用于增强现实的姿态测量系统及其校正技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
增强现实是虚拟现实技术的重要分支,也是近年来国内外研究机构的研究热点,其应用范围逐渐从室内环境向户外系统过渡。姿态测量是增强现实系统中的一项关键技术,但是传统的姿态测量技术跟踪范围有限,容易受到环境磁场干扰,无法应用于户外增强现实系统中。本文研究基于测量地球磁场和重力场的进行姿态确定的地磁姿态测量系统及其校正技术,所研制的系统具有跟踪范围广、体积小、功耗低等优点,不仅可应用于增强现实系统,而且在无人航行器、车辆死区推估、石油钻井等领域也有重要的应用前景。
     本文详细分析了地磁姿态测量系统的各种误差和干扰源,建立了基于物理原理的磁传感器误差模型,提出了基于椭球拟合和地磁倾角不变原理的磁传感器误差校正方法。所提出的方法在一系列姿态下记录姿态测量系统中加速度传感器和磁传感器的测量值,通过椭球拟合求解环境磁场的硬磁偏置干扰,并同时获得软磁系数中的伸缩矩阵与悬挂矩阵,最后根据地磁倾角不变原理求解软磁系数的对准矩阵。该校正方法可在无航向基准的条件下实现姿态测量系统航向角的自校正。
     为了去除磁传感器测量中的噪声干扰,本文提出了采用随机采样一致和正交距离判据的方法,保障了校正结果的准确性和稳定性。
     本文研究了三轴加速度传感器在参考基准下的校正标定方法,讨论了校正姿态的选取方法,并提出了在无基准条件下的加速度传感器偏置的校正方法。
     本文探讨了姿态测量系统水平状态下基于地磁场测量幅值动态调整卡尔曼滤波器参数以降低磁场瞬间干扰对航向角影响的方法,并进行了混合姿态测量系统的设计。
     本论文分别设计了基于双轴加速度传感器的地磁姿态测量系统和三轴加速度传感器与三轴陀螺的混合姿态测量系统,对所提算法进行了验证,详细分析了实验结果,实验结果证明所提算法的有效性。
Augmented Reality (AR) is an important branch of the Virtual Reality (VR) and is attracting much attention of the researchers all over the world in recent years. Its application is expanding from indoor environments to outdoor systems. One of the key technologies in AR system is attitude measurement. However, traditional attitude measurement devices can not be applied in outdoor AR systems due to their limited working ranges and errors caused by environmental interferences. An attitude measurement system based on the measurements of the gravity field and the magnetic field of the earth with the characteristics of large working range, small size and low power consumption is presented. Algorithms for its calibration are studied. The proposed system can not only be applied in AR applications, but also in various applications such as unmanned vehicles, dead reckoning systems, and oil drilling.
     The error sources of the proposed attitude measurement system are first analyzed in detail. Then an error model based on physical principles is studied. Finally a calibration method based on ellipsoid fitting and invariant of the geomagnetic dip angle at a specific location is presented. During the calibration procedure, a set of measurements of three-axis accelerometers and magnetometers are recorded at various attitudes. Then the hard iron offsets, the stretch matrix and the hanger matrix of the soft iron are solved by fitting an ellipsoid to the measured data of the magnetometers, and the aligner matrix of the soft iron are determined using the fact that the dip angle is constant at the current location. The proposed calibration method can be performed even when no heading reference is provided.
     A method to remove outliers from the measurements of the magnetometer based on random sampling consensus (RANSAC) and orthogonal distance is presented, which greatly improves the accuracy and stability of the calibration method for magnetometers.
     A calibration method for three-axis accelerometers with absolute tilt reference is provided and the attitude selection method for accelerometer calibration is discussed. The calibration method for the offset of the accelerometers without reference is also proposed.
     An adaptive Kalman filter based on the magnitude of the measurements is presented to keep the heading stable when there is a sudden magnetic disturbance in the horizontal plane, and a hybrid attitude measurement system is designed.
     Two attitude measurement systems are implemented respectively, one is based on two-axis accelerometers and the other is based on three-axis accelerometers and three gyroscopes. Experimental results show the effectiveness of the proposed algorithms.
引文
[1] M.Bajura, F.Henry, and R. Ohbuchi. MergingVirtual Reality with the Real World: Seeing Ultrasound Imagery Within the Patient. in Proceedings of SIGGRAPH’92. 1992. Chicago, IL.pp.203-210.
    [2] 朱淼良, 姚远, 蒋云良, 增强现实综述. 中国图象图形学报, 2004. 9(7): pp. 767-774.
    [3] 齐越, 马红妹, 增强现实: 特点、关键技术和应用. 小型微型计算机系统, 2004. 25(5): pp. 900-903.
    [4] 王涌天, 刘越, 胡晓明, 户外增强现实系统关键技术及其应用的研究. 系统仿真学报, 2003. 15(3): pp. 329-334.
    [5] 陈靖,视频增强现实系统及其核心技术的研究,北京理工大学博士论文,2002.
    [6] 哈涌刚, 周雅, 王涌天等, 用于增强现实的头盔显示器的设计. 光学技术, 2000. 26(4): pp. 350-353.
    [7] 刘越,虚拟现实和增强现实系统跟踪注册技术研究,北京理工大学博士后报告,2002.
    [8] P.Milgram and F.Kishino, A Taxonomy of Mixed Reality Visual Displays. IEICE Transacton on Information Systems, 1994. E77-D(12): pp. 1321-1329.
    [9] R.T. Azuma, A Survey of Augmented Reality. Teleoperators and Virtual Environments, 1997. 6(4): pp. 355-385.
    [10] Boeing, Augmented Reality Volume, http://www.boeing.com/assocproducts/art/ tech_focus.html
    [11] A.State, T. David, C. Tector, et al. Case Study: Observing a Volume-Rendered Fetus within a Pregnant Patient. in Proceeding of IEEE Visualization. 1994. pp.364-368.
    [12] W. Grimson, T. Lozano-Perez, W. Wells, et al. An Automatic Registration Method for Frameless Stereotaxy, Image Guided Surgery and Enhanced Reality Vision in Proceeding of IEEE Conference on Computer Vision and Pattern Recognition. 1994. pp.430-436.
    [13] K. Morgan, R.M. Satava, H.B. Sieburg, et al., Interactive Technology and theNew Paradigm for Health Care. IOS Press and Ohmsha. 1995.
    [14] S. Weghorst, Augmented Reality and Parkinson's Disease. Communication of ACM, 1997. 40(8): pp. 47-48.
    [15] D. Reiners, D. Stricker, G. Klinker, et al. Augmented Reality for Construction Tasks. in the 1rst International Workshop on Augmented Reality (IWAR’98),. 1998. San Francisco.pp.31-46.
    [16] S. Feiner, M. Blair, and D. Seligmann, Knowledge-based Augmented Reality. Communication of the ACM, 1993. 36(7): pp. 52-62.
    [17] B. Thomas, B. Close, J. Donoghue, et al. ARQuake: An Outdoor/Indoor Augmented Reality First Person Application. in Proceedings of the Fourth International Symposium on Wearable Computers. Atlanta, Ga, USA IEEE. 2000. pp.139-146
    [18] M. Fjeld and M.V. Benedikt. Augmented chemistry: An interactive educational workbench. in Proceedings of International Symposium on Mixed and Augmented Reality. Darmstadt, Germany: IEEE. 2002. pp.259-260.
    [19] J. Almgren, R. Carlsson, H. Erkkonen, et al. Tangible User Interface for Chemistry Education: Portability, Database, and Visualization. Submitted to Proceedings of the International Symposium on Mixed and Augmented Reality 2005.
    [20] P. D?hne and J.N. Karigiannis. Archeoguide: System Architecture of a Mobile Outdoor Augmented Reality System. in Proceedings of the International Symposium on Mixed and Augmented Reality. Darmstadt, Germany: IEEE. 2002. pp.263-264.
    [21] V. Vlahakis, J. Karigiannis, and N. Ioannidis, ARCHEOGUIDE: Challenges and Solutions of a Personalised Augmented Reality Guide for Archaeological sites. IEEE Computer Graphics and Applications Magazine, 2003. 22(5): pp. 52-60.
    [22] E. Bruns, B. Brombach, T. Zeidler, et al. Enabling Mobile Phones To Support Large - Scale Museum Guidance, 2005. http://www.uni-weimar.de/~bimber/ research.php.
    [23] Primordial. http://www.primordial.com/.
    [24] S. Julier, Y. Baillot, M. Lanzagorta, et al., BARS: Battlefield Augmented Reality System. TR: in NATO Symposium on Information Processing Techniques for Military Systems, 2000.
    [25] 华宏,虚拟现实系统浸没感增强和交互技术的研究,北京理工大学博士论文,1999.
    [26] 周雅, 晏磊, 赵虎, 增强现实系统光照模型建立研究. 中国图象图形学报, 2004. 9(8): pp. 969-974.
    [27] 珏艳华, 汪元美, 段会龙, 基于增强现实的外科手术导航技术. 中国医疗器械杂志, 2004. 28(1): pp. 50-54.
    [28] 滕玮, 田淮, 曾芬芳等, 基于增强现实技术的智能针灸系统的视觉处理. 华东船舶工业学院学报, 2004. 18(1): pp. 46-51.
    [29] 孙敏, 陈秀万, 张飞舟, 增强现实地理信息系统. 北京大学学报, 2004. 40(6): pp. 906-913.
    [30] 熊友军, 李世其, 柳祖国, 跟踪注册的增强现实技术研究. 计算机应用研究, 2005. 4: pp. 81-83.
    [31] 常勇,何宗宜, 基于 ARTool Kit 的地下管网增强现实研究. 武汉大学学报, 2005. 30(4): pp. 345-348.
    [32] 石教英, 虚拟现实基础及实用算法. 北京: 科学出版社. 2002.
    [33] J.P. Rolland, Y. Baillot, and A.A. Goon, A Survey of Tracking Technology For Virtual Environments. in chapter of Fundamentals of Wearable Computers and Augumented Reality, Thomas Caudell, 2003.
    [34] 徐彤,用于虚拟现实系统的跟踪技术的研究,北京理工大学博士论文,2001.
    [35] Polhemus, http://www.polhemus.com/.
    [36] Ascension. http://www.ascension-tech.com/.
    [37] J.M. Rekimoto. A Realtime Object Identification and Registration Method for Augmented Reality, in Proceedings of 3rd Asia Pacific on Computer Human Interaction. 1998. pp.63-68.
    [38] L.Naimark and E. Foxlin. Circular data matrix fiducial system and robust image processing for a wearable vision-inertial self-tracker in International Symposium on Mixed and Augmented Reality. 2002 pp.27-36.
    [39] T. Kawano, Y. Ban, and K. Uehara. A coded visual marker for video tracking system based on structured image analysis Mixed and Augmented Reality. in Proceedings of The Second IEEE and ACM International Symposium on Mixed and Augmented Reality. 2003. pp. 262-263.
    [40] Hitl. http://www.hitl.washington.edu/research/shared_space/.
    [41] J.M. Buenaposada and L. Baumela. Real-time tracking and estimation of plane pose. in Proc. ICPR 2002. Quebec, Canada. 2002. pp. 697-700.
    [42] V. Vlahakis, J. Karigiannis, M. Tsotros, et al. Personalized augmented reality touring of archaeological sites with wearable and mobile computers. in Proceedings of the 6th International Symposium on Wearable Computers. Seattle, USA: IEEE. 2002. pp.15-22.
    [43] 郭爱煌,傅君眉, 基于地球重力场和磁场测量的测斜技术. 仪器仪表学报, 2001. 22(4): pp. 400-403.
    [44] 刘诗斌,微型智能磁航向系统研究,西北工业大学博士论文,2001.
    [45] R.T. Azuma, B.R. Hoff, H.E.N. III, et al. Making Augmented Reality Work Outdoors Requires Hybrid Tracking. in Proceedings of the First International Workshop on Augmented Reality. San Francisco, CA.1998. pp. 219-224.
    [46] Y. Ohta and H. Tamura, The Challenge of Making Augmented Reality Work Outdoors. 1999: Springer-Verlag. pp. 379-390.
    [47] 张学孚, 路怡良, 磁通门技术.北京: 国防工业出版社. 1995.
    [48] J.J. Mach, Toward Auto-Calibration of Navigation Sensors for Miniature Autonomous Underwater Vehicles, TR: Virginia Polytechnic Institute and State University, 2003.
    [49] 曹永辉, 石秀华, 许晖, 磁通门与 GPS 组合导航在水下航行器的应用. 传感技术学报, 2005. 18(2): pp. 391-393.
    [50] 高鹏, 富立, 范跃祖, GPS/ DRS/ DMAP 汽车定位导航系统. 北京航空航天大学学报, 2005. 28(6): pp. 699-702.
    [51] 王怀光, 石志勇, 李国章等, 磁通门传感器在车辆导航系统中的应用研究. 传感器技术, 2005. 24(7): pp. 19-21.24.
    [52] 王亶文, 地磁场模型研究. 国际地震动态, 2001(4): pp. 1-4.
    [53] 中国大百科. http://www.cndbk.com.cn/.
    [54] M.J. Caruso. Applications of Magnetic Sensors for Low Cost Compass Systems. in IEEE 2000 Position Locations and Navigation Symposium. 2000. San Diego, CA, USA. 2000. pp.178-184.
    [55] 刘越, 王涌天, 胡晓明, 测量运动物体姿态的三自由度定位算法的研究. 计算机测量与控, 2002. 10(6): pp. 363-365.
    [56] J.B. Kuipers, Quaternions and rotation sequences: a primer with application to orbits, aerospace, and virtual reality. Princeton: Princeton University Press. 1998.
    [57] 刘笃仁, 韩保君, 传感器原理及应用. 西安: 西安电子科技大学出版社. 2003.
    [58] H. SSEC, Sensor Products Data Sheet. 1 and 2 Axis Magnetoresistive Microcircuits. 1999.
    [59] 孙宝元, 杨宝清, 传感器及其应用手册. 北京: 机械工业出版社. 2004.
    [60] ADI, Low-Cost 2 g Dual-Axis Accelerometer with Duty Cycle Output ADXL202. 2000.
    [61] Honeywell, SET/RESET PULSE CIRCUITS FOR MAGNETIC SENSORS. 2001.
    [62] X. Hu, Y. Liu, and Y. Wang. Autocalibration of an Electronic Compass for Augmented Reality. in The Fourth IEEE and International Symposium on Mixed and Augmented Reality. Vienna, Austria: IEEE. 2005. pp.182-183.
    [63] D. Poole, Linear Algebra : a modern introduction. Pacific Grove, CA: Brooks/Cole-Thomson Learning. 2003.
    [64] 袁智荣, 磁航向传感器使用中的误差补偿. 测控技术, 2001. 20(1): pp. 58-59.
    [65] 李秉玺, 赵忠, 孙照鑫, 磁阻传感器的捷联式磁航向仪及误差补偿. 传感技术学报, 2003(2): pp. 191-194.
    [66] 刘诗斌, 严家明, 孙希任, 无人机航向测量的罗差修正研究. 航空学报, 2000. 21(1): pp. 78-80.
    [67] D. Gebre-Egziabher, G.H. Elkaim, J.D. Powell, et al. A Non-Linear, Two-Step Estimation Algorithm for Calibrating Solid-State Strapdown Magnetometers. in Proceedings of the International Conference on Integrated Navigation Systems. St. Petersburg, Russia. 2001. pp.290-297.
    [68] B. Hoff and R. Azuma. Autocalibration of an Electronic Compass in an Outdoor Augmented Reality System. in Proceedings of International Symposium on Augmented Reality 2000. Munich, Germany: IEEE. 2000. pp.159-164.
    [69] R.B. Smith, B.G. Morton, and M.R. Elgersma, Electronic compass and compensation of large magnetic errors for operation over all orientations. 2003: U.S. Patent 6 543 146.
    [70] 杨新勇, 黄圣国, 磁航向测量系统误差校正方法研究. 仪器仪表学报, 2004(8): pp. 466-469.
    [71] S. Liu and Z. Zhang. A High accuracy magnetic heading system composed of fluxgate magnetometers and a microcomputer. in Proceedings of the IEEE on Aerospace and Electronics Conference. NAECON. 1989. pp.148-152.
    [72] 张静, 金志华, 田蔚风, 无航向基准时数字式磁罗盘的自差校正. 上海交通大学学报, 2004. 38(10): pp. 1757-1760.
    [73] W. Chojnacki, M.J. Brooks, A.v.d. Hengel, et al., On the Fitting of Surfaces to Data with Covariances. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000. 22(11): pp. 1294-1303.
    [74] 王解先, 陈俊平, 张春燕, 椭球曲面的拟合. 同济大学学报, 2004. 32(1): pp. 82-85.
    [75] W. Gander, G.H. Golub, and R. Strebel, Fitting of Circles and Ellipses Least Squares Solution. TR: Departement Informatik Wissenschaftliches Rechnen. 1994. pp. 1-57.
    [76] Q. Li and J. G.Griffiths. Least Squares Ellipsoid Specific Fitting. in Proceedings of the Geometric Modeling and Processing 2004. Beijing, China: IEEE. 2004. pp.335-340.
    [77] 居余马, 胡金得, 林翠琴, 线性代数. 北京: 清华大学出版社. 1995.
    [78] 李泽宇, 李德华, 陈振羽等, 几何基元的提取方法. 红外与激光工程, 2001. 30(1): pp. 4-7.
    [79] S.J. Ahn, Least squares orthogonal distance fitting of curves and surfaces in space. Berlin: Springer. 2004.
    [80] 吕志清,侯正君, 线加速度计的现状和发展动向. 压电与声光, 1998. 20(5): pp.313-321.
    [81] 董景新, 微惯性仪表—微机械加速度计. 北京: 清华大学出版社. 2003.
    [82] 范秋涛, 王铁玲, 加速度传感器的冲击校准. 计量与测试技术, 2005. 32(9): pp. 6-7.
    [83] 钱朋安, 吴仲城, 戈瑜等, 一体化三轴线加速度计静态标定方法的研究. 传感技术学报, 2005.18(1): pp. 86-88.
    [84] 孙宝元, 牛志明, 韩庚琳, 三维组合压阻式低频加速度传感器的研制与标定. 大连理工大学学报, 1992. 32(5): pp. 545 - 549.
    [85] 薛忍霞, 重力加速度计在倾斜度测量中的应用. 传感器技术, 1998. 17(2): pp. 40-43.
    [86] 赵忠, 加速度计零偏测量的一种新方法. 压电与声光, 2000. 22(6): pp. 420-423.
    [87] 付梦印, 邓志红, 张继委, Kalman 滤波理论及其在导航系统中的应用. 北京: 科学出版社. 2003.
    [88] G. Welch and G. Bishop. An Introduction to the Kalman Filter Kalman Filter. TR:in Siggraph. 2001.
    [89] E. BROOKNER, Tracking and Kalman Filtering Made Easy. John Wiley & Sons, Inc. 1998.
    [90] M. Hoshino, Y. Gunji, S. Oho, et al. A kalman Filter to Estimate Direction for Automotive Navigation. in Proceedings of the 1996 IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for Intelligent Systems. 1996. pp.145-150.
    [91] H. Rehbindera and X. Hu, Drift-free Attitude Estimation for Accelerated Rigid Bodies. Automatica, 2004. 40: pp. 653–659.
    [92] D. Roetenberg, H.J. Luinge, C.T.M. Baten, et al., Compensation of Magnetic Disturbances Improves Inertial and Magnetic Sensing of Human Body Segment Orientation. IEEE Transactions On Neural Systems and Rehabilitation Engineering, 2005. 13(3): pp. 395-405.
    [93] E. Foxlin,Inertial Head-tracking,TR:MIT,1993
    [94] A. Kim and M.F. Golnaraghi. A Quaternion-Based Orientation EstimationAlgorithm Using an Inertial Measurement Unit. IEEE Position Location and Navigation Symposium 2004, Monterey, CA, 2004. pp. 268-272.
    [95] E.R. Bachmann, I. Duman, U.Y. Usta, et al. Orientation Tracking for Humans and Robots Using Inertial Sensors. in International Symposium on Computational Intelligence in Robotics & Automation (CIRA99). Monterey, CA. 1999.pp.187 - 194.
    [96] D. Gebre-Egziabher, Gabriel H. Elkaim, J.D. Powell, et al. A Gyro-Free Quaternion-Based Attitude Determination System Suitable for Implementation Using Low Cost Sensor. in Position Location and Navigation Symposium, IEEE 2000. pp.185 - 192.
    [97] E. Kraft. A Quaternion-based Unscented Kalman Filter for Orientation Tracking. in ISIF. 2003. pp.43-54.
    [98] X. Yun, M. Lizarraga, E.R. Bachmann, et al. An Improved Quaterion-Based Kalman Filter for Real-Time Tracking of Rigid Body Orientation. in Proceeding of the 2003 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems. Las Vegas, Nevada. 2003. pp. 1074-1079.
    [99] J. James Samuel Goddard, Pose and Motion Estimation From Vision Using Dual Quaternion-Based Extended Kalman Filtering, TR: The University of Tennessee. 1997.
    [100] M. Wang, Y. Yang, R.R. Hatch, et al. Adaptive Filter for a Miniature MEMS Based Attitude and Heading Reference System. in Position Location and Navigation Symposium. 2004. pp.193-200.
    [101] A.J. Healey, E.P. An, and D. B. Marco. On Line Compensation of Heading Sensor Bias for Low Cost AUVs. in Proceedings IEEE AUV98 Workshop on Underwater Navigation. Draper Laboratories, Cambridge Mass. 1998. pp.1-7.
    [102] E. Foxlin. Inertial Head-Tracker Sensor Fusion by a Complementary Separate-Bias Kalman Filter. in Proceeding of VRAIS. 1996. pp.185-194.
    [103] Simon J. Julier and Jeffery K. Uhlmann, Unscented Filtering and Nonlinear Estimation. 2004. 92(3): pp. 401-423.
    [104] Simon J. Julier and Jeffery K. Uhlmann. Reduced Sigma Point Filters for thePropagation of Means and Covariances Through Nonlinear Transformations. in Proceedings of the 2002 American Control Conference. 2002. pp.887-892.
    [105] Simon J. Julier and Jeffery K. Uhlmann, A New method for the nonlinear transfomation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, 2000. 45(3): pp. 477-482.
    [106] R.T. Azuma, Predictive Tracking for Augmented Reality, TR: University of North Carolina at Chapel Hill, 1995.
    [107] V. Vlahakis. ARCHEOGUIDE: First results of an Augmented Reality, Mobile Computing System in Cultural Heritage Sites. in Proceedings of VAST 2001. 2001. pp. 131-140.
    [108] V. Vlahakis, N. Ioannidis, J. Karigiannis, et al., Archeoguide:An Augmented Reality Guide for Archaeological Sites. IEEE Computer Graphics and Applications, 2002. 22(5): pp. 52 - 60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700