 1992,40(1): 125-136.
    191. Liang S L. Quantitative remote sensing of land surface. John Wiley and Sons, Inc. Hoboken, New Jersey, USA.2004, pp1-4.
    192. Lillesand T M and Kiefer R W. Remote sensing and image interpretation (third edition). John Wiley & Sons, New York: Inc., 1994, pp 1-750.
    193. Liu H Q and Huete A R. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(1): 457-465.
    194. Liu J G. Smoothing Filter-based Intensity Modulation: a spectral preserve image fusion technique for improving spatial details. International Journal of Remote Sensing, 2000, 21 (18): 3461-3472.
    195. Liu Z Y, Huang J F and Li B. Remote sensing for the study of plant disease and insect stresses. Proceeding of The fourth international symposium on intelligent information technology in agriculture. Beijing, 2007a, pp721-731.
    196. Liu Z Y, Huang J F, Shi J J, Tao R X, Zhou W and Zhang L L. Characterizing and estimating rice brown spot disease severity using stepwise regression, principal component regression and partial least-square regression. Journal of Zhejiang University Science B, 2007b, 18 (10):738-744.
    197. Malthus Tim J and Madeira Ana C. High resolution spectroradiometry: spectral reflectance of field bean leaves infected by Botrytis fabae. Remote Sensing of Environment, 1993, 45 (1):107-U6.
    198. Mariotti M, Ercoli L and Masoni A. Spectral properties of iron-deficient corn and sunflower leaves. Remote Sensing of Environment, 1996, 58 (3): 282-288
    199. McCulloch L and Hunter D M. Identification and monitoring of Australian plague locust habitats from Landsat. Remote Sensing of Environment, 1983, 13 (1): 95-102.
    200. Meenakshisundaram V. Quality Assessment of Ikonos and Quickbird Fused Images for Urban Mapping. A thesis for the degree of Master of Science. University of Calgary, Alberta, Canada. 2005, pp6-33.
    201. Miller J R, Wu J, Boyer M G, Belanger M and Hare W. Season patterns in leaf reflectance red edge characteristics. Internal Journal of Remote Sensing, 1991, 12 (7): 1509-1523.
    202. Mirik M, Michels Jr G J, Kassymzhanova-Mirik S and Elliott N C. Reflectance characteristics of Russian wheat aphid (Hemiptera:Aphididae) stressand Abundance in winter wheat.Computers and Electronics in Agriculture, 2007,57 (1): 123-134.
    203. Monte R O, Bernard A, Engel Daniel R E and Jane R F. Neural network prediction of maizeyield using alternative data coding. Biosystems Engineering. 2002, 83 (1):31-45.
    204. Muchoney D M and Haack B N. Change detection for monitoring forest defoliation. Photogrammetric Engineering & Remote Sensing, 1994,60 (7): 1243-1251.
    205. Muhamed H H and Larsolle A. Feature vector based analysis of hyperspectral crop reflectance data for discrimination and quantification of fungal disease severity in wheat. Biosystems Engineering, 2003, 86 (2):125-134.
    206. Mukai Y, Sugimura T, Watanabe H and Wakamori K. Extraction of areas infested by pine bark beetle using Lansat MSS data. Photogrammetric Engineering & Remote Sensing, 1987,54(1):77-81.
    207. Murray A T and Shyy T K. Integrating attribute and space characteristics in choropleth display and spatial data mining. International Journal of Geographical Information Science, 2000, 14 (7):649-667.
    208. Mutangaa O, Skidmore A K and Prins H H T. Predicting in situ pasture quality in the Kruger National Park, SouthAfrica, using continuum-removed absorption features. Remote Sensing of Environment, 2004, 89 (3):393-408.
    209. Myers D E. Statistical models for multiple-scaled analysis. In: Scale in remote sensing and GIS, edited by Quattrochi D A and Goodchild M F, Raton: CRC Press, 1997,pp273-293.
    210. Nagarajan S, Seibold G, Kranz J, Saari E E and Joshi L M. Monitoring wheat rust epidemics with the Landsat-2 satellite. Phytopathology, 1984, 74 (5):585-587.
    211. Neblette C B. Aerial photography for plant disease surveys. Photo-Era Magazine, 1928, 59 (2): 175.
    212. Neblette C B. Aerial photography for the study of plant diseases. Photo-Era Magazine, 1927, 58(4):346.
    213. Cristianini N and Shawe-Taylor J. An introduction to support vector machines and other kernel-based learning methods. London: Cambridge University Press, 2000, pp1-186.
    214. Nelson R F. Detecting forest canopy change due to insect activity using Landsat MSS. Photogrammetric Engineering & Remote Sensing, 1983, 49 (6): 1303-1314.
    215. Nilsson H E. Remote sensing and image analysis in plant pathology. Annual Review of Phytopathology, 1995, 15:489-527.
    216. Nuflez J, Otazu X, Fors O, Prades A, Pala V and Arbiol R. Multiresolution based image fusion with additive wavelet decomposition. IEEE Transactions on Geoscience and Remote Sensing, 1999,37(2): 1204-1211.
    217. O'Neill A L, Kupiec J A and Curran P J. Biochemical and reflectance variation throughout a Sitka spruce canopy. Remote Sensing of Environment, 2002, 80 (1): 134-142.
    218. Paustian K, Cole C and Sauerbeck D. Mitigation of greenhouse gas emission: an overview. Climate Change, 1998, 40 (1): 135-162.
    219. Penuelas J and Filella L. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends in Plant Science, 1998, 3 (1): 151-155.
    220. Pohl C and Van Genderen J L. Multisensor image fusion in remote sensing: concepts, methods and applications. International Journal of Remote Sensing, 1998, 19 (5):823-854.
    221. Price K P and Jakubauskas M E. Spectral retrogression and insect damage in lodge pole pine successional forests. International Journal of Remote Sensing, 1998, 19 (8): 1627-1632.
    222. Qi J, Chehbouni A, Huete A, Kerr Y and Sorooshian S. A modified soil-adjusted vegetation index (MSAVI). Remote Sensing of Environment, 1994,48 (1): 119-126.
    223. Qi J, Marsett R, Heilman P, Biedenbender S, Moran M S, Goodrich D C and Weltz M. RANGES improves satellite-based information and land cover assessments in Southwest United States. EOS Transaction on American Geophysical Union, 2002, 83 (51):601-606.
    224. Qin Z H, Zhang M H, Christensen T, Li W J and Tang H J. Remote sensing analysis of rice disease stresses for farm pest management using wide-band airborne data. IEEE International Geoscience and Remote Sensing Symposium, 2003,6 (4):2215-2217.
    225. Radeloff V C, Boyce M S and Mladenoff D J. Effects of interacting disturbances on landscape patterns: Budworm defoliation and salvage logging. Ecological Applications, 2000, 10(1): 233-247.
    226. Radeloff V C, Mladenoff D J and Boyce M S. Detecting jack pine budworm defoliation using spectral mixture analysis: separating effects from determinants. Remote Sensing of Environment, 1999, 69 (2): 156-169.
    227. Ranchin T and Wald L. The wavelet transform for the analysis of remotely sensed images. International Journal of Remote Sensing, 1993, 14 (3): 615-619.
    228. Rencz A N and Nemeth J. Defection of mountain pine beetle infestation using Landsat MSS and simulated Thematic Mapper data. Canadian Journal of Remote Sensing, 1985, 11 (1):50-58.
    229. Richardson A J and Everitt J H. Using spectral vegetation indices to estimate rangeland productivity. Geocarto International, 1992,1 (1):63-69.
    230. Richardson A J and Wiegand C L. Distinguishing vegetation from soil background information. Photogrammetry Engineering & Remote Sensing.1977, 43 (12): 1541-1552.
    231. Riedell W E and Blackmer T M. Leaf reflectance spectra of cereal aphid-damaged wheat. Crop Science, 1999, 39 (9): 1835-1840.
    232. Riley J R, Smith A D and Reynolds D R. The feasibility of using vertical looking radar to monitor the migration of brown planthopper and other insect pests of rice in China. Entomologia Sinica, 2003, 10(1): 1-19.
    233. Riley J R. Radar observations of individual desert locusts (Schistocerca gregaria (Forsk.) (Orthop tera: Locustidae)). Bulletin of Entomological Research, 1974,64 (1): 19-32.
    234. Riley J R. Remote Sensing in Entomology. Annual Review of Entomology, 1980, 34:247-271.
    235. Roggerman M C, Mills J P and Rogers S K. Multi-sensor information fusion for target detection and classification. SPIE, 1988,931:8-31.
    236. Rossi R E, Dungan J L and Beck L R. Kriging in the shadows: geostatistical interpolation for remote sensing. Remote Sensing of Environment, 1994, 49 (1): 32-40.
    237. Roujean J L, Boreon F M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 1995,51 (3):375-384.
    238. Rouse J W, Haas R H, Schell J A, Deering D W. Monitoring vegetation systems in the Great Plains with ERTS. Proceedings of the third ERTS Symposium, 1973, 1:48-62.
    239. Royle D D and Lathrop R G. Monitoring hemlock forest health in New Jersey using landsat TM data and change detection techniques. Forest Science, 1997,43 (3): 327-335.
    240. Schaefer G W. Radar studies of locust, moth and butterfly migration in the Sahara. Proceedings of the Royal Entomological Society of London, 1969, 34: 39-40.
    241. Schell S P and Lockwood J A. Spatial analysis optimizes grasshopper management. GIS World, 1995, 8 (11): 68-73.
    242. Schmidt K S and Skidmore A K. Smoothing vegetation spectra with wavelets. Intemaional Journal of Remote Sensing, 2004, 20 (6): 1167-1184.
    243. Scholkopf B, Smola A, Williamson R C and Bartlett P L. New support vector algorithms. Neural Computation, 2000, 12 (6):1207-1245.
    244. Schowengerdt R A. Remote sensing models and methods for image processing. Second edition, New York: Academic Press, 1997, ppl-52.
    245. Scurlock J M O and Hall D O. The global carbon sink: a grassland perspective, Global Change Biology, 1998,4 (2): 229-233.
    246. Serrano L, Penuelas J and Ustin S L. Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: Decomposing biochemical from structural signals. Remote Sensing of Environment, 2002, 81 (3):355-364
    247. Seul M, Ogorman L and Sammon M J. Practical algorithms for image analysis: description, examples and code. UK, Cambridge: Cambridge University Press, 2001, pp23-55.
    248. Shettigara V K. A generalized component substitution technique for spatial enhancement of multispectral images using a higher resolution data set. Photogrammetric Engineering & Remote Sensing, 1992, 58 (3):561-567.
    249. Shi J J, Huang J F and Liu Z Y. Classification of rice brown spot disease severity based on probabilistic neural network. Proceeding of The fourth international symposium on intelligent information technology in agriculture. Beijing, 2007, pp732-738.
    250. Singh A.Digital change detection techniques using remotely sensed data. International Journal of Remote Sensing, 1989, 10 (5): 989-1003.
    251. Sirois J and Ahern F J. An investigation of SPOT HRV for detecting recent mountain pine beetle mortality. Canadian Journal of Remote Sensing, 1989, 14 (1): 104-110.
    252. Smith G M and Curren P J. Methods for estimating image signal-to-noise ratio. In: Advances in remote sensing and GIS analysis, Atikonson P M and Tate N J, Chichester: John Wiley & Sons, 1999,pp61-74.
    253. Smith R. Creative Destruction: Capitalist Development and China's Environment. New Left Review, 1997, 22(2):3-41.
    254. Smith K L, Steven M D and Colls J J. Use of hyperspectral derivative ratios in the red-edge region to identify plant stress responses to gas leaks. Remote Sensing of Environment, 2004, 92 (2): 207-217.
    255. State F A. Prevention and cure of forest insects and diseases. 国家林业局.森林病虫害防治知识问答.北京:中国林业出版社,1999,pp2-5.
    256. Taubenhaus J J, Ezekiel W N and Neblette C B. Airplane photography in the study of cotton root rot. Phytopathology, 1929, 19 (6): 1025-1029.
    257. Taylor D. Radar in desert locust survey and control. DLCOEA Annual Report, 1966, 3: 54-60.
    258. Thenkabail P S, Smith R B and Pauw E D. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics, Remote Sensing of Environment, 2000, 71 (2): 158-182.
    259. Timothy A, Warner amd Michael C. Spatial autocorrelation analysis of hyperspectral imagery for feature selection. Remote sensing of Environment, 1996, 60 (1): 5-12.
    260. Tsai F and Philpot W. Derivative analysis of hyperspectral data. Remote Sensing of Environment, 1998, 66 (1):41-51.
    261. Tucker C J, Hielkema J U and Roffey J. The potential of satellite remote sensing of ecological conditions for survey and forecasting desert locust activity. International Journal of Remote Sensing, 1985,6(1): 127-138.
    262. Ulliman J J and French D W. Detection of oak wilt with color IR photography. Photogrammetric Engineering & Remote Sensing, 1977,43 (6): 1267-1272.
    263. UNFPA (United Nations Fund for Population Activities). State of the world population 2002: useful conclusions and statistics. Available from World Wide Web: (http://www.unfpa.Org/swp/2002/presskit/pressreleases/1126021.htm).
    264. Vander Meer. Extraction of mineral absorption features from high-spectral resolution data using non-parametric geostatistical techniques. International Journal of Remote Sensing, 1994, 15 (18):2193-2214
    265. Vane Gregg and Goetz Alexander F H. Terrestrial imaging spectroscopy. Remote Sensing of Environment, 1988, 24 (1):1-29.
    266. Vane G and Alexander F H. Terrestrial imaging spectroscopy: status, future trends. Remote Sensing of Environment, 1993, 44 (1):117-126.
    267. Vigier B J, Pattey E and Strachan Ian B. Narrowband vegetation indexes and detection of disease damage in soybeans. IEEE International Geoscience and Remote Sensing Symposium, 2004, 1:255-259.
    268. Vogelmann J E and Rock B N. Use of Thematic mapper data for the detection of forest damage caused by the pear thrips. Remote Sensing of Environment, 1989, 30 (2) :217-225.
    269. Vogelmann J E and Rock B N. Assessing forest damage in high-elevation coniferous forests in Vermont and New Hamsphire using Thematic Mapper data. Remote Sensing of Environment, 1988, 24 (2):227-246.
    270. Vornberger P L and Blindschadler R A. Multi-spectral analysis of ice sheets using co-registered SAR and TM imagery. International Journal of Remote Sensing, 1992, 13 (3):637-645.
    271. Voss F and Dresier U. Mapping of desert locust and other migratory pests' habitats using remote sensing techniques. New trends in locust control. Krall S and Wilps H. 1994, pp23-40.
    272. Wald L. Data Fusion: Definitions and architectures-fusion of images of different spatial resolutions. Paris: Les Presses de l'Ecole des Mines, 2002, pp 154-216.
    273. Wald L. Some terms of reference in data fusion. IEEE Transactions on Geoscience and Remote Sensing, 1999,37 (2): 1190-1193.
    274. Wang D, Dowell F E, Lan Y, Pasikatan M and Maghirang E. Determining pecky rice kernels using visible and near-infrared spectroscopy. International Journal of Food Properties, 2002, 5 (3): 629-639.
    275. Waring R H and Running S W. Forest ecosystem, analysis at multiple scales, 2nd edition. San Diego: Academic Press, 1998, pp286-320.
    276. West J S, Bravo C, Oberit R, Lemaire, D, Moshou D, and McCartney H A. The potential of optical canopy measurement for targeted control of field crop diseases. Annual Review of Phytopathology, 2003, 41:593-614.
    277. Yesou H, Besnus Y and Rolet J. Extraction of spectral information from Landsat TM data and merger with SPOT panchromatic imagery - A contribution to the study of geological structures. ISPRS Journal of Photogrammetry and Remote Sensing, 1993a, 48 (1):23-36.
    278. Yesou H, Besnus Y, Rolet J and Pion J C. Merging Seasat and SPOT imagery for the study of geologic structures in a temperate agricultural region. Remote Sensing of Environment, 1993b, 43 (2):265-280.
    279. Yoder B J and Pettigrew-Crosby R E. Predicting nitrogen and chlorophyll content and concentrations from reflectancepectra (400-2500nm) at leaf and canopy scales. Remote Sensing of Environment, 1995, 53 (2): 199-211.
    280. Zhang M, Liu X and O'Neill M. Spectral discrimination of Phytophthora infestans infection on tomatoes based on principal component and cluster analysis. International Journal of Remote Sensing, 2002, 53 (6): 1095-1107.
    281. Zhang M H and Qin Z H. Spectral analysis of tomato late blight infection for remote sensingt of tomato disease stress in California. IEEE Geoscience and Remote Sensing Symposim, 2004, 6 (7): 4091-4094.
    282. Zhang M H, Qin Z H, Liu X and Ustin S L. Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing. International Journal of Applied Earth Observation and Geoinformation, 2003, 4 (3):295-310.
    283. Zhang Y. A new merging method and its spectral and spatial effects. International Journal of Remote Sensing, 1999,20 (10): 2003-2014.
    284. Zhao C J, Huang M Y, Huang W J, Liu L Y and Wang J H. Analysis of winter wheat stripe rust characteristic spectrum and establishing of inversion models. IEEE Geoscience and Remote Sensing Symposim, 2004, 6 (7):4318-4320.
    285. Zhou G and Liebhold A M. Forecasting the spatial dynamics of gypsy moth outbreaks using cellar transition models. Landscape Ecology, 1995,10 (1): 177-189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700