车辆导航中空间数据多尺度模型及算法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多尺度空间数据模型在车辆导航领域具有重要的理论意义和现实意义。在车辆导航系统硬件资源和通讯条件受限的情况下,如何快速精确地获取较优的导航方案是该研究领域面临的一大难题。
     针对这一难题,本文以提高物流车辆导航路径分析的速度和精度为目标,按照“分解导航地图空间关系到网络中各个节点→滤取对于行车目标重要的网络元素→重新综合生成所需尺度的导航地图”的思路,引入系统科学和社会网络分析相关理论与方法,重点研究导航地图网络节点间连通性的度量、物流车辆导航多尺度空间数据模型的建立及该模型在车辆导航系统中的应用,为车辆导航空间数据分析的快速、精确处理开展探索性研究。本文的具体研究工作如下:
     (1)基于网络节点重要性的连通性度量指标的研究。现有指标难以精确度量网络节点相对于行车目标的连通性,为此本文提出了一种基于节点重要性的连通性度量指标——相对连通系数,利用该指标来量化与目标节点相关的连通关系集合,将其分解到网络中各个节点上;并可按需合成与指定目标节点集最相关的空间关系;为在实际应用中快速计算该指标,提出了“以形估数”的计算方法,利用与节点相关联的子树形状,快速估计连通关系路径集合的计数规模。
     (2)基于广义尺度的车辆导航系统空间数据多尺度模型的研究。针对现有模型生成的导航地图路径分析精度难以保证的问题,建立了基于广义尺度的多尺度空间数据模型,为空间数据服务的高精度、按需生成提供了一种定量分析工具;并在此基础上,将上述方法拓展到网络抽样问题的化简中。
     (3)车辆导航地图分解算法的研究。针对车载终端计算能力难以适应导航地图庞大数据量的问题,构建了基于主成分分析的车辆导航地图分解算法。该算法可以利用车载设备有限的计算能力,获得快速的反应速度和较高的求解精度,为物流车辆导航提供了兼顾速度和精度的解决方案。在求最短路的实验中,该算法在对网络规模作大幅压缩的情况下(压缩比率达到20%-30%),仍有效地控制了网络分解造成的网络分析精度损失,同时将车载终端求最短路的计算时间由秒级降到了百毫秒级。
     本研究是地理信息科学、系统科学等学科理论和方法的交叉与渗透,为解决车辆导航空间数据分析的快速、精确处理这一热点和难点问题进行了有益的探索。其研究成果在车辆导航和地理信息科学领域具有广阔的应用前景,将在物流车辆实时导航与调度工作中发挥重要作用。
Multi-scale spatial data model is a research subject with theoretical and practical significance in the field of vehicle navigation. To meet the demands of real-time vehicle navigation, a multi-scale spatial data model that can precisely obtain the navigation solution in real-time with the limited power of onboard devices need to be constructed. Constructing this kind of model is also a difficult problem in this field.
     Focusing on constructing a multi-scale spatial data model for real-time vehicle navigation, this paper aims at improving the speed and accuracy of spatial data analysis for vehicle navigation. According to an online and dynamic processing thought of "spatial relationship decomposition→the most relevant vertices selection→sub-network regeneration", this paper utilizes theories and approaches in System Science and Social Network Analysis, and mainly studies the following several problems:the spatial relationship measurement, the multi-scale spatial data model for vehicle navigation, and the application in vehicle navigation. The detailed contents of the research are as follows:
     (1) The research on the connectivity index to measure the importance of a vertex in a network. A new connectivity index, which we called the relative connectivity coefficient, is proposed to measure the impact of a vertex to another in a network. The spatial relationship of a network can be decomposed to the network vertices by this index. A simplified method is designed to reduce the computational complexity of the relative connectivity coefficient, which uses the shape of the sub-tree rooted by a vertex to evaluate its relative connectivity coefficient.
     (2) The research on multi-scale spatial data model based on generalized scale for vehicle navigation. The characteristics of real-time vehicle navigation are analyzed, and a multi-scale spatial data model based on generalized scale is proposed, which can generate sub-network to adapt different destination vertex set. A Principal-Component-Analysis-based method and an Analytic-Hierarchy-Process-based method are proposed to calculate the relative connectivity coefficient for multi destination-vertex set. Furthermore, the main idea of this multi-scale spatial data model is applied to a class of network sampling problem to reduce the computational complexity of network analysis.
     (3) The research on the network decomposition method for vehicle navigation maps. Computational power of onboard devices is too limited to processing spatial data of vehicle navigation maps. A network decomposition method based on the above mentioned multi-scale spatial data model is proposed to solve this problem. The vehicle navigation maps are decomposed into sub-maps in the monitoring center, and these sub-maps can be downloaded to the onboard devices. The most relevant elements to the destinations are extracted from the entire network to compose sub-maps, so that the computational complexity of network analysis on these sub networks can be reduced with less accuracy loss. This method is applied to a case of searching the shortest path in onboard devices. Experimental evaluation shows that this method can effectively control the accuracy loss caused by network decompositions: there is only 13.85% accuracy loss while the sub network's size is reduced to 20.12% of the original network, and the computational time is reduced from second magnitude to 100 microsecond magnitude at the same time.
     The research in this paper has promoted the interaction and inosculation between Geographic Science and System Science. It is the beneficial exploration for solving the real-time vehicle navigation problems based on multi-scale spatial data model. And equipped with real-time data collection technique, monitoring technique and scheduling technique for logistic vehicles, the research results in this paper can provide decision support for real-time logistic vehicle navigation and scheduling.
引文
[1]Cola L D.1997 Multiresolution covariation among Landsat and AVHRR vegetation indices, in Quattrochi and Goodchild, in D. Quattrochi and M. Goodchild. (Eds.), Scale in Remote Sensing and GIS. CRC Press:Boca Raton,1997,5(5):73-92.
    [2]王家耀,成毅.空间数据的多尺度特征与自动综合[J].海洋测绘,2004,24(4):3-5.
    [3]陈述彭.地图科学的几点前瞻性思考[J].测绘科学,2001,26(1):1-6.
    [4]王家耀.空间数据自动综合研究进展及趋势分析[J].测绘科学技术学报,2008,25(1):1-7,12.
    [5]Barabasi A. L., Albert R. Emergence of Scaling in random networks [J]. Science,1999,286(10):509-512.
    [6]Watts D. J., Strogatz S. H. Collective dynamics of'small world'networks [J]. Nature,1998,393 (6):440-442.
    [7]Dodds P. S., Muhamad R., Watts D. J., An experimental study of search in global social networks [J]. Science,2003,301(8):827-829.
    [8]Girvan M, NewmanM E J. Community structure in social and biological networks [J].Proc Natl Acad Sci USA,2002,99(6):7821-7826.
    [9]Holme P. Congestion and centrality in traffic flow on complex networks [J]. Advances in Complex Systems,2003,6(6):163-176.
    [10]Crucitti P, Latora V, Porta S. Centrality measures in urban networks [J]. Physics,2005,0504163.
    [11]Porta S, Crucitti P, Latora V. The network analysis of urban streets:a dual approach [J]. Physics A,2006,369(2):853-866.
    [12]DraNen P, Srbljinovic'A. About modelling of complex networks with app lications to terrorist group modeling[J]. Interdisciplinary Description of Complex Systems,2005,3(1):27-43.
    [13]Knoke D, Burt R S, Minor M J. Applied network analysis [M]. New bury Park, CA:Sage,1983.
    [14]Wasserman S, Faust K. Social network analysis:methods and applications [M]. Cambridge Cambridge University Press,1994.
    [15]Freeman L C. Centrality in social networks:I. Conceptual clarification [J]. Social Networks,1979,1:215-239.
    [16]Stephenson K, Zelen M. Rethinking centrality:methods and applications [J]. Social Networks,1989,11:1-37.
    [17]Bonacich P. Technique for analyzing overlapping memberships [A].Costner H. Sociological methodology[C].San Francisco:Jossey Bass,1972:176-185.
    [18]Bonacich P. Factoring and weighting approaches to status scores and clique identification [J]. J. Math. Sociol.,1972,2:113-120.
    [19]Bonacich P. Power and centrality:a family of measures [J]. American Journal of Sociology,1987,92:1170-1182.
    [20]Poulin R,BoilyM-C, Masse B R. Dynamical systems to define centrality in social networks [J]. Social Networks,2000,22(3):187-220.
    [21]Newman M. E. J. Scientific collaboration networks. Ⅱ. Shortest paths, weighted networks, and centrality [J]. Physical Review E 64,2001,016132
    [22]Brandes U. A faster algorithm for betweenness centrality [J]. Journal of Mathematical Sociology,2001,25(2):163-177.
    [23]Stephenson K. A., Zelen M. Rethinking centrality:methods and examples. Social Networks 1989,11():1-37.
    [24]Milgram S. The small world problem [J]. Psychology Today,1967,1(1):61-67.
    [25]Travers J, Milgram S. An experimental study of the small world problem [J]. Sociometry,1969,32(4):425-443.
    [26]Freeman L. C. Borgatti S. P. White D. R. Centrality in valued graphs:a measure of betweenness based on network flow. Social Networks,1991,13(1):141-154.
    [27]Newman M E J.A measure of betweenness centrality based on random walks [J]. arXiv:cond-mat/0309045,2003.
    [28]Noh J. D. Rieger H. Stability of shortest paths in complex networks with random edge weights [J]. Physical Review E 66,066127 (2002).
    [29]Bondy J A, Murty U S R.. Graph theory with applications [M].New York:North2Holland,1981.
    [30]吴望名,李念祖.图论及其应用[M].北京:科学出版社,1984.
    [31]ChvatalV. Tough graphs and hamiltonian circuits [J]. Discrete Mathematics,1973,5(2):215-228.
    [32]欧阳克智,欧阳克毅,于文池.图的相对断裂度[J].兰州大学学报,1993,29(3):43-49.
    [33]许进,席酉民,汪应洛.系统的核与核度(Ⅰ)[J].系统科学与数学,1993,13(2):102-110.
    [34]许进,席酉民,汪应洛.系统的核与核度理论(V)——系统与补系统的关系[J].系统工程学报,1993,8(2):33-39.
    [35]Wang Y, Xu J, Xi Y. The core and coritivity of a system (Ⅳ) [J]. Journal of Systems Engineering and Electronics,1993,4 (2):1-10.
    [36]许进.一种研究系统的新方法——核与核度法[J].系统工程与电子技术,1994,(6):1-10.
    [37]许进.系统核与核度理论及其应用[M].西安:西安电子科技大学出版社,1994.
    [38]许进,席酉民,汪应洛.系统的核与核度理论(Ⅱ)——优化设计与可靠通讯网络[J].系统工程学报,1994,9(1):1-11.
    [39]寿纪麟,李飞.网络系统的点权核、点权核度及应用[J].系统工程理论与实践,1996,(6):58-63
    [40]谢政,汤泽莹.模糊连通度与模糊核度[J].模糊系统与数学,1997,1:69-74
    [41]M Cozzens, D Moazzami, S Stueckle. The tenacity of a Graph.Proceedings of the Seventh Quadrennial International Conference on the Theory and Applications of Graphs, MI, to appear 1995:1111-1122.
    [42]王志平,李彩荣,任光等.韧性度与网络图的结构[J].辽宁大学学报(自然科学版),2001(3):206-210.
    [43]王志平,赵连昌.图的离散度[J].大连海事大学学报,1999,25(4):74-77
    [44]席酉民,唐方成.组织的立体多网络模型研究[J].西安交通大学学报,2002,36(4):430-435.
    [45]李鹏翔,任玉晴,席酉民.网络节点重要性的一种度量指标[J].系统工程,2004,22(4):13-20.
    [46]C. B. Jones et al. Database Design for a Multi-Scale Spatial Information System [J]. INT J.GIS,1996,10(8):901-920.
    [47]Timpf, Sabine. Map Cube Model-A Model For Multi-Scale Data [C]. In 8th International Symposium on Spatial Data Handling (SDH'98), Vancouver, Canada, edited by Poiker, Thomas K. and Chrisman, Nicholas, International Geographical Union,1998:190-201.
    [48]A. Bouju, F. Stockus,F. Bertrand, P. Boursier. Locationbased spatial data management in navigation systems [C].In IEEE Intelligent Vehicles Symposium, Versailles, France,2002:18-20.
    [49]Follin J. M., Bouju A., Bertrand F., Boursier P. Management of multi-resolution data in a mobile spatial information visualization system [C].Web Information Systems Engineering Workshops,2003. Proceedings.2003:92-99.
    [50]J. M. Follin, A. Bouju, F. Bertrand, P. Boursier. Extension to multi-resolution of an embedded spatial information visualization system[C]. In Proceedings of 6th AGILE conference on Geographic Information Science,2003:149-159.
    [51]T. Ai, P. van Oosterom. A map generalization model based on algebra mapping transformation [C].In Proceedings of the Ninth ACM International Symposium on Advances in geographic information systems, New York, NY, USA ACM Press,2001:21-27.
    [52]龚建雅等.面向对象集成化空间数据库管理系统的设计与实现.武测学报[J],2000.25(4):289-293
    [53]艾廷华.城市地图数据库综合的支撑数据模型与方法研究(博士学位论文).武汉:武汉测绘科技大学,2000,1
    [54]张锦.多分辨率空间数据模型理论实现技术研究[M],北京:测绘出版社,2004.
    [55]吴凡,祝国瑞.基于小波分析的地貌多尺度表达与自动综合[J].武汉大学学报(信息科学版),2001,26(2):109-112.
    [56]吴凡.地理空间数据的多尺度处理与表示研究(博士学位论文).武汉:武汉大学,2002.
    [57]胡绍永.基于LOD技术的空间数据多尺度表达(硕士学位论文).武汉:武汉大学,2004.
    [58]Douglas D. H., Peucker T.k.. Algorithms for the reduction of points required to represent a digitized line or its caricature [J]. Canadian Cartographer,1973,10 (2):112-122
    [59]Guttman. A. R-tree:A Dynamic Index Structure for Spatial Searching [J].ACM SIGMOD,1984,13(6):47-57
    [60]Ballard D. H. Strip trees:a hierarchical representation for curves [J]. Communication of the ACM,1981,24(5):310-321.
    [61]Gunther O. Efficient Structures for Geometric Data Management [M]. Lecture Notes in Computer Science 337, Springer-Verlag,1988.
    [62]Jones C. B., Abraham I. M. Line Generalization in a global cartographic database [J]. Cartographic,1987,24(3):32-45.
    [63]Oosterom P Van. Reactive-tree:a storage structure for a seamless scaleless Geographic Information Systems [J]. In:Proceedings of Auto-Carto,1991,10(10):393-407.
    [64]Oosterom P Van, Vincent Schenkelaars. The Development of an Interactive Multi-scale GIS [J]. INT J. GIS,1995,9(5):489-507.
    [65]Wanning Peng. Automated Generalization in GIS [M]. The Netherlands:ITC Publication Series,1997.
    [66]毋河海等.地图水系与地貌自动综合研究专辑[J].武汉测绘科技大学学报.1995.20(增刊)
    [67]王桥,毋河海.地图信息的分形描述与自动综合研究[M].武汉:武汉测绘科技大学出版社,1998.
    [68]王家耀,武芳.数字地图自动制图综合原理与方法[M].北京:解放军出版社,1997.
    [69]王家耀,武芳.数字地图自动综合人工神经元网络方法的研究[M].北京:解放军出版社,1998.
    [70]王家耀,田震.海涂水深综合的人工神经元网络方法[J].测绘学报,1999,28(4):335-339.
    [71]田鹏,郑扣根等,基于C-Tree的无级比例尺GIS多边形综合技术[J].中国图象图形学报,2001,Vol 6(A),No.8
    [72]Timpf S, Volta G S, Pollock D W, Egenhofer M J. A Conceptual Model of Wayf inding Using Multiple Levels of Abstraction [J]. In:Frank A U, Campari I, Formentini U (eds).Proceedings of Theories and Methods of Spatio-temporal Reasoning in Geographic Space, Berlin:Springer-Verlag.348~367.
    [73]王艳慧,陈军等.道路网多尺度数据建模的实体—关系分析[J].北京:中国GIS协会第七届年会论文集[C].2003.
    [74]蒋捷,韩刚.多尺度导航地理数据组织方法初探[J].矿山测量,2003,3:53-55.
    [75]陈玉敏,龚健雅,史文中.多级道路网的最优路径算法研究[J].武汉大学学报(信息科学版),2006,31(1):70-73.
    [76]张锦.城市居民地自动综合算法研究-地理空间数据整合与更新[M],北京,2004:149-160.
    [77]贾奋励,宋国民.电子地图显示中点要素LoD模型的建立[J].测绘学院学报,2002,19(1):62-64.
    [78]Do Young Eun; Shroff, N. B. Network decomposition:theory and practice [J]. Networking, IEEE/ACM Transactions on,June 2005,13(3):526-539.
    [79]Mori,Hiroyuki; Komatsu, Yubun. Power Network Decomposition with New Ant Colony Optimization [C] Probabilistic Methods Applied to Power Systems,2006. PMAPS 2006. International Conference on,2006:1-6.
    [80]Singh, H. K.; Srivastava, S. C. A reduced network representation suitable for fast nodal price calculations in electricity markets [C]. Power Engineering Society General Meeting,2005. IEEE,2005:2070-2077.
    [81]Mansinthorn P., Bogobowicz A. B. network decomposition in wireless communication [C], Communication Networks and Services Research Conference,2005. Proceedings of the 3rd Annual,2005:243-248.
    [82]胡泽明,岳春生,王志刚.嵌入式导航终端互补分级路网拓扑模型的研究及实现[J].测绘科学,2006,31(6):139-140.
    [83]Leonidas Tzevelekas, Ioannis Stavrakakis. Directed Budget-Based Clustering for Wireless Sensor Networks [C]. Mobile Adhoc and Sensor Systems (MASS),2006 IEEE International Conference on,2006:674-679.
    [84]M. H. M. Vale, D. M. FalcLo, E. Kaszkurewicz. Electrical Power Network Decomposition for Parallel Computations [C]. Proceedings of the IEEE Symposium on Circuits and Systems, San Diego, CA,1992:2761-2764.
    [85]Hsu S. J., Yuang M. C. A. Network Reduction Axiom for Efficient Computation of Terminal-Pair Reliability[J]. Computers and Mathematics with Applications,2000,40(2):359-372.
    [86]Hassan, Mohsen M D. Network reduction for the acyclic constrained shortest path problem [J]. European Journal of Operational Research,1992,63(1):124-132.
    [87]王杰臣,张伟,毛海城.GIS网络分析的图简化方法研究[J].测绘学报,2001,(03)
    [88]张海堂,张永生,罗睿等.移动GIS中点要素信息自适应服务技术研究[J].计算机辅助设计与图形学学报,2005,17(6):1167-1172.
    [89]刘彦良,王鹏涛.复杂网络的优化模型及最短路径求解[J].天津理工大学学报,2006,22(1):33-35.
    [90]Lee J. Calculation of the shortest paths by optimal decomposition [J]. IEEE Trans on System, Man and Cybernetics,1982, SMC212 (3):410-415.
    [91]付梦印,李杰,邓志红.基于分层道路网络的新型路径规划算法[J].计算机辅助设计与图形学学报,2005,17(4):719-722.
    [92]陈则王,袁信.基于分层分解的一种实时车辆路径规划算法[J].南京航空航天大学学报, 2003,35(2):193-197.
    [93]罗跃军,李霖,朱敦尧等.车辆导航系统中最短路径计算的数据模型[J].昆明理工大学学报(理工版),2004,29(3):106-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700