近地卫星自主轨道确定和控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卫星的完全自主导航是我国航天控制发展的挑战性课题。本文主要研究了卫星导航滤波器的设计及其在自主导航中的应用;对姿态敏感器用于卫星自主导航进行了有益的尝试;研究了一种轨道机动的解析方法。本文主要的研究工作如下:
     1.通过一个新变量的引入,研究了一种全新的位置矢量和速度矢量的表达式,并推导了基于这种表达方式的状态偏微分,得到了计算卫星任意时刻位置矢量和速度矢量相对于初始位置与速度矢量偏导数的统一闭形算法。研究了近地轨道卫星需要考虑的三种形式的摄动,建立了对地观测卫星的轨道动力学模型。
     2.对推广卡尔曼滤波器的线性化误差和计算量进行了分析。以推广卡尔曼滤波算法为基础,为提高滤波新息的修正能力,在一般情况下从理论上研究了一种改进的推广卡尔曼滤波修正算法,并且证明了此算法所具有的两个基本定理。分析表明,该算法能够提高精度,防止滤波发散,但计算量有所增加。
     3.本文对离散周期线性系统的自适应滤波器进行了研究,给出了滤波算法,接着把此算法推广到具有标称轨线的周期非线性系统,给出了相应的周期增益的自适应滤波算法。同时,从实际应用的要求出发,对周期线性系统序贯递推形式的参数辨识算法进行了修正。修正的参数辨识算法对于时变参数具有一定的跟踪能力。周期系统的推广卡尔曼滤波算法,实现了系统状态滤波与系统参数的联合估计,并且在线计算过程简单,与卫星自主系统星上数据处理的实时性要求相一致。
     4.研究了一种新的基于磁强计大小测量的卫星导航方案。同时通过一种新颖的状态变量的应用,使本文提出的方法克服了把地磁场看成矢量时复杂的坐标转换,也使所建状态模型比较简单。最后通过使用模拟数据仿真,取得了初步结果,证明了该方法的有效性和实用性。
     5.研究了一种利用星敏感器进行卫星轨道确定的自主导航方案。这种自主导航方案完全利用高精度的CCD星敏感器,以及大气对星光折射的数学模型及误差补偿方法,精确敏感地平,从而实现航天器的精确定位。理论分析和实际计算表明:应用该方法可获得较高的定轨精度;星光折射角的测量误差和大气折射模型的不确定性是影响导航精度的主要因素;随着星敏感器精度的降低,位置误差近似线性增长;当观测星的数目大于40颗时,定位误差的变化趋于缓和。
     6.基于二体问题,根据卫星轨道运动的周期性,提出了把轨道优化问题分
    
     西北工业大学搏士学位论文 扬要
    成内部问题和外部问题两个子问题,把开普勒轨道要素分为“快”变化量和“慢”
    变化量来研究的方法。
     本文创造性的研究成果是:
     1.提出了一种新的基于磁强计大小测量的卫星导航方案。同时通过一种新颖
    的状态变量的应用,使本文提出的方法克服了把地磁场看成矢量时复杂的坐标转
    换,也使所建状态模型比较简单。
     二.基于二体问题,根据卫星轨道运动的周期性,提出了把轨道优化问题分成
    内部问题和外部问题两个子问题,把开普勒轨道要素分为“快”变化量和“慢”
     ___一.
    变化量来研究的方法。此研究方法大大降低了系统的阶次,更加易于实现。
     3.针对一种改进的推广卡尔曼滤波修正算法,证明了两个基本定理。该改进
    算法有利于防止滤波的发散,提高滤波的精度。
Orbit determination and control is an old topic and mature field in celestial mechanics. Meanwhile, It's the essential part of the satellite navigation. For China, the idea of autonomous satellite navigation is an attractive and challenged subject.
    The main objects of this dissertation are to develop state estimation theories and establish a united frame for the satellite autonomous navigation. Furthermore, the problem of minirnum time orbit transfer in strong central gravitational field is also studied. The major ideas in the dissertation are summarized as follows:
    1.Based on the introduction of a new variable, completely general closed-form solutions are given for both the rectangular coordinates of the two-body problem and their partial derivatives with respect to their initial values. The complete generality and simplicity of the solutions make them valuable for many practical applications of the two-body problem.
    2.Based on the algorithm of Extended Kalman Filter(EKF), the errors resulted from linearization are analyzed qualitatively and some useful conclusions are abtained. Then computation capacity of EKF is studied. The key to reduce the algorithm computation capacity is to simplify the computation of filter's gain matrix.
    3.hi order to avoid divergence of EKF, we proposed a modified EKF algorithm and prove two basic theorems. The new algorithm improves the corrective capability to new information. Moreover, the computation capacity is not more complicated than that of EKF.
    4. Adaptive filtering algorithm of discrete linear periodic system is studied. Then we extend the algorithm to the nonlinear system with a periodical nominal trajectory, and a navigation filter is developed with the algorithm. Finally, from requirements in practical application of nonlinear system, we modify the parameter identification algorithm of linear periodic system to keep the parameter tracking ability.
    5. An approach of autonomous navigation for low earth orbit (LEO) satellites using magnitudes of the geomagnetic field is presented. A novel set of the state vector make the derivatives of the model with respect to the state vector easy to solve. At last, simulation for a sun-synchronous orbit satellite is done, and the effectiveness and
    
    
    practicality of the autonomous navigation method using the magnitudes of geomagnetic field vector have been shown. The navigation system designed with the method possesses the advantages of the inexpensive hardware and the simple algorithm, and can satisfy the moderate accuracy requirement of LEO satellites or be a redundant system.
    6. An approach of autonomous navigation for satellites is described in this paper by using refraction measurements of starlight passing through the upper atmosphere. An Extended Kalman Filter (EKP) has been designed to estimate the satellites' position and velocity. Simulation for a sun-synchronous orbit satellite is executed. The results show that the satellite's position accuracy is about 0.038km. Moreover, results show that the measurement error of starlight refraction angle and the uncertainty of the atmospheric refraction model are two principal factors responsible for deteriorating the navigation accuracy.
    7. Minimum time constant thrust orbit transfer in strong central gravitation field is studied. For the purpose of optimal thrust direction determination, Pontryagin's Maximum principle is combined with the motion equations of spacecraft. Next, the problem of optimal trajectory construction is divided into two subproblems. The first one is named the 'inner', hi this case, slow variables have small enough changes that it is possible to linearize the inner problem and obtain its analytic solution, hi turn, the second subproblem is named the 'outer'. This one is to determine the dynamics of slow variables, considered as the functions of the number of the revolution.
    The major contributions of this dissertation are:
    1. An approach of autonomous navigation for low earth orbit (LEO) satellites using magnitudes of the geomagne
引文
1 丸盖尔布(美)主编,胡寿松,伍立明译.应用最优估计.北京:国防工业出版社,1989
    2 Alexander R,mderle E,Grogor E,Schrempp W,Widmann H全球星(Global-Star)的姿态和轨道控制.控制工程,1999(3)
    3 Antonio Femando Bertachini de Almeida Prado. Transfer Orbits in Restricted Problem. Journal of Guidance Control and Dynamics,Vol. 18,No.3,May-June 1995
    4 Arthur J.Fuchs and Rosemarna S.Pajerski. The Role of Autonomous Satellite Navigation in The Needs Program. AIAA78-1703
    5 Bandu N.Pamadi. Simple Guidance Method for Single Stage to Low Earth Orbit. Journal of Guidance Control and Dynamics,Vol. 18,No.6,November-December 1995
    6 Brian Stubbington,Kevin Wallace. Satellite Based Navigation-Knowing Where the Satellites Are.Satellite Navigation NAV 1989
    7 Bruce R.Bowman,William N.Barker, Willianm G.Schick. Orbit Perturbation Analysis of West Ford Needles Clusters. AIAA-2000-4236
    8 Colin R.Mclnnes. Dynamics, Stability, and Control of Displaced Non-Keplerian Orbits.Journal of Guidance Control and Dynamics,Vol.21,No.5,Sept-Oct 1998
    9 David cielaszyk and Bong Wie.New Approach to Halo Orbit Determination and Control.Journal of Guidance Control and Dynamics,Vol. 19,No.2,March-April 1996
    10 Dr. Robert D.Culp,Dr. Don Mackison Fu Ho-Ling. Satellite Orbit Determination by Tracking Data from Ground Station with Statistical Kalman Filter Algorithm. AIAA-91-2679-CP
    11 E.J.Leffrets,F.L.Markley,M.D.Shuster. Kalman Filtering for Spacecraft Attitude Estimation. Journal of Guidance Control & Dynamics.Vol.5,No.5,1982
    12 Eleanor Ketchum. Autonomous Spacecraft Orbit Determination Using the Magnetic Field and Attitude Information. AAS96-005
    13 Edelbaum T.N.Optimum Thrust-Limited Orbit Transfer in Strong Gravity Field.Lecture Notes in Mathematics, 132 Symposium on Optimization. Springer Vefieg,1970
    
    
    14 Fred Y. Hadaegh and Edward Mettler. Autonomous Spacecraft Guidance and Control AIAA-96-3924
    15 Garfield C.Schmidt. Designing Nonlinear Filters Based on Daum's Theory. Journal of Guidance Control & Dynamics,Vol. 16,No.2,1993
    16 Gil Shorshi and Itzhack Y. Bar-Itzhaek. Satellite Autonomous Navigation Based on Magnetic Field Measurements. Journal of Guidance Control and Dynamics,Vol.18,No.4,July-Augnst 1995
    17 Guanrong Chen,Charles K. Shui. A Modified Kalman Filter for Real-Time Applications. IEEE Transactions on Aerospace and Electronic Systems,Vol.27,No. 1,1991
    18 H.J.Rim,B.E.Schutz, C.Webb, and P. Demarest. Orbit Maintenance and Characteristics for a Sar Satellite. AIAA-98-4394
    19 I.Michael Ros and Kyle T.AI.Friend. Low-Earth-Orbit Maintenance: Reboosts vs Thrust-Drag Cancellation. Journal of Guidance Control and Dynami-cs. Vol. 18,No.4,1994
    20 J.A.Keohichian.Topex Orbit Sustenance Maneuver Design. AIAA82-0202 107458-107460
    21 James K.Miller. Orbit Determination Strategy and Accuracy for a Comet Rendezvous Mission. Journal of Guidance Control and Dynamics,Vol. 13,No.5, September-Octomber 1990
    22 J.de Lafontaine. Orbital Dynamics in a Stochastic Atomosphere. Journal of Guidance Control and Dynamics,Vol. 13,No.3,May-June 1990
    23 Jiun-Tsong Wu. Orbit Determination by Solving for Gravity Parameters with Multiple Arc Data.Journal of Guidance Control and Dynamics.Vol.15,No.2,Mareh-April 1992
    24 J.L.Lair, P. Duchon. Satellite Navigation By Stellar Refraction.Acta Astronautica Vol.17.No.10
    25 J.L.Crassidis,F.L.Markley. Predictive Filtering for Nonlinear Systems. Journal of Guidance Control & Dynamics.Vol.20,No.3,1997
    
    
    26 John D.Vedder. Autonomous Position and Velocity Determination in Interplanetary Space. Journal of Guidance Control and Dynamics,Vol. 16,No.4, 1992
    27 Joseph R. Guinn. Autonomous Navigation for The New Millennium Program Earth Orbiter 1 Mission,AIAA-97-3816
    28 Jukie Deutschmann and Itzhack Bar-Itzhack. Attitude and Trajectory Estimation Using Earth Magnetic Data,AIAA-96-3631-CP
    29 Julie Deutschmann,Greenbelt, Marryland Rick Harman, Itzhack Bar-Itzhack. An Innovative Method for Low Cost,Autonomous Navigation for Low Earth Orbit Satellites. AIAA-98-4283
    30 Kerry D.Hicks and William E.Wiesel Jr. Autonomous Orbit Determination System for Earth Satellites.Journal of Guidance Control and Dynamics. Vol. 15,No.3,May June 1992
    31 Mark T. Soyka, Jay W. Middour, Jacques Fein. Simultaneous Orbit Determination of Large Satellite constellations,AAS 98-192
    32 Mark L.Psiaki.Autonomous Orbit Determination for Two Spacecraft from Relative Position Measurements.AIAA-98-4560
    33 Mark L.Psiaki and lejin Huang. Ground Tests of Magnetometer Based Autonomous Navigation(MAGNAV) for Low Earth Orbiting Spacecraft. AIAA-91-2725-CP
    34 Mark L.Psiaki.Autonomous Orbit and Magnetic Field Determination Using Magnetometer and Star Sensor Data, Journal of Guidance Control and Dynamics.Vol. 18,No.3,May-June 1995
    35 Mark L.Psiaki.Autonomous LEO Orbit Determination From Magnetometer and Sun Sensor Data. AIAA98-4308
    36 O.Montenbruck and E.Gill.Orbit Dertermination and Photogrammetry Using Mars-94 Tracking and Image.Journal of Guidance Control and Dynamics Vol.21,No.4,July-August 1998
    37 P.A.M.Abusali,B.D.Tapley, and B.E.Schutz. Autonomous Navigation of Global Positioning Satellites Using Cross-Link Measurements.Journal of Guidance Control and Dynamics.Vol.21,No.2,March-April 1998
    38 P.Daniel Burkhart. Adaptive Orbit Dertermination for Interplanetary spacecraft.Robert Gounley, Robert White,Eliezer Gai. Autonomous Satellite Navigation Stellar Refraction. AIAA83-2211
    
    
    40 Roger A.Metzler. Autonomous Satellite Navigation at Five Times Synchronous Altitude. AIAA 82-0311
    41 S.M.Fox,P.K.Pal and M.Psiaki,Magnetometer-Based Autonomous Satellite Navigation (MAGNAV),AAS 90-051
    42 Stephen Paul linder, Ahram Shafai,Omur Yuksel Bas. Improving Track Maintenance of Crosing and Maneuvering Targets. AIAA-99-4291
    43 S.Vathsal. Spacecraft Attitude Determination Using a Second-Order Nonlinear Filter. Journal of Guidance Control & Dynamics.Vol.10,No.6,1987
    44 Timothy Cichan,Robert G.Melton,David B.Spencer. Control Laws for Minimum Orbital Changes-the Satellite Retrival Problem,Part2.AIAA-2000-4430
    45 T.R.凯恩,P.W.莱金斯,D.A.李文森.航天飞行器动力学.北京:科学出版社,1988
    46 Y. Koishi,T. Sato. A Study of Next Generation Satellite Navigation system. AIAA-98-1300
    47 Zhao Liping,Zhou Fengqi,Zhou jun. Autonomous Orbit Determination for Earth Satellites by Starlight Atmospheric. Proceedings the 6th APC-MCSTA. September 18-21,2001,Beijing,China.
    48 Zhou Di,Mu Chundi. Adaptive Two-Step Filter with Applications to Bearings-Only Measurements Problem. AIAA-98-4313
    49 Zhou Fengqi,Zhao Liping,Zhou Jun,Chen Yu, An Approach OF Autonomous Navigation for Near-Earth-Orbit Satellites Using Magnitude of Geomagnetic Field.52nd International Astronautical Congress, 1-5 Oct 2001/Toulouse,France.IAF-01-A.7.04
    50 Zhou Di,Mu Chundi.Adaptive Two-Step Filter with Applications to Bearings-Only Measurements Problem. AIAA-98-4313
    51 曹雪勇,刘成军.用三站联测迭代法求飞行器位置的研究.中国空间科学技术,1999(5)
    52 陈淑卿.地球观测卫星轨道维持问题的探讨.空间飞行器总体设计部
    53 陈新海,李言俊,周军.自适应控制及其应用.西安:西北工业大学出版社,1998
    54 陈新海.最佳估计理论.北京:北京航空学院出版社
    55 程国采.航天飞行器最优控制理论与方法.北京:国防工业出版社,1999
    56 程云鹏.矩阵论.西安:西北工业大学出版社
    
    
    57 崔海英,佘明生.航天器的一种轨道维持方法.航天器工程,Vol.4,No.4,1995
    58 董云峰,章仁为.利用星敏感器的卫星自主导航.宇航学报,Vol.16,No.4,Oct 1999
    59 段广仁.线性系统理论.哈尔滨:哈尔滨工业大学出版社,1996
    60 冯绍军,袁信.观测度及其在卡尔曼滤波器设计中的应用.惯性技术,1999(4)
    61 冯纯伯.非线性控制系统分析与设计.南京:东南大学出版社
    62 高为炳.变结构控制理论基础.北京:中国科学技术出版社,1990
    63 何妙福.用于卫星激光测距数据处理的两种序贯估算法的比较.宇航学报,1983(1)
    64 胡恒章.航天器控制.北京:宇航出版社,1997
    65 黄圳圭.航天器姿态动力学.长沙:国防科大出版社,1995
    66 黄琳.稳定性理论.北京:北京大学出版社,1992
    67 韩潮,章仁为.利用雷达测高仪自主定轨.宇航学报,Vol.20,N0.3,Jul 1999
    68 姬学军.太阳同步兼回归轨道的控制方法.宇航学报,1983(4)
    69 贾沛璋,朱征桃.最优估计理论及应用.北京:科学出版社,1984
    70 J.W.科尼利斯,H.F.R.斯科耶尔,K.F.韦克著,杨炳尉,冯振兴译.火箭推进与航天动力学.北京:宇航出版社,1986
    71 李捷.利用星敏感器的卫星姿态确定和自主导航.中国空间科学技术研究院北京控制工程研究所博士论文,1993
    72 黎湧.信息融合状态估计理论及其在航天器GPS导航中的应用.西北工业大学博士论文,1997
    73 廖晖.对地定向三轴稳定卫星姿态确定和控制系统研究.西北工业大学博士论文,2000
    74 廖晓昕.稳定性的理论方法和应用.武汉:华中理工大学出版社,1999
    75 林涛,周建,张钧萍,贾晓光,钱国蕙.四边形全天自主星图识别算法.宇航学报,Vol.21 No.2,Apr.2000
    76 刘斌.低轨飞行器利用GPS定轨的算法研究.中国空间科学技术,1995(2)
    77 刘延柱.航天器姿态动力学.北京:国防工业出版社,1995
    78 刘林.航天器轨道理论.北京:国防工业出版社,2000
    79 刘丹阳.Kalman滤波算法的改进与Luenberger状态观测器理论的推广.中国控制论文集,1994,8.15-22,山西太原
    80 陆本魁.提高人造卫星测轨精度地一种简易方法.宇航学报,1985(2)
    81 潘科炎.GPS作为航天器全能敏感器的前景-GPS导航定姿.控制工程,1995(5)
    
    
    82 彭芝贵.推广的Kalman滤波有序修正法,宇航学报.1988(1)
    83 缪尔康.现代控制理论基础.成都:成都科技大学出版社,1994
    84 戎鹏志,张奕.中低高度卫星轨道调整策略的研究.上海航天,1999(1)
    85 佘明生.地球观测卫星的轨道捕获和轨道保持.空间飞行器总体设计部
    86 孙道省,邹志勤.组合导航系统中自适应滤波技术的研究.导航,1998(4)
    87 王旭东,潘科炎,李新峰.当前航天器制导导航和控制的几个问题.控制工程,1999(2)
    88 王旭东,李新峰,席敦义.中国巴西地球资源卫星的轨道捕获和轨迹交会控制.航天控制,2000
    89 王正名,易冬云.测量数据建模与参数估计.长沙:国防科技大学出版社,1996
    90 王子才,赵长安编著.应用最优控制.哈尔滨:哈尔滨工业出版社,1989
    91 王西京.飞行器轨道确定与机动研究.西北工业大学博士论文,2000
    92 王培德,史忠科,张友民,张洪才.非线性滤波与辨识的应用与发展.控制理论与应用.Vol,10,No.2,1993
    93 王康宁.最优控制的数学理论.北京:国防工业出版社,1995
    94 肖业伦.航天器飞行动力学原理.北京:宇航出版社,1995
    95 严拱天.返回式卫星轨道控制.控制工程.1995
    96 杨嘉樨.航天器轨道动力学与控制(上).北京:宇航出版社,1995
    97 袁建平.弹性飞行器动力学与控制.中国宇航学会.西北工业大学,1995
    98 袁孝康.星载合成孔径雷达目标定位方法.上海航天,1997
    99 赵黎平,周军,周凤岐.基于磁强计的卫星自主定轨.航天控制.2001(3)
    100 赵黎平,周凤岐,周军.实现轨道偏心率协调控制的卫星轨道维持方法.西工大学报,2002(1)
    101 章仁为.卫星轨道姿态动力学与控制.北京:北京航空航天大学出版社,1998
    102 章仁为,孙怀苏.静止轨道卫星的高精度确定.中国空间科学技术,1989
    103 章燕申编著.最优估计与工程应用.北京:宇航出版社,1991
    104 张荣保.卫星轨道维持方法.中国空间科学技术,1988
    105 周军.航天器控制原理.西安:西北工业大学出版社,1997
    106 周露.自适应卡尔曼滤波理论研究及应用.哈尔滨工业大学博士论文,1996
    107 曾颖超.航天器飞行力学.西安:西北工业大学出版社,1993
    108 左文辑,宋福香.微小卫星磁测自主导航方法.宇航学报,Vol.21 No.2,Apr.2000
    109 张金槐.关于自适应滤波技术的思考.国防科技大学学报,Vol.16 No.3,1994
    
    
    110 张洪才,张友民,贺志斌.一种鲁棒自适应推广Kalman滤波及其在飞行状态估计中的应用.信息与控制,Vol.21,No.6,1992
    111 张汉国,张洪钺.用偏差分离估计的鲁棒Kalman滤波算法.控制与决策,Vol.6,No.6.1991
    112 张守信.外弹道测量与卫星轨道测量基础.北京:国防工业出版社,1992
    113 James W. Lowrie. Autonomous Navigation Systems Technology Assesment. AIAA-1979
    114 谌颖.邻近近圆轨道两个飞行器固定时间最优交会.航天控制,1995(2)
    115 李旭.基于递推二次规划算法的燃料最优有限推力远地点变轨航天控制,1997(2)
    116 秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理.西安:西北工业大学出版社,1998
    117 邓自立,王建国.非线性系统自适应推广的Kalman滤波.自动化学报.1987,Vol.13,No.5
    118 Bittanti,S.and Guardabassi. G..Optimal Periodic Control and Periodic Systems Analysis:An Overview. Proeedings of 25th Conferene on Decision and Control. 1986
    119 Bittanti,S.,Colaneri,P. and De Nicolao. G..The Difference Periodic Riccati Eqution for the Periodic Prediction Problem. IEEE Trasaction on Automatic Control. 1988,Vol.33,No.8
    120 Nishimura,T. and Kano.H.Algebraic Solution of Riccati Equations in Discrete, Periodically Time-Varying Systems with detectabbility and Stabilizability. Trasactions of the Society of Instrumentation Control Engineers of Japan. 1978,Vol.14
    121 Hewer, G.A..Periodicity,Detectability and the Matrix Reccati Equation. SIMA Journal on Control. 1975,Vol. 13
    122 Kano,H.and Nishimura. T, Periodic Solutions of Matrix Riccati Equations with Detectability and Stabilizability. International Journal of Control. 1979, Vol.29, No.3
    123 陈义庆,陈祖贵,孙成启,王旭东,冯学义,定光成.返回式卫星数字姿态控制系统及飞行实验结果.中国空间科学技术,1990(6)
    124 Nishimura,T..Spectral Factodzation in Periodically Time-Varying Systems and Application to Navigation Problems.Journal of Spacecraft and Rockets. 1972,Vol.9,No.7
    125 Shayman,M.A..On the Phase Portrait of the Matrix Riccafi Equation Arising From the Periodic Control Problem. SIAM Journal on Control and Optimazation. 1985,Vol.23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700