土体动力特性、复杂场地非线性地震反应及其方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土体动力特性、复杂场地非线性地震反应分析及其方法研究是近二十多年地震工程学和岩土地震工程中非常活跃的前沿领域。该课题涉及面广、关键环节多、方法也不够成熟,虽成果丰硕但仍存在强于试验、弱于观测、研究角度及分析方法单调、物理机制理解不够等显著不足。因此,论文首先总结了国内外的研究现状,阐述了该课题的理论及工程实际意义。
     基于大量高质量强震观测及钻井台阵资料,对土体线性、非线性动力参数反演、土动非线性及软土本构、时域积分方法、竖向地震动对斜坡场地非线性地震反应的影响、近断层速度大脉冲地震动下复杂场地双重非线性反应分析等核心问题进行了与前人不同的研究,主要工作及创新如下:
     1.土体动力一维非线性本构关系是场地及地基动力响应、土工数值分析的关键。回顾和总结了国内外的发展状况及研究进展,对其分析方法、由等幅循环荷载到不规则荷载的扩展及应用规则、试验阻尼比的等效、滞回曲线形状等核心问题进行剖析、评价和探讨,对各种模型的优缺点进行了比较和讨论,指出了影响场地非线性地震动波形-土体滞回本构曲线形状及曲率变化规律是当今本构研究的热点。
     2.通过基岩覆盖单粘土层场地、Los Angeles Obregon Park多覆盖层场地、台湾Lotung DHB钻井台阵试验场对Pyke方法、“阻尼比退化系数”模型、非Masing准则模型一和非Masing准则模型二、“隐式应力阻尼等效”模型这五种常用动力本构进行了细致对比,说明了各模型有效合理的相对性,以及与强震观测相差异的客观性。
     针对上述问题及试验中滞回本构曲线形状时常表现为先平缓然后变化剧烈等特征,提出了“考虑试验阻尼效应的一种土体动力双型抛物线本构模型”,建立了不规则荷载下灵活变化的本构规则,并给出了A型和B型抛物线的函数表达及调制因子Ad的施加过程。通过对试验阻尼比的模拟,说明了九种土体本构的差异及加卸载准则。针对台湾LotungDHB钻井台阵试验场地,等效线性化方法SHAKE91、LSSRLI-1,时域非线性方法DESRA-2(Huang等)、以及上述五种方法共计九种方法进行了非线性地震反应分析。结果表明:双型抛物线本构模型计算的复合加速度地震动的峰值大小、波形大小相对关系及后续波形,与实际地震记录较为一致,说明了模型的合理性以及应用于工程实际的可行性。
     基于调制因子Ad对滞回本构曲线加以调制的思想,对“阻尼比退化系数模型”进行了扩展和修正,给出了“广义阻尼比退化系数模型”的理论表达式,并由钻井台阵试验场说明了其合理性。最后,将上述所有时域本构模型统一编制为出平面非线性波动程序APNWP_1D。
     3.如何合理有效地刻画软土场地非线性地震响应已成为岩土工程中的重要课题之一。对循环荷载下软土刚度退化、动强度降低及残余应变势的研究现状作了探讨,针对动三轴、动简剪、动扭剪试验研究结果,提出了多项式形式的动态残余应力势模型,分别给出了等幅循环荷载的相对残余应力势及不规则荷载的局部相对残余应力势的概念,并通过试验结果加以验证;阐述了残余应力势与残余应变势的密切关系,以及残余应力势在不规则荷载作用下的应用规则;动态残余应力势模型在厦门白鹭洲软弱场地分析中得以应用,其永久位移、应力应变动态范围、淤泥层隔振效应、竖向及剪切地震响应的差异等,均符合人们对残余应力特性及非线性场地反应的认识,进一步说明了模型的合理性及实用性。
     4.着重分析了以土工试验资料的归纳提炼为基础的经验关系模型,在剖析以往二维土动弹塑性本构模型之后,提出了土体动力单、双滞回非线性本构模型,给出了具体实现过程及步骤,并设计了两个数值实验实例加以验证,通过计算二维场地非线性动力反应及滞回本构曲线,与一维情形的比较,说明了两类本构模型的合理性。
     5.为了认识钻井台阵场地在中小地震动、强地震动下的土体线性、非线性动力特征,校验工程钻探方法及现场测试技术,提高土工试验精度。首先,阐述了线性成层介质场地反应P-SV、SH斜入射波动分析方法,其层转换矩阵元素总为实数。编制了斜入射线性波动场地反应程序SSRA,以均匀弹性半空间波动分析验证了程序的正确性。然后,在其他学者的基础上给出了遗传算法-单纯形法结合形成的全局-局部混合优化方法及设计步骤。最后,针对响嘡老井2#钻井台阵的中小地震记录,提供了以往研究中没有涉及的P波波速值、阻尼比值及与频率有关的阻尼频率因子b值。结果表明:反演的响嘡 2#剪切波速值大于94年单孔原位波速测试结果,而更接近于距其200多米的3#的剪切波速结果。并发现在峰值加速度60gal量级的地震作用中就存在反演可以察觉的土体非线性。另外,对响嘡 2#场地效应特性及应力传递函数进行了分析。
     针对强地震动钻井台阵记录,尝试性地给出了时域滞回非线性场地土体动力特性的反演方法,并以日本Kik-net强地震动台网的TKCH07钻井台阵观测资料进行了实践分析,得到的结果基本属于国际公认的砂土及粘性土土工实验范围,说明了其可靠性。
     6.目前波动显式有限元分析多以位移和(或)速度作为输入,而加速度记录更直接地保留了地震波的原始信息。为此,发展了一种直接以地震加速度作为输入的显式算法,该算法以中心差分和Newmark-β法结合,并通过平衡方程约简得到。采用水塔及框架结构为例,与现有振型分解联合Duhamel积分方法、Newmark-β隐式解法及五种显式算法进行了对比分析。结果表明:该算法可以在保证计算效率的前提下,得到与振型分解联合Duhamel积分方法、Newmark-β隐式解法相吻合的加速度反应。
     另外,对非传统方法-即基于时域数字滤波器传递函数的实时处理方法进行了简要归纳,并推荐了一套初值计算公式。
     7.国内外规范推荐或强制规定竖向地震动取为剪切反应谱的1/2-2/3,但该规定如何改进使之更合理已成为一个重要课题。首先对研究现状进行了简单总结,编制了可处理辐射阻尼、地震动相位特性、计算高效的二维波动显式有限元等效线性化程序ELPSV。初步研究表明:竖向地震动强度对周期在0.3秒以下的地表剪切反应谱有一定的影响,而高于0.3秒部分影响轻微。竖向地震动强度对斜坡场地的竖向地震反应及地表竖向反应谱的影响显著,按规范取值将偏于不安全。受地形条件影响,坡顶剪切地震反应会比坡脚反应要大,而竖向地震反应却并不明显。土层交界面的地震反应要比周围反应要低,交界面效应明显。软斜坡场地除竖向地震反应略有差别外,其它情形与硬斜坡场地的规律基本一致。该结果定量反映了竖向地震动的影响程度,为斜坡场地上考虑竖向地震动的建(构)筑结构的抗震设计提供了有益基础。8.利用日本小田原场地强震观测资料,对两个较大的单双滞回非线性波动模拟程序PSVNWA_2D和SHNWA_2D进行了细致校核,不仅分析出平面SH型非线性波动的模拟,而且进行了平面内P-SV型非线性波动的模拟。不但给出了观测点的理论地震图,而且还预测了相应的地震动速度、位移和永久位移。甚至给出了典型单元的单双滞回非线性动力本构曲线。
     针对绥棱缓斜坡场地,利用PSVNWA_2D程序计算了Northridge、Turkey两次地震作用,分别输入强弱地震动两种情形,计算了地表点和第二层交界面点加速度和位移反应,说明了各点的地震动变化、滞回曲线变化规律以及两次地震强弱情形的非线性地震反应的差别,分析了传递函数的频谱变化、放大倍数、以及剪切反应引起的竖向地震动。研究中发现了随着地震动输入强度的增大,观测点的非线性反应放大倍数反而增大的现象,文中阐述了原因,并在强震观测和震源机制中获得支持。同时还发现了等效线性化方法与时域非线性方法计算的位移、速度、和加速度传递函数的本质差别。另外,也进行了Loma Prieta地震动作用的分析。
     在Kobe地震动作用下,对类西雅图盆地进行了出平面和平面内两种情形的非线性反应分析,其中也进行了线性反应的对比。结果表明:平面内非线性波动模拟结果与出平面情形结果差别显著,尤其是对于位移反应和永久位移值。平面内非线性波动模拟结果中可发现典型的“盆地聚焦效应”,而出平面情形并不明显。但是,两种情形中可以发现明显的“盆地底边边缘效应”。这两种效应,会使位于场地剖面不同位置点的地震动差别很大。这些非线性场地地震反应的特点和规律,有益于重大工程考虑场地非线性的设计地震动的预测与估计,有助于重要建筑结构的非线性抗震设计。
     9.通过近断层单向、双向速度大脉冲输入的自检验分析,指出了工程中传统等效线性化方法的适用条件及局限性。提出了既考虑物理(本构)非线性又考虑几何非线性的一维场地时域显式双重非线性动力反应分析方法,并将该方法增加到APNWP_1D程序中,设置单独开关加以控制。
     将近断层速度大脉冲地震动输入分解为两种独立机制-弹性大变形机制和双重非线性(弹塑性大变形)机制。提出了双机制分合法和统一法。对于二维复杂场地,针对近断层单向和双向速度大脉冲地震动,结合地震动分解策略,提出了动力弹塑性理论有机结合几何非线性-即动力弹塑性大变形机制分析方法,编制了较大的二维双重非线性动力计算程序软件DNDYN_2D。在TCU068单向速度脉冲和Northridge NWPCR双向速度脉冲作用下,对华林路农科院复杂场地的双重非线性动力反应进行了分析。结果表明:单向速度脉冲地震动作用时,双机制分合法比双机制统一法更合理,双机制统一法更宜于分析双向速度脉冲作用。定量给出了华林路农科院场地的的永久位移、加速度时程及峰值结果。
     该方法可用于基岩处几米永久位移的强地震动(PGA大于400gal)作用下,近断层成层场地的强非线性地震反应分析;也可得到工程中较为满意的二维场地双重非线性地震反应解答。
     最后,对研究工作简要总结,并指出了另外尚需研究的工作。
Recent twenty years, study on soil dynamic characteristics, nonlinear seismic response of complex site and its methods have become very active research areas, both in earthquake engineering and geotechnical earthquake engineering. This research needs deal with a great many keys and its method is not mature, although the results are much more abundant, it is obvious insufficient and inadequate for monotonous methods and impercipient physical mechanism etc. As a result, firstly, the author has expounded theoretical and practical significance of this reaearch, reviewed the current advancements at home and abroad in this field.
     Secondly, based on plenty of high quality strong motion observations and borehole array observations, the core problems: inversions of soil linear and nonlinear dynamic parameters, nonlinear constitutive relastions and soft soil’s, numerical integration methods in time domain, effects of vertical strong motion on nonlinear seismic response of slope site, diploid nonlinear seismic response of complex site during the velocity pulse type strong motion of near fault, are analyzed. The following are main contents and innovative achievements.
     1. Soil dynamic 1D nonlinear constitutive relation is the key to numerical method and dynamic response of site and foundation. Firstly, the development and research advancement are summarized. Then, the important problem, which are analysis methods, the application rules of from equal amplitude cyclic load process to irregular load’s, equivalent methods of test hysteretic damping, curve shapes of hysteretic constitutive etc. are analyzed, evaluated and discussed. The advantages and disadvantages of models are compared with each other. Finally, the shape of hysteretic constitutive curve can affect waveform of nonlinear strong motion in site response, which is pointed out especially.
     2. By analyzing nonlinear response of clay layer mantled base rock site, Los Angeles Obregon Park multi-mantled layer site, Taiwan Lotung DHB borehole array site, 5 types models, which are Pyke method, damping degradation coefficient model, Non-Masing rule model ONE and model TWO, implicit stress damping equivalent model are compared detailedly with each other. It is objective that some discrepancy between theoretical results and the strong motion observations. Each model is relatively rational and effective.
     Considering previous questions and the characteristics of reverse load or unload curves sometimes change more flatly at first and then acutely in soil test. First, the rules of adjustable double-parabola hysteretic constitutive curves in irregular load history are established, and function expression and implement course of A type and B type parabola are expounded. Second, by comparisons of 9 methods simulated results of soil test damping, the load and unload rules of double-parabola model accord with the test results, especially accord with the value of soil test damping. Because of the adjustment coefficient Ad can be changed, the model has more powerful capability of simulation the shape of constitutive relationship curves. Third, using the borehole array records of Taiwan Lotung DHB field test, the nonlinear seismic response of DHB site are analyzed by equivalent linear method SHAKE91, LSSRLI-1; nonlinear method in time domain - DESRA-2, Pyke model, Non-Masing rule model ONE, implicit stress damping equivalent model, damping degradation coefficient model, Non-Masing rule model TWO and double-parabola constitutive model respectively. After compared all the synthesize acceleration ground motions with the observation records, we found that the PGA of double-parabola model are almost equal to the observation value, the comparative size relations of strong motion waveform, subsequence waveform are agree well with the records. As a result, the rationality of double-parabola constitutive model and the feasibility in practical engineering application are manifested.
     Similarly, the idea of adjustment coefficient Ad can change the shape of hysteretic constitutive cure, which is applied in previous damping degradation coefficient model. Generalized damping degradation coefficient constitutive model is gained. The function expression and implement course are expounded too, and its rationality is also manifested by borehole array site. At last, all of constitutive models are organized into AntiPlane Nonlinear Wave Propagation program APNWP_1D.
     3. How to effectively and rationally describe the nonlinear response of soft soil site is one of the most important tasks in geotechnical engineering. Firstly, stiffness degradation of soft soil, dynamic stress decrease and residual strain potential in cyclic loads are discussed. Dynamic Residual Stress Potential(RSP) in polynomial type are brought forward after detailed analyzing the results of triaxial test, cyclic simple shear test and torsional test. The conceptions of relative RSP and local relative RSP for regular cyclic and irregular load respectively are presented. Simultaneously, RSP are verified by all test data. Secondly, the affinity of RSP and residual strain potential, the application rule of RSP in irregular loads are explained. At last, dynamic RSP is successfully used in seismic response of Xiamen Bailuzhou site. The results of permanent displacement, dynamic range of stress and strain, isolation vibration effect of silt layer and the difference of shear and vertical strong motion, which accord with the knowledge of residual stress characteristic and site nonlinear seismic response, and the model is proved rationality and practicability again.
     4. This paper emphatically analyze experiential relation model, which is abstracted from a lot of experiment data. After drastically studied two-dimensional plastic constitutive model, we put forward single hysteretic nonlinear constitutive model and double hysteretic nonlinear constitutive model of soil. The accomplished processes and steps are presented, and two numerical examples are designed for validating these methods. Through the contrast of not only the one-dimensional and two-dimensional nonlinear hysteretic constitutive curve, but also the nonlinear dynamic response, it can be seen that the two type modle are rational.
     5. In order to understand the soil linear and nonlinear characteristics of borehole array site not only in the small and moderate earthquake but also in the strong earthquake, verifying and improving the precision of field test and laboratory test. Firstly, the paper expounds the linear horizontal stratified site’s P- SV, SH inclined incidence wave propagation method, whose Layer Transform Array is always real. The SSRA procedure is made, and its right is proved by an example of homogeneous elastic halfspace analysis. Secondly, Inversion methods, SSRA combining a global-local optimization algorithm, which is genetic algorithm (GA) - Simplex Method, are brought forward. At last, using 3 moderate and weak seismic events at Xiangtang borehole array (2#) site, soils dynamic characteristic parameters, including P velocity, damping value, frequency- dependent coefficient b, which are no dealing with in previous literatures, are calculated. S velocities of Xiangtang 2# site are on the whole greater than 1994’s field test results, and are close to the 3# which is 200m far away. At the same time, perceptible soil nonlinear behavior in 60gal magnitude earthquake is detected by inversion analysis. In addition, the displacement and stress transfer function of Xiangtang 2# site are also analyzed.
     For the records of borehole array, we tentatively present an inversion method of hysteretic nonlinear in time domain for dynamic characteristic parameters of site soil. Then taking this method in practice by TKCH07 borehole array data in Japan Seismic monitoring Network Kik-net, the result is proved reliable, because it is almost in the test scope of sand and clay, which are accepted by international.
     6. Displacement and/or velocity often be inputted in wave motion explicit FEM at present, while acceleration record directly reflects original information of seismic wave. As a result, an explicit integration formula, which is based on both center difference method and Newmark -βmethod, and is reduced by equilibrium equation, is proposed. Water tower and framework structure dynamic analysis indicated that, the acceleration response of the formula is agree well with that of mode analysis associating with Duhamel integral method and Newmark -βimplicit method, when the efficiency of calculating is firstly ensured. In addition, we concisely summarize the real time processing method, which is unconventional method, based on transfer function of numeric filter in time domain, and the first step’s initial value formula are recommended.
     7. It isn’t enough in study of vertical strong motion influencing on nonlinear seismic response of slope site for its complicated strong motion input, soil nonlinearity, slope topographty condition and interface effects etc. The methods of taking half or 2/3 of shear response spectrum as vertical seismic action, recommended or prescribed compulsorily in many engineering codes at home and abroad, are used to design buildings. But how to rationally consider this effect is one of the most important tasks. Firstly, these research advancements are reviewed. The necessary of equivalent linear method of 2D wave motion explicit FEM ELPSV program with characteristic of high efficiency, real phase, actual radiation damping, is discussed. Then, strength of vertical strong motion influencing on response spectrum of slope site surface, equivalent response history and PGD and PGV in site section, seismic response of soft slope site are analyzed, and draw some primary conclusions as following: There are certain influences on shear seismic response spectrum when the period less than 0.3s, but it is very light over 0.3s. Vertical seismic response of slope site was distinctly changed by vertical strong motion. Moreover, value of vertical seismic action in code for seismic design for buildings is apt to unsafety. Simultaneously, vertical response of the right site is great than the left’s. The slope top’s shear response is much stronger than slope feet’s for slope topography condition, while vertical seismic response is not obvious. Magnified effect in strong motion is more than in weak motion when ratio of horizontal to vertical component(av/ah) is 2/3, which agrees with the knowledge of nonlinear response. Interestingly, Interface effects make the response is lower than ambient site response. And soft site response is essentially consistent with phenomena of the hard site, except for vertical seismic response is increased previously and then decreased from site bottom to the top. At last, concise epilogue is given. All of conclusions and study results reflected quantitatively effect extent of vertical strong motion, provide beneficial basement for rational considering vertical strong motion in aseismic design of buildings and constructions in slope site.
     8. Using the strong earthquake observations at Ashigara Valley in Japan, the two much great single-double hysteretical nonlinear wave motion simulation program-PSVNWA_2D and SHNWA_2D are roundly checked, the author simulate not only SH nonlinear wave motion, but also P-SV nonlinear wave motion. The analysis results not only provide the theoretical strong motion of observation station, but also forecast the earthquake velocity, displacement and permanent displacement correspondingly, even, educe the single - double hysteretic nonlinear dynamic constitutive relation curves.
     Aiming at Suiling little slope site, we use PSVNWA_2D program to calculate the displacement and acceleration response of the surface and interface between the first layer and the second layer, when strong and weak type of Northridge and Turkey earthquake as input. The results show not only the changes of every earthquake motion and hysteretic curves, but also the nonlinear earthquake response difference between the strong motion and the weak motion in each earthquake, also difference between the two earthquake. Simultaneously, we analyze the spectrum change of transfer function, amplification coefficient and vertical earthquake motion derived from the shear response. In the research, it is sometimes found that amplification coefficient of nonlinear response at site observation station increase with the earthquake strong motion enhanced. The reason of phenomena is expatiated, and the case is proved by the strong earthquake observation and earthquake mechanism. At the same time, the paper pointed out essential difference of the transfer function of displacement, velocity and acceleration in equivalent linearization and time domain nonlinear technique. In addition, nonlinear seismic response during Loma Prieta earthquake is also analyzed.
     Under Kobe earthquake action, nonlinear seismic response of Quasi- Seattle- Basin site at in-plane and anti-plane cases is analyzed. The results indicated that the difference is remarkable between the nonlinear wave motion simulation of in-plane and that of anti-plane, in particular for the displacement response and permanent displacement. In the plane, the‘basin focusing effect’of the nonlinear wave motion simulation is obvious, while the situation in anti-plane. is not enough. But‘the basin basement edge effect’is distinct in two kinds of situations.
     These two effects can cause great difference of the seismic motion on the site section. The characteristics and the rules of the nonlinear seismic response are not only beneficial to the forecast and the estimate of seismic motion of important engineering, but also helpful to nonlinear aseismic design of the important construction structure.
     9. Inputting the near fault unidirectional and bidirectional velocity big pulse, complex site response is calculated by equivalent linearization method, the result is examined by itself. Rational condition and limitation of the traditional equivalent linearization method in this project are pointed out. In view of shortcomings, dynamic diploid nonlinear anlaysis explicit method in time domain for 1D site seismic response, which taking both physical nonlinear and geometrical nonlinear into account, is put forward. Then this method is taken to the APNWP_1D procedure, and establishing independent switch to control it. We decompose the input motion of near fault velocity big pulse into two kind of independent mechanisms - the elasitc big deformation mechanism and the diploid nonlinearity (elast-plastic big deformation) mechanism. At the same time, the parted and unitive double-mechanisms are proposed. For the two-dimensional complex ground, in view of the near fault seismic motion decomposition strategy, which are used to unidirectional and bidirectional velocity big pulse seismic motion analysis, the method of dynamical plastic theory combined big deformation mechanism is proposed. It has established bigger two-dimensional diploid nonlinear dynamical procedure software DNDYN_2D. Under TCU068 unidirectional pulse and Northridge NWPCR bidirectional pulse action, The diploid nonlinear dynamic response of complex site at Institute of Agricultural Sciences on the Hualin road was analysed. The result indicated that, when seismic motion was unidirectional velocity pulse, the parted diploid- mechanism was more reasonable than unitive diploid-mechanism. However the unitive diploid-mechanism is more suitable for the analysis of bidirectional velocity pulse action. The result also quantitatively present the permanent displacement, acceleration time history and peak value of site at Institute of Agricultural Sciences on Hualin road.
     This method may use for strong nonlinear seismic response of near fault stratified site, even on condition of seismic strong motion with several metres permanent displacement (PGA almost greater than 400gal) at bedrock as input. At the same time, more satisfactory answer in diploid nonlinear seismic response of 2D site for engineering also can be obtained.
     In the end, existing problems are pointed out and the research problems, which need to be done in future, are suggested.
引文
[1]胡聿贤. 地震工程学[M]. 北京:地震出版社,1998.
    [2]周锡元,王广军,苏经宇. 场地?地基?设计地震[M]. 北京:地震出版社,1991.
    [3]廖振鹏. 地震小区划-理论与实践[M]. 北京:地震出版社,1989.
    [4]袁一凡. 场地影响理论分析中的几个问题[C],地震工程研究文集-纪念胡聿贤教授从事科研40年. 北京:地震出版社,1992.
    [5]谢礼立,李沙白,章文波. 唐山响嘡三维场地影响观测台阵[J]. 地震工程与工程振动,1999, 19(2): 1-8.
    [6]中华人民共和国建设部. 建筑抗震设计规范(GB50011-2001) [Z]. 北京:中国建筑工业出版社,2002.
    [7]杨桂通,熊祝华. 塑性动力学[M].北京:清华大学出版社,1984.
    [8]房营光. 岩土介质与结构动力相互作用理论及其应用[M]. 北京:科学出版社,2005.
    [9]房营光,曹洪. 非线性多自由度结构地震反应的共振特性与突变分析[J].地震工程与工程振动,2003,23(5):69-74.
    [10]李小军,彭青,刘文忠. 设计地震动参数确定中的场地影响考虑[J]. 世界地震工程,2000,17(4): 34-41.
    [11]李小军. 对近年大地震震害现象与工程地震问题研究的思考[J]. 国际地震动态, 2001,8: 26-31.
    [12]薄景山. 场地分类和设计反应谱调整方法研究[D]. [博士后论文]. 哈尔滨:中国地震局工程力学研究所,1998.
    [13]1997 Uniform Building Code[M]. ICBO, Whittier California, International Conference of Building Officials.
    [14]Aki,K. Local site effects on strong ground motion. Proc. Earthq. Eng. Soil Dyn. II, 1988, 103-155.
    [15]Field, E. H., S. Kramer, A.-W. Elgamal et al. Nonlinear site response:where we’re at[R]. SCEC/PEER seminar and workshop Report, Seism. Res. Letter, 1998
    [16] Trifunac, M.D. and M.I. Todorovska. Nonlinear soil response 1994 Northridge California, earthquake[J]. Journal of Geotech. Engrg, ASCE, 1996, 122(9): 725-735.
    [17]Beresnev, I. A., G. M. Atkison, P. A. Johnson, and E. H. Field(a). Stochastic finite-fault modeling of ground motions from the 1994 Northridge, California earthquake. II. Widespread nonlinear response at soil sites[J]. Bull. Seism. Soc. Am. 1998, 88: 1402-1410.
    [18]Beresnev, I. A., E. H. Field, K. Van Den Abeele, and P. A. Johnson(b). Magnitude of nonlinear sediment response in Los Angeles basin during the 1994 Northridge, California earthquake[J]. Bull. Seism. Soc. Am. 1998, 88: 1079-1084.
    [19]Feng Su, J. G. Anderson, and Yuehua Zeng. Study of weak and strong ground motion including nonlinearity from the Northridge, California, earthquake sequence[J]. Bull. Seism. Soc. Am. 1998, 88: 1411-1425.
    [20]Cultrera, G., Boore, D.M., Joyner, W.B., and Dietel, C.M. Nonlinear soil response in the vicinity of the Van Norman complex following the 1994 Northridge, California, earthquake[J]. BSSA,1999, 89(5): 1214 - 1231.
    [21]Chin B. H. and K. Aki. Simultaneous study of the source, path, and site effects on strong ground motion during the 1989 Loma Prieta earthquake: A preliminary result on pervasive nonlinear site effects[J]. BSSA,1991, 81: 1859-1884.
    [22]Darragh R. B. and A. F. Shakal. The site response of two rock and soil station pairs to strong and weak ground motion[J]. Bull. Seism. Soc. Am. 1991, 81: 1885-1899.
    [23]Field, E. H., P. A. Johnson, I. A. Beresnev, and Y. Zeng. Nonlinear ground-motion amplification by sediments during the 1994 Northridge earthquake[J]. Nature, 1997,390: 599-602.
    [24]Field, E. H., Y. Zeng, P. A. Johnson, and I. A. Beresnev. Nonlinear sediment response during the 1994 Northridge earthquake: observations and finite-source simulations[J]. J. Geophys. Res. 1998,103: 869-883.
    [25]Hartzell, S. Variability in nonlinear sediment response during the 1994 Northridge, California earthquake[J]. Bull. Seism. Soc. Am. 1998, 88:1426-1437.
    [26]Steidl.J.H., A.G. Tumarkin and R.J. Archuleta. What is a reference site?[J], Bull.Seism.Soc.Am. 1996, 86:1733-1748.
    [27]Nakmura, Y. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface[R]. QR RTR1 30,1,1989.
    [28]Bonilla,F., J. H. Steidl, G. T. Lindley, A. G. Tumarkin, and R. J. Archuleta. Site amplification in the San Fernando Valley, California: Variability of Site-effect estimation using the s-wave, coda, and H/V methods[J]. Bull. Seism. Soc. Am. 1997, 87: 710-730.
    [29]Lermo, J. and Francisco, J. Chavez-Garcia. Site effect evaluation using spectral ratios with only one station[J]. Bull. Seism. Soc. Am. 1993, 83:1574-1594.
    [30]Pavlenko, O.V. Nonlinear Seismic Effects in Soils: Numerical Simulation and Study[J]. BSSA, 2001,91(2): 381-396.
    [31]Kamiyama, M., T. Matsukawa and M. Yoshida. Dynamic variation of soil rigidity based on down-hole array observation[C]. 12WCEE. 2000.
    [32]Ghayamghamian, M. R. and H. Kawakami. On the characteristics of non-linear soil response and dynamic soil properties using vertical array data in Japan[J]. Earthq. Eng. Struc. Dyn. 1990, 25: 857-870.
    [33]Ghayamghamian, M. and H., Kawakami. Estimation of non-linear site amplification using downhole recordings[C]. 12thWCEE, 2000.
    [34]Loh, C.H. and C. S. Yeh. Identification of site response using 3-D array records[C]. 10thWCEE, Balkema, Rotterdam. ISBN 90 54 10 060 5, 1992.
    [35]Ikemoto, T., M. Miyajima and M. Kitaura. Inverse analysis of dynamic soil parameters using acceleration records[C]. 12thWCEE. 2000.
    [36]Satoh, T., M. Horike, Y. Takeuchi, T. Uetake, and H. Suzuki. Non-linear behavior of scoria evaluated from borehole records in eastern Shizuoka prefecture, Japan[J]. Earthq. Eng. Struc. Dyn. 1997,26: 781-795.
    [37]Satoh T,Fushimi M and Tatsumi Y. Inversion of strain-dependent nonlinear characteristics of soils using weak and strong motions observed by borehole sites in Japan[J]. BSSA,2001,91,2: 365-380.
    [38]Building Seismic Safety Council (BSSC). NEHRP recommended provisions for seismic regulations for new buildings and Other Structures[Z]. FEMA 450, Part 1 (Provisions) and Part 2 (Commentary), Developed for the Federal Emergency Management Agency, Washington, DC, 2004.
    [1]何仲怡. 本构理论(研究生讲义). 哈尔滨:哈尔滨工业大学,1999.
    [2]陈学良,金星,陶夏新,康兰池. 土体动力一维非线性本构关系剖析与评价[J]. 地震工程与工程振动,2006(6):147-157.
    [3]赵纪生,陶夏新. 局部加载条件下二维土质边坡稳定性的数值分析[J]. 岩土力学,2004,25(7):1063-1067.
    [4]赵纪生,陶夏新. 局部加载条件下二维土质边坡稳定性的数值分析[J]. 岩土力学,2004,25(7):1063-1067.
    [5]赵纪生,陶夏新. 基于损伤理论的多孔介质动力解析[J]. 湘潭矿业学院学报,2001, 16(4): 48-54.
    [6]王志良,沈智刚,李相崧.(黄宾 译,石兆吉 校) 用计算机联机实验系统进行土层地震反应分析[J]. 世界地震工程, 1986, 4: 41-48.
    [7]王志良,韩清宇. 粘弹塑性土层地震反应的波动分析方法[J]. 地震工程与工程振动, 1981, 1(1): 117-137.
    [8]陈国兴,庄海洋. 基于 Davidenkov 骨架曲线的土体动力本构关系及其参数研究[J]. 岩土工程学报,2005,27(8):860–864.
    [9] 张克绪,谢君斐. 土动力学[M]. 北京:地震出版社,1989.
    [10]钱家欢,殷宗泽. 土工原理与计算(第二版)[M]. 北京:中国水利水电出版社,1980.
    [11]李小军. 非线性场地地震反应分析方法的研究[D] [博士学位论文]. 哈尔滨:国家地震局工程力学研究所,1993.
    [12]栾茂田,林皋. 场地地震反应非线性分析的有效时域算法[J]. 大连理工大学学报,1994,34(2):228-234.
    [13]栾茂田,林皋. 场地地震反应一维非线性计算模型[J]. 工程力学,1992,9(1):94-103.
    [14]栾茂田. 土动力非线性分析中的变参数 Ramberg-Osgood 本构模型[J]. 地震工程与工程振动,1992,12(2):69-78.
    [15]李小军, 廖振鹏,张克绪. 考虑阻尼拟合的动态骨架曲线函数式[J]. 地震工程与工程振动,1994, 14(1): 30-35.
    [16]栾茂田,林皋. 土料非线性滞回本构模型的半解析半离散构造方法[J]. 大连理工大学学报,1992,32(6):694-701.
    [17]郑大同, 王惠昌. 循环荷载作用下土的非线性应力应变关系模型[J]. 岩土工程学报,1983, 5(1): 65-75.
    [18]李小军,廖振鹏. 土应力应变关系的粘-弹-塑模型[J]. 地震工程与工程振动, 1989, 9(3): 65-72.
    [19]张克绪,李明宰,王治琨. 基于非 Masing 准则的土动弹塑性模型[J]. 地震工程与工程振动,1997, 17(2): 74-81.
    [20]卢滔. 响嘡台阵场地特征及其反应的分析[D] [硕士学位论文]. 哈尔滨:中国地震局工程力学研究所,2003.
    [21]李小军. 土的动力本构关系的一种简单函数表达式[J]. 岩土工程学报,1992,14(5):90-94.
    [22]李广信. 高等土力学[M]. 北京:清华大学出版社, 2004.
    [23]大崎顺彦,原昭夫,清田芳治. 地盤振動解析のための土の動力学モデルの提案と解析例[R]. 日本地震工学シンポジウム講演集. 东京,1978,697-704.
    [24]王志良,王余庆,韩清宇. 不规则循环剪切荷载作用下土的粘弹塑性模型[J]. 岩土工程学报,1980,2(3):10-20.
    [25]周胜平. 等应变下饱和砂土动力特性的三轴试验研究[D],[硕士学位论文]. 北京:铁道部建筑科学研究院. 1988.
    [26]张克绪,王治琨,韩炜. 基于非曼辛准则的土双曲线动弹塑性模型[A]. 第四届全国地震工程会议论文集[C]:哈尔滨:中国地震学会地震工程专业委员会,中国建筑学会抗震防灾研究会,1994.
    [27]刘保健,谢定义. 随机荷载下土动力特性测试分析法[M]. 北京:人民交通出版社,2000.
    [28]Kagawa, T . Shaking table tests and analysis of soil-structure systems[D]. Ph. D. Dissertation, Univ. of Calif., Berkeley, May 1978.
    [29]Chen Jian-Chu, Lysmer, J , Seed, H B. Analysis of local variations in free field seismic ground motion[R]. Report No. UCB/EERC-81/03, College of Engineering, University of California. Berkeley, California, 1981.
    [30]Martin, P P . Nonlinear method for dynamic analysis of ground response[D], Ph. D. Thesis, University of California, Berkeley, June 1975.
    [31]Hara, A. Dynamic deformation characteristics of soils and seismic response analyses of the ground[D]. Dissertation submitted to the University of Tokyo, 1980.
    [32]Jennings, P C . Periodic response of a general yielding structure[J]. Joural of Engrg. Mech. Div., ASCE, 1964, 90(2): 131-166.
    [33]Ramberg, W. and Osgood, W. Description of stress strain curves by three parameters[R]. Technical Note No. 902, National Advisory Committee for Aeronautics, Washington, DC. 1943.
    [34]Kondner, R L. Hyperbolic stress-strain response: cohesive soils[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1963, 89(SM1): 115-143.
    [35]Hardin, B O, Drnevich, V P. Shear modulus and damping in soil: design equations and curves[J]. Journal of the Soil mechanics and Foundation Engineering Division, ASCE, 1972b, 98(7): 667-692.
    [36]Hardin, B O, Drnevich, V P. Shear modulus and damping in soil: measurement and parameter effects[J]. Journal of the Soil mechanics and Foundation Engineering Division, ASCE, 1972a. 98(6): 603-624.
    [37]Iwan, W D. On a class of models for the yielding behavior of continuous and composite systems[J]. Journal of Applied Mechanics, 1967, 34(3): 612-617.
    [38]Iwan, W D. A distributed-element model for hysteresis and its steady-state dynamic response[J]. Journal of Applied Mechanics, ASME, 1966, 33: 893-900.
    [39]Pyke, R. Nonlinear Soil Models for Irregular Cyclic Loadings[J]. Journal of the Geotechnical Engineering Division, ASCE, 1979, 105(6): 715-725.
    [40]Newmark, N. M., etc. Fundamentals of earthquake engineering[M]. Prentice Hall Inc., Englewood Cliffs, N. J., 1971: 163-192.
    [41]Rosenblueth, E., etc. On a kind of hysteretic damping[J], Journal of the Engineering Mechanics Division, ASCE, 1964, 90(4): 37-47.
    [42]Theirs, G R, Seed, H B. Cyclic stress-strain characteristics of clay[J]. Journal of the Soil mechanics and Foundation Engineering Division, ASCE, 1968, 94(2): 555-569.
    [43]Whitman, R, Roessett, J, Dobry, R and Ayestaran, L. Accuracy of modal superposition for one-dimensional amplification analysis[J]. Proc. Intern. Conf. on Microzonation for Safer Construction Research and Application, 1972, Vol. 2.
    [44]Seed, H B and Idriss, I M. The influence of soil conditions on ground motions during earthquake[J]. Journal of the Soil mechanics and Foundation Engineering Division, ASCE, 1969,94: 93-137.
    [45]Idriss, I M and Seed, H B. Seismic response of horizontal soil layers[J]. Soil Mechanics and Foundations Division, Proceedings of ASCE, 1968, 94(4): 1003-1031.
    [46]Valanis, K C. A theory of viscoplasticity without a yield surface[J]; Part II: Application to mechanical behaviour of metals. Archives of Mechanics[M], 1971, 23: 535–551.
    [47]Masing, G. Eigenspannungeu und verfertigung beim Messing[J]. proceedings of the 2nd International Congress on Applied Mechanics, Zurich. 1926.
    [1] 廖振鹏主编,地震小区划理论与实践,地震出版社,1989
    [2] 廖振鹏,工程波动理论导论(第二版),北京:科学出版社,2002.
    [3] 张克绪,谢君斐,土动力学,北京:地震出版社,1989.
    [4] 栾茂田,林皋. 土料非线性滞回本构模型的半解析半离散构造方法[J].大连理工大学学报,1992,32(6):694-701.
    [5] 金星,孔戈,丁海平. 水平成层场地地震反应非线性分析[J]. 地震工程与工程振动, 2004, 24(3): 38-43.
    [6] 卢滔,响嘡台阵场地特征及其反应的分析[D][硕士学位论文],哈尔滨:中国地震局工程力学研究所,2003,6.
    [7] 齐文浩,薄景山,刘德东,刘红帅. 强震记录对三个土层地震反应分析程序的检验[J]. 地震工程与工程振动, 2005, 25 (5): 30-33.
    [8] 景立平. 场地土壤动剪切模量及阻尼比试验报告[R]. 福建省数字强震台网建设项目. 哈尔滨:中国地震局工程力学研究所,2003.
    [9] 周克森,一维土层非线性地震反应分析的 δ ? θ法[J]. 地震工程与工程振动,1996, 16(4): 1-14.
    [10]廖河山、徐植信,场地土的一维非线性地震反应分析方法[J]. 地震工程与工程振动,1992, 12(4): 30-39.
    [11]黄玉龙,郭讯,袁一凡等. 软泥夹层对香港场地地震反应的影响[J]. 自然灾害学报,2000,9(1):109-116.
    [12]陈学良,金星,陶夏新,韦永祥. 考虑试验阻尼效应的一种土体动力双型抛物线本构模型[J]. 岩土力学,稿号:06-864,已接收发表.
    [13]Borja, Ronaldo I., Chao-Hua Lin, Kossi M. Sama and Gwynn M. Masada. Modelling non-linear ground response of non-liquefiable soils[J]. Earthquake Engineering and Structural Dynamics. 2000, 29 : 63-83.
    [14]Jonathan P. Stewart. et al, Calibration Sites for Validation of Nonlinear Geotechnical Models. http://www.cee.ucla.edu/faculty/Papers/Appendix -B/Webpage/revMain.htm.
    [15]Huang Huey-chu, Shieh Chie-song and Chiu Hung-chie. Linear and nonlinear behavior of soft soil layers using Lotung downhole arrays in Taiwan[J], TAO, 2001,12(3):503-524.
    [16]Borja Ronaldo I., Blaise G. Duvernay and Chao-Hua Lin. Ground response in Lotung: total stress analyses and parametric studies[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(1): 1061-1090.
    [17]Luna, Ronaldo. Site response analysis including liquefaction[PPT]. Geotechnical and Bridge Seismic Design Workshop, New Madrid Seismic Zone Experience. October, 2004, Cape Girardeau, Missouri.
    [18]Borja, Ronaldo I., Heng-Yih Chao, Francisco J. Montans and Chao-Hua Lin. Nonlinear ground response at Lotung LSST site[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(3): 187-197.
    [1] 张克绪,谢君斐,土动力学[M],北京:地震出版社,1989.
    [2] 郁寿松,石兆吉,土壤震陷试验研究[J],全国第二届地震工程学术讨论会论文集[C], 1986: 176-172.
    [3] 李小军,非线性场地地震反应分析方法的研究[D][博士学位论文],哈尔滨:国家地震局工程力学研究所,1993.
    [4] 袁晓铭,孟上九,孙锐,随机地震荷载下黏性土残余应变的半经验计算公式[J]. 水利学报,2004 (11): 62-67.
    [5] 沈珠江,王仁钟,反复荷载作用下砂土变形的平均过程理论[J]. 沈珠江土力学论文选集[A], 2004: 127-140.
    [6]陈学良,金星,陶夏新. 软土动态残余应力势模型及其工程应用[A], 第七届全国地震工程学术会议论文集[C],北京:地震出版社,2006.
    [7]刘保健,谢定义. 随机荷载下土动力特性测试分析法[M]. 北京:人民交通出版社,2000.
    [8]福建省地震局,福建地震地质工程勘察院厦门分院. 福建省地震局数字强震台网(土层场地)工程钻探报告及场地土壤动剪切模量及阻尼比试验报告[R],福建省强震台网建设项目,2003.
    [9]Finn, W. D. L., Bhatia, S. K. and Pickering, D.J., The cyclic simple shear test[J]. Soil Mechanics-Transient and cyclic loads[A], Edited by G. N. Pande and O. C. Zienkiewicz,1989: 583-608.
    [1] 李广信, 郭瑞平. 土的卸载体缩与可恢复剪胀[J]. 岩土工程学报, 2000,22(2):158-161.
    [2] 张建民. 砂土的可逆性和不可逆性剪胀规律[J]. 岩土工程学报, 2000, 22(1):12-17.
    [3] 栾茂田, 林皋, 杨庆. 岩土地震工程与土动力学中若干最新进展评述[A],第五届全国土动力学学术会议论文集[C],大连:大连理工大学出版社,1998,6,20-46.
    [4] 刘汉龙, 余湘娟. 土动力学与岩土地震工程研究进展[J]. 河海大学学报(自然科学版), 1999, 27(1): 6-15.
    [5] 张建民, 王建华. 土动力学与土工抗震[A],第八届全国土动力学及基础工程学术会议论文集[C],中国土木工程学会主编,北京:万国学术出版社,1999.44-55.
    [6] 吴世明, 徐莜在. 土动力学现状与发展[J]. 岩土工程学报,1998,20(3):125-131.
    [7] 谢定义, 张建民. 饱和砂土瞬态动力学特性与机理分析[M]. 西安:陕西科学技术出版社,1995,1-38.
    [8] 孔亮, 王燕昌, 郑颖人. 土体动本构模型研究评述[J]. 宁夏大学学报(自然科学版),2002, 22(1): 17-22.
    [9] 陈学良. 挡土墙地震反应的波动模拟分析[D] [工学硕士学位论文],哈尔滨:中国地震局工程力学研究所,2001.
    [10]章根德, 韦昌富. 循环荷载下砂质土的本构模型[J]. 固体力学学报,1998,19(4):299-303.
    [11]陈生水, 沈珠江. 复杂应力路径下无粘性土的弹塑性数值模拟[J]. 岩土工程学报,1995,17(2):20-28.
    [12]邱长林,阎澍旺. 循环荷载作用下砂土的一种普遍弹塑性模型[J]. 天津大学学报(自然科学版),1999,33(2):154-159.
    [13]刘元雪. 含应力主轴旋转的土体的应力-应变关系[D] [博士学位论文]. 重庆:后勤工程学院,1997.
    [14]李相菘,邹离湘. 砂土材料模拟剪胀破坏的动力本构模型探讨[A]. 第五届全国土动力学学术会议论文集[C]. 大连:大连理工大学出版社,1998. 47-52.
    [15]邹离湘,李相菘. 动力荷载下砂土的动本构模型探讨[J]. 深圳大学学报(理工版),1999,16(1):14-19.
    [16] Chen, W. F. and Saleeb, A. F.著,余天庆,王勋文译, 土木工程材料的本构方程(第一卷 弹性与建模)[M]. 武汉:华中科技大学出版社,1981,12.
    [17] Chen, W. F. and Saleeb, A. F.著,余天庆,王勋文译, 土木工程材料的本构方程,(第二卷 塑性与建模)[M]. 武汉:华中科技大学出版社,1993,7.
    [18]袁建新. 土的粘弹塑性关系[J]. 岩土工程学报,1982,4(4):39-44.
    [19]沈珠江. 理论土力学[M]. 北京:中国水利水电出版社,2000
    [20]蒋彭年. 土的本构关系[M]. 北京:科学出版社,1982.
    [21]黄文熙. 土的工程性质[M]. 北京:水利电力出版社,1988.
    [22]屈智炯. 土的塑性力学[M]. 成都:成都科技大学出版社,1987.
    [23]郑颖人,龚晓南. 岩土塑性力学基础[M]. 北京:中国建筑工业出版社. 1988.
    [24]郑颖人,沈珠江,龚晓南著. 岩土塑性力学原理[M]. 北京: 中国建筑工业出版社,2002.
    [25]李广信. 土的三维本构关系的探讨与模型验证[D] [博士学位论文]. 北京:清华大学,1985.
    [26]濮家骝,李广信. 土的本构关系及其验证与应用[J]. 岩土工程学报,1986,8(1): 47.
    [27]姚仰平等. 三维临界状态土力学[M],2004,3,(个人交流文集).
    [28]龚晓南. 土塑性力学(第二版)[M]. 杭州:浙江大学出版社,1989,9.
    [29]龚晓南,叶黔元,徐日庆. 工程材料本构方程[M]. 北京:中国建筑工业出版社,1995.
    [30]李小军. 非线性场地地震反应分析方法的研究[D] [博士学位论文]. 哈尔滨:中国地震局工程力学研究所,1993.
    [31]伊颖峰,施建勇,周清华. 土体弹塑性本构模型研究综述[J]. 岩土工程师,2002,14(2):10-13.
    [32]张彬,王钊,彭亚明等. 土本构模型研究的现状与展望[J]. 桂林工学院学报,2003,23(3):274-278.
    [33]沈珠江. 考虑剪胀性的土和石料的非线性应力-应变模式[J],水利水运科学研究,1985,(4):12-17.
    [34]蒋明镜,沈珠江. Microscopic analysis of shear band in structured clay[J]. 岩土工程学报,1998,20(2):102-108.
    [35]沈珠江. 结构性粘土的堆砌体模型[J],岩土力学,2000,21(1):1-4.
    [36]周正明. 土坝蓄水期变形特性和土的本构关系研究[D] [硕士学位论文]. 南京:南京水利科学研究院,1987.
    [37]张学言. 岩土塑性力学[M]. 北京:人民交通出版社. 1993.
    [38]俞茂宏. 强度理论新体系[M]. 西安:西安交通大学出版社,1992 .
    [39]范镜泓. 内蕴时间塑性理论及其新进展[J]. 力学进展,1985, 15(3): 250-252.
    [40]钱家欢,殷宗泽. 土工原理与计算(第二版)[M]. 北京:中国水利水电出版社,1996.
    [41]魏汝龙. 正常压密粘土的塑性势[J]. 水利学报,1964(6): 9-19.
    [42]魏汝龙. 正常压密粘土的本构定律[J]. 岩土工程学报,1981,3(3):10-18.
    [43]沈珠江. 结构性粘土的非线性损伤力学模型[J]. 水利水运科学研究,1993(4):247-255.
    [44]沈珠江. 土体变形特性的损伤力学模拟[A]. 第五届全国岩土力学数值分析与解析方法讨论会论文集[C],1994,I:1-8.
    [45]黄文熙. 硬化规律对土的弹塑性应力-应变模型影响的研究[J]. 岩土工程学报,1980, 2 (1): 1-10.
    [46]Roscoe, K.H., Schofield, M.A. and Thurairajah A. Yield of clays in states wetter than critical[J]. Geotechnique,1963,13(3): 211-240.
    [47]Burland, J. B. The yielding and dilation of clay[J]. Geotechnique, 15(2): 211-219.
    [48]Prevost, J.H. Mathematical Modeling of Monotonic and Cyclic Undrained Clay Behavior[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1977(1): 195-216.
    [49]Prevost, J.H. A Simple Plasticity Theory for Frictional Cohesionless Soils[J]. SoilDynamics and Earthquake Engineering, 1985, 4: 9-17.
    [50]Mróz, Z., Zienkiewicz, O. C. Uniform formulation of constitutive equation for clay and sands[A], Desai, C.S., Gallagher, R. H., Mechanics of Engineering Materials[C], London: John Willey and Son,1984. 78-95.
    [51]Dafalias Y F, Popov E P. Plastic internal variables formulas of cyclic plasticity[J]. Journal of Applied Mechanics, 1976, 98(4): 645-650.
    [52]Dafalias,Y. F., etc. Cyclic Loading for Materials with a Vanishing Elastic Region[J]. Nuclear Engineering and Design, 1977, Vol.41, 293-302.
    [53]Mróz, Z., etc. An Anisotropic Hardening Model for soil and its Application to Cyclic Loadings[J]. Int. J. Numerical and Analytical Methods in Geomechanics, 1978, 2(3): 203.
    [54]Mróz, Z., etc. Application of an Anisotropic Hardening Model in the Analysis of Elasto-plastic Deformation of soils[J], Geotechnique, 1979, 29(1): 1-34.
    [55]Aubry, D., etc. Numerical Algorthm for an Elasticplastic Constitutive Equation with Two Yield Surface[J], Numerical Method in Geomechanics, Vol.1,1979:15.
    [56]Seiki Ohmaki. A Mechanical Model for the Stress-Strain Behavior of Normally Consolidated Cohesive Soil[J]. Soil and Foundation, JSSMFE, 9(3), 1979.
    [57]Aboim, C. A., etc., A Bounding-Surface Plasticity Theory Application to Cyclic Loading of Sand[J]. Int. Symp. Numerical Model in Gemechanics, Zurich, Switzerland, 1982.9:13.
    [58]Kolymbas, D. An outline of hyploplasticity[J]. Archive of Applied Mechanics, 1991, 61: 143-151.
    [59]Paster, M.,Zienkiewicz, O. C. and Chan, A.H.C. Generalized plasticity and the modeling of Soil behavior[J], Int. J. Num. Ana. Mech. Geom. 1990,14(3):151-190.
    [60]Valanis, K. C. A Theory of Viscoplasticity without A Yield Surface[J].Archives of Mechanics, 1971,23: 517-551.
    [61]Bazant, Z.P.and Krizek, R. J. Endochronic constitutive law for liquefaction of sand[J]. Proc. ASCE, 1976, 102(EM2): 331-344.
    [62]Ansal, A.M., etc. Viscoplasticity of Normally Consolidationed Clays[J]. ASCE, 1979, 105(GT4): 19-26.
    [63]Ansal, A.M., etc., Endochronic Models for Soils, Soils under Cyclic and Transient Loading, Swansea, Vol.1, 1980: 475-482.
    [64]Szavits-Nossan, A. Endochronic Constitutive Equation for Soil[J]. Proceedings International. Symposium Soil under Cyclic and Transient Loading, Swansea, Balkema, 1980,Vol. 1. 347-352.
    [65]Iwan, W. D. On a Class of Models for the Yield Behavior of Continuous and Composite System[J]. Journal of Applied Mechanics, 1967, Vol.34, p. 612-617.
    [66]Mróz, Z. On the description of Anisotropic Hardening[J]. J. Mech. Phys. Soilds, 1967, 15: 163-175.
    [67]Penzyna. Fundamental problems in Viscoplasticity[J]. Advances in App. Mech., 1966, 9: 243-377.
    [68]Zienkiewicz, O. C. and Hampheson, C., Viscoplasticity-a generalized model for description of soil behavior[M]. Numerical Methods in Geot. Eng., Chaper 3, 1979: 116-147.
    [69]Sekiguchi, H. Rheolgical characteristic of clay[J]. Int. 9 ICSMFE, 1977, I: 289-292.
    [70]Borja, R. I. and Kavazanjian, E. A constitutive models for the stress-strain-time behavior of ‘wet’ clays[J]. Geotechnique, 1985, 35(3): 283-298.
    [71]Chen, W. F. and Baladi, G. Y., 1985, Soil Plasticity-Theory and Implementation, ELSEVIER Amsterdam-Oxford-New York-Tokyo 1985. ISBN 0-444-41662-5.
    [72]Matsuoka, H. Stress-strain relationships of sands based on the mobilized plane[J]. Soil and Foundations, 1974,14(2): 45-61.
    [73]Aubry, D. and Hujeux, J. C., A double memory model with multiple mechanisms forcyclic soil behavior[A]. Int. Symp. On Numerical Models in Geomechanics[C], Zurich,1982: 3-13.
    [74]Kabilamany, K. and Ishihara, K. Cyclic behavior of sand by the multiple shear mechanism model[J]. Soil dynamics and Earthquake Engineering, 1991, 10(2): 24-83.
    [75]Iai, S., Matsunaga, Y., Kameoka, T., Strain space plasticity model for cyclic mobility[J], Soils and Foundations, 1992, 32(2): 1-15.
    [76]Iai, S. and Kaneoka, T. Finite element analysis of earthquake induced damaged to anchored sheet pile quay walls[J]. Soils and Foundations, 1993, 33(1): 71-91.
    [77]Sandler, I. S., Dimaggio, F. L. and Baladi, G. Y., Generalized Cap Model for Geological Materials[J]. J. G. E. D., ASCE, 1976, 102(GT7).
    [78] Khosla, V. K. and Wu, T. H. Stress-Strain Behavior of Sand[J]. J. G. E. D., ASCE, 1976, 102(GT4).
    [79]Desai, C. S., Shao, C. and Park, I. J., Disturbed state modeling of Cyclic behavior of Soils and interface dynamic soils structure interation[J]. 9th Int. Conf. Computer Methods and Advances in Geomech., Wuhan 1997, I: 31-42.
    [80]Jiang Mingjing and Shen Zhujiang. Behaviour of artificially prepared structured samples and numerical simulation[J]. In:14 ICSMFE,Hambourg, 1997, I: 319-322.
    [81]Domaschuk, K. and Valliappan, P. Nonlinear Settlement Analysis by Finite Element[J], Journal of Geotechnical Engineering Div., ASCE, 1975, 101 (GT7): 601-614.
    [82]Naylor, D. J. Stress-Strain law for soils, Development in Soil Mechanics[M], edited by Scott, C. R., 1978.
    [83]Matsunaga, H., A constitutive model for soils evaluating principle stress rotation and its application to some deformation problems[J]. Soils and Foundations, 1990, 30(1): 142.
    [84]Yoshimine, M., Ishihara, K., Vargas, W. Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand[J]. Soils and Foundations, 1998, 38(3): 179-188.
    [85]Masuda, T., Tatsuoka, F. Yamada, S. et al. Stress-Strain behavior of sand in plane strain compression, extension and cyclic loading tests[J]. Soils and Foundations, 1999, 39(5): 31-45.
    [86]Ashmawy, A.K. and Bourdeau, P.L., Drnevich, V.P. et al. Cyclic response of geotextile-reinforced soil [J]. Soils and Foundations,1999, 39(1): 43-52.
    [87]Pradhan, T.B.S., Matsui, T., Yasuhara K.,et al. Cyclic undrained triaxial strength of clay by a round robin test[J]. Soils and Foundations, 1999, 39(4): 121-129.
    [88]Parry, R. H. G. Roscoe Memorial of Symposium: Stress-Strain Behavior of Soils[M], Henley-on-Thames, Cambridge University, England, pp.752, 1972.
    [89]Palmer, A. C. Proceedings of the Symposium on the Role of Plasticity in Soil Mechanics[M], Cambridge University, Cambridge , England, pp.314, 1973.
    [90]Pand, G. N. and Zienkiewicz, O.C. Proceedings of the International Symposium on Soils Under Cyclic and Transient Loading[M]. Balkema, Rotterdam. 1980.
    [91]Yong, R. N. and Selig, E. T. Application of Plasticity and Generalized Stress-Strain in Geotechnical Engineering[J]. ASCE, New York, N. Y., pp.356, 1982.
    [92]Desai, C.S. Constitutive Laws for Engineering Materials[M]. Prentice-Hall, New York, N. Y. 1984.
    [93]Desai, C.S. and Gallagher, R. H. Mechanics of Engineering Materials[M]. John Wiley and Sons, London, 1984.
    [94]Drucker, D. C. and Prager, W. Soil Mechanics and Plastic Analysis or Limit Design[J]. Quarterly of Applied Mathematics, 1952, 10(2):157-165.
    [95]Darve, F. An incrementally non-linear constitutive law: Assumption and predictions[J]. Int. Workshop on Constitutive Relation for Soils, Grenolbe, 1982:385-404.
    [96]Kaliakin V. N., Yanni F. Dafahas. Shot Communication Simplifications to the BoundingSurface Model for Cohesive Soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1989, 13.
    [97] Dong Yi Yue, Hoe I. ling, Victor N. Kahakin, Nickolas J. Themelis. Anisotropic of Clays Based on Bounding Surface Model[J]. Journal Engineering Mechanics, 2002, 128(7).
    [98]Hoe I. ling, Dongyi Yue, Victor N. Kaliakin, Nickolas J. Thernelis. Anisotropic Elastoplastic Bounding Surface Model for Cohesive Soils[J]. Journal Engineering Mechanics, 2002, 128(77): 748-758.
    [99]Zhi-Liang Wang, Yannis F. Dafalias, Chih-Kang Shen, Bounding Surface Hypoplasticity Model for Sand[J]. Journal Engineering Mechanics, 1990,116(5): 983-1001.
    [1] 陈运泰,多层弹性半空间中的地震波(一)[J]. 地球物理学报,1974, 17(1):20-43.
    [2] 陈运泰,多层弹性半空间中的地震波(二)[J]. 地球物理学报,1974, 17(3):173-184.
    [3] 徐果明,周蕙兰编著. 地震学原理[M]. 北京:科学出版社,1982.
    [4] 袁一凡,场地影响理论分析中的几个问题[A]. 地震工程研究文集[C],北京:地震出版社.1992:341-346.
    [5] 傅淑芳,刘宝诚编著. 地震学教程[M]. 北京:地震出版社,1991.
    [6] 傅淑芳,朱仁益编著. 高等地震学[M]. 北京:地震出版社,1997.
    [7] Aki,K., Richards, P. G.,(李钦祖、邹其嘉等译,傅承义校). 定量地震学(理论与方法),第 1,2 卷[M]. 北京:地震出版社,1986.
    [8] 金星. 重大工程场地设计地震动与地震动场的研究[D][博士学位论文]. 哈尔滨:国家地震局工程力学研究所,1992.
    [9] 李山有. 重大工程结构的设计地震输入[D] [工学博士学位论文]. 哈尔滨:中国地震局工程力学研究所,2000.
    [10]中华人民共和国地震行业标准. 工程场地地震女全性评价工作规范[S]. DB001-94. 1994.
    [11]陈学良,金星,陶夏新,韦永祥. 响嘡钻井台阵场地土体动力特性反演分析[J].地震学报,已接收发表且正在译英文稿.
    [12]周明, 孙树栋等. 遗传算法原理及应用[M]. 北京:国防工业出版社,1999.
    [13]李敏强,寇纪凇,林丹,李书全著. 遗传算法的基本原理与应用[M]. 北京:科学出版社,2002.
    [14]玄光男,程润伟著,于歆杰,周根贵译,遗传算法与工程优化[M]. 北京:清华大学出版社,2003.
    [15]韩炜,一种全局-局部优化算法及其在桩基承载力反演中的应用[D][工学博士学位论文]. 哈尔滨:中国地震局工程力学研究所,2000.
    [16]董连成. 利用地脉动台阵三分量观测反演工程场地剪切波速度结构[D] [工学硕士学位论文]. 哈尔滨:中国地震局工程力学研究所,2003.
    [17]师黎静. 利用地脉动观测反演工程场地剪切波速度结构[D] [工学硕士学位论文]. 哈尔滨:中国地震局工程力学研究所,2002.
    [18]刘红帅. 遗传算法的计算机程序 GA.FOR 及使用说明,个人交流资料.
    [19]崔建文. 利用面波资料反演波速剖面的全局优化方法[D] [工学博士学位论文]. 哈尔滨:中国地震局工程力学研究所,1998.
    [20]张克绪,谢君斐. 土动力学[M]. 北京:地震出版社,1989.
    [21]石兆吉,土的动剪切模量和阻尼比[J],地震小区划-理论与实践(廖振鹏主编)[M],北京:地震出版社,1989.
    [22]王钟琦,谢君斐,石兆基著. 地震工程地质导论[M]. 北京:地震出版社,1983.
    [23]谢礼立, 周雍年等. 唐山响嘡局部场地条件对地震动影响观测台阵扩建和改造[R]. 哈尔滨:中国地震局工程力学研究所,2001.6.
    [24]谢礼立,李沙白,章文波. 唐山响嘡三维场地影响观测台阵[J]. 地震工程与工程振动, 1999,19(2): 1-8.
    [25]卢滔. 响嘡台阵场地特征及其反应的分析[D][硕士学位论文]. 哈尔滨:中国地震局工程力学研究所,2003,6.
    [26]孔戈. 基于ANSYS 二次开发的地下结构动力反应仿真分析[D][硕士学位论文]. 哈尔滨:中国地震局工程力学研究所,2003,12.
    [27]周锡元,王广军,苏经宇. 场地?地基?设计地震[M]. 北京:地震出版社,1991.
    [28]Hardin, B.O., Drnevich, V.P., 1972a. Shear modulus and damping in soil: measurement and parameter effects[J]. Journal of the Soil mechanics and Foundation Engineering Division, ASCE, 98(6):603-624.
    [29]Hardin, B.O., Drnevich, V.P., 1972b. Shear modulus and damping in soil: design equations and curves[J]. Journal of the Soil mechanics and Foundation Engineering Division, ASCE, 98(7): 667-692.
    [30] Satoh, T., M. Horike, Y. Takeuchi, T. Uetake, and H. Suzuki(1997). Non-linear behavior of scoria evaluated from borehole records in eastern Shizuoka prefecture, Japan[J]. Earthq. Eng. Struc. Dyn. 26,781-795.
    [31]Satoh, T., Fushimi, M., and Tatsumi, Y. (2001), Inversion of strain-dependent nonlinear characteristics of soils using weak and strong motions observed by borehole sites in Japan.[J]. BSSA., 2001, 91(2): 365-380.
    [32]IASPEI/IAEE Joint Working Group on ESG, Japanese National Working Group on ESG, Earthquake Engineering Research Liaison Committee, Science Council of Japan Association for Earthquake Disaster Prevention, Proceeding of the international Symposium on The Effect of Surface Geology on Seismic Motion(ESG), Vol. I-III, March 25-27, 1992.
    [33]Ikemoto, T., M. Miyajima and M. Kitaura. Inverse analysis of dynamic soil parameters using acceleration records, 12thWCEE. 2000.
    [34]Zeghal, M. (1990). System Identification of the Nonlinear Seismic Response of Earth Dams[D], Ph.D. thesis,Princeton University, New Jersey.
    [35]Gill, P. E., W. Murray, and M. A. Saunders SNOPT: An SQP algorithm for large-scale constrained optimization[R], Numerical Analysis Report 97-2, Dept. Mathematics, University of California, San Diego, Calif. 1997.
    [36]Elgamal, A., T. Lai, Z. Yang, and L. He. Dynamic soil properties, seismic downhole arrays and Applications in Practice[J]. Proc., 4th Int. Conf. on Recent Advances in Geotech. Earthq. Engrg. Soil Dyn,, Ed., S. Prakash, San Diego, Calif., 85 pg, 2001.
    [37]Laurie Gaskins Baise, Steven D. Glaser. Investigations of Earthquake Site Response[PPT]. Tufts University and Univ. of California, Berkeley. From internet.2002.
    [38]Kik-net. http://www.kik.bosai.go.jp/kik/index_en.shtml
    [39]Haskell, N. A., The dispersion of surface waves on multilayered media[J]. Bull. Seism. Soc. Amer., 1953, 43(1): 17-34.
    [40]Haskell, N. A., Radistion pattern of surface waves from point sources in a multilayered medium[J]. Bull. Seism. Soc. Amer., 1964, 54(1): 377-393.
    [1] 杨柏坡,陈庆彬. 显式有限元法在地震工程中的应用[J]. 世界地震工程,1992, 8(4):31-40.
    [2] 周正华,李山有,侯兴民. 阻尼振动方程的一种显式直接积分方法[J]. 世界地震工程,1999,15(1):41-44.
    [3] 李小军,廖振鹏,杜修力. 有阻尼体系动力问题的一种显式差分解法[J]. 地震工程与工程振动,1992,12(4):74-80.
    [4] 李小军,刘爱文.动力方程求解的显式积分格式及其稳定性与适用性[J]. 世界地震工程, 2000, 16(2): 24-27.
    [5] 周正华,周扣华.有阻尼振动方程常用显式积分格式稳定性分析[J]. 地震工程与工程振动,2001,21(3): 22-28.
    [6] 张晓志,程岩,谢礼立. 结构动力反应分析的三阶显式方法[J]. 地震工程与工程振动,2002,22(3):1-8.
    [7] 陈学良,袁一凡. 求解振动方程的一种显式积分方法及其精度与稳定性[J]. 地震工程与工程振动,2002,22(3):9-14.
    [8] 朱镜清. 论结构分析中的数值稳定性[J]. 力学学报,1983,15(4):388-395.
    [9] 陈学良. 挡土墙地震反应的波动模拟分析[D][硕士学位论文]. 哈尔滨:中国地震局工程力学研究所,2001.
    [10]陈学良,金星,陶夏新. 求解加速度反应的显式积分格式研究[J]. 地震工程与工程振动,2006,26(5):60-67.
    [11]丰定国,王清敏,钱国芳,苏三庆. 工程结构抗震[M]. 地震出版社,1994:42-47.
    [12]李小军. 非线性场地地震反应分析方法的研究[D] [博士学位论文]. 哈尔滨:国家地震局工程力学研究所,1993.
    [13]李小军. 地震工程中动力方程求解的逐步积分法[J]. 工程力学,1996,13(2):110-118.
    [14]金星,马强,李山有. 四种计算地震反应数值方法的比较研究[J]. 地震工程与工程振动,2003,23(1):18-30.
    [15]马强,金星,李山有.单自由度系统地震动力反应的实时计算方法[J]. 地震工程与工程振动,2003,23(5):61-68.
    [16]金星,马强,李山有. 利用数字强震仪记录实时仿真地动速度[J]. 地震工程与工程振动,2004,24(1):49-54.
    [17]金星,马强,李山有,杨文东. 宽频带强震仪与地震仪同一台基上记录仿真对比研究[J]. 地震工程与工程振动,2004,24(5):7-12.
    [18]金星,马强,李山有. 利用数字速度记录实时仿真位移与加速度时程[J]. 地震工程与工程振动,2004,24(6):9-38.
    [19]金星,马强,李山有. 利用数字强震仪记录实时仿真地动位移[J]. 地震学报,2005,27(1): 79-85.
    [20]JIN Xing, MA Qiang, LI Shan-you. Real-time simulation of ground displacement by digital accelerograph record[J]. ACTA SEISMOLOGICA SINICA, 2004,18 (1):82~88.
    [21]K. J. Bathe, E. L. Wilson. Numerical Methods in Finite Element Analysis[M]. Prentice-Hall, Inc.,1976.
    [22]T. J. R. Huges, Analysis of transient algorithms with particular reference to stability behaviour[M]. Computational Methods for Transient Analysis, North-holland, Amsterdam, 1983: 67-155.
    [1] 张敏政,刘洁平. 土耳其伊兹米特地震(1999,M7.4)的强地震动[J]. 世界地震工程,16(2):1-7.
    [2] 周正华,周雍年,赵刚. 强震近场加速度峰值比和反应谱统计分析[J]. 地震工程与工程振动,22(3):15-18.
    [3] 周正华,周雍年,卢滔,杨程. 竖向地震动特征研究[J]. 地震工程与工程振动,23(3):25-29.
    [4] 廖振鹏. 工程波动理论导论(第一版;第二版)[M]. 北京:科学出版社,1995;2002.
    [5] 刘晶波. 不规则地形对地面运动的影响[D][硕士学位论文].哈尔滨:国家地震局工程力学研究所,1985.
    [6] 刘晶波. 波动的有限元模拟及复杂场地对地震动的影响[D][博士学位论文].哈尔滨:国家地震局工程力学研究所,1989,12.
    [7] 刘晶波,廖振鹏. 地震波散射问题的数值解[J],地震小区划-理论与实践(廖振鹏主编)[M]. 北京:地震出版社,1989.
    [8] 杨柏坡,杨笑梅. 复杂场地上结构地震反应的研究[J]. 地震工程与工程振动.1997,17(2):10-15.
    [9] 李山有. 重大工程结构的设计地震输入[D][博士学位论文].哈尔滨:中国地震局工程力学研究所,2000年9月.
    [10]潘旦光. 复杂场地的土层地震反应分析[D] [博士学位论文].上海:同济大学,2003
    [11]孙静. 岩土动剪切模量阻尼试验及应用研究[D][博士学位论文]. 哈尔滨: 中国地震局工程力学研究所,2004,6.
    [12]谢礼立,周雍年等. 唐山响嘡局部场地条件对地震动影响观测台阵扩建和改造[R].哈尔滨:中国地震局工程力学研究所, 2001. 中国地震局“九五”重点项目.
    [13]陈学良,金星,陶夏新. 竖向地震动对斜坡场地非线性地震反应的影响[J]. 岩土力学2006,27(增刊):1021-1026.
    [14]吴如山,安艺敬一. 地震波的散射与衰减[M]. 北京: 地震出版社,1993.
    [15]廖振鹏, 李小军. 地表土层地震反应的等效线性化解法[J], 地震小区划-理论与实践(廖振鹏主编)[M]. 北京:地震出版社,1989.
    [16]李小军. 一维土层地震反应线性化计算程序[J],地震小区划-理论与实践(廖振鹏主编) [M]. 北京:地震出版社,1989.
    [17]丁海平. 线性土-结构动力相互作用分析方法的改进[D][博士学位论文]. 哈尔滨:中国地震局工程力学研究所,2000,11.
    [18]杨柏坡,廖振鹏. 结构-土相互作用有限元解法及改造通用程序的初步结果[J]. 地震工程与工程振动, 1986, 6(4).
    [19]孙剑平,朱睎. 考虑非线性层状场地地震反应计算方法[J]. 岩石力学与工程学报,2001,20(2):139-146.
    [20]吴兆营. 土石坝地震稳定性分析及其应用[D][硕士学位论文]. 哈尔滨:中国地震局工程力学研究所,2002,8.
    [21]周晓岩. 重力式挡土结构水平地震作用沿高度分布[D][硕士学位论文]. 哈尔滨:哈尔滨工业大学,2005,1.
    [22]王钟琦,谢君斐,石兆基著. 地震工程地质导论[M]. 北京:地震出版社,1983.
    [23]卢滔. 响嘡台阵场地特征及其反应的分析[D][硕士学位论文]. 哈尔滨:中国地震局工程力学研究所,2003,6.
    [24]Ghayamghamian, M. R. and H. Kawakami. On the characteristics of non-linear soil response and dynamic soil properties using vertical array data in Japan[J]. Earthq. Eng. Struc. Dyn., 1990, 25: 857-870.
    [25]Wen, K.-L. Non-linear soil response in ground motions[J]. Earthq. Engng. Struct. Dyn., 1995,23: 599-608.
    [26]Schnabel, P.B., Lysmer, J., and Seed, H.B. SHAKE – A computer program for earthquake response analysis of horizontally layered soils[R]. Report No. EERC-72/12, University of California, Berkeley. 1972.
    [27] J.Lysmer, T.Udaka, C.F.Tshi, H.B.Seed. Flush, A computer program for approximate 3-D analysis of soil-structure interaction problems[R]. Report No. UCB/EERC 75-30 Berkeley: University of California. 1975.
    [28] I.M.Idriss, J.Lysmer, R.Hwang, H.B.Seed. QUAD-4, A computer program for evaluation he seismic response of soil structures by variable damping finite element procedures[R]. Report No. UCB/EERC 73-16 Berkeley: University of California. 1973.
    [29] Kramer Steven L. and Paulsen Sarah B.,Practical Use of Geotechnical Site Response Models,From Internet.
    [30]Nozomu Yashida et al., Equivalent linear method considering frequency dependent characteristics of stiffness and damping[J]. Soil Dyn. Earthq. Engng., Vol.22, 2002.
    [31]Finn W. D. L., Comparison of dynamic analyses for saturated sands[J]. Earthq. Engng. Soil Dyn., GED, ASCE,1978.
    [1] 廖振鹏. 工程波动理论导引 [M]. 北京: 科学出版社,1995.
    [2] 廖振鹏. 工程波动理论导引(第二版)[M]. 北京: 科学出版社,2002.
    [3] 金星,丁海平,李山有,等. 绥棱爆破地震监测与局部场地台阵观测研究[J]. 地震工程与工程振动,2004,24(4):1-7.
    [4] 刘晶波. 波动的有限元模拟及复杂场地对地震动的影响[D][博士学位论文]. 哈尔滨:国家地震局工程力学研究所,1989 年 12 月.
    [5] 李山有. 重大工程结构的设计地震输入[D][博士学位论文]. 哈尔滨:中国地震局工程力学研究所,2000 年 9 月.
    [6] 袁晓铭,孙锐,孙静等. 常规土类动剪切模量比和阻尼比试验研究[J]. 地震工程与工程振动,2000,20(4):133-139.
    [7] 国家地震局震害防御司. 工程场地地震安全性评价工作规范 DB001-94[S]. 北京:地震出版社,1994.
    [8] 周正华. 地基土介质阻尼和辐射阻尼的数值模拟[D][博士学位论文]. 哈尔滨:中国地震局工程力学研究所,2000 年 11 月.
    [9] 严国香. 复杂场地土层地震反应分析的若干问题研究[D] [硕士学位论文]. 上海:同济大学. 2004.
    [10]李小军. 非线性场地地震反应分析方法的研究[D] [博士学位论文]. 哈尔滨:国家地震局工程力学研究所,1993.
    [11]栾茂田,林皋. 场地非线性地震反应二维计算模型与数值分析[A],首届全国岩土力学与工程青年工作者学术研讨会论文集[C]. 1992, 9:384-387.
    [12]潘旦光. 复杂场地的土层地震反应分析[D] [博士学位论文]. 上海:同济大学. 2003.
    [13]Beyen K, Erdik M. Two-dimensional nonlinear site response analysis of Adapazar? plain and predictions inferred from aftershocks of the Kocaeli earthquake of 17 August 1999[J]. Soil Dynamics and Earthquake Engineering, 2004,24: 261–279.
    [14]IASPEI/IAEE Joint Working Group on ESG, Japanese National Working Group on ESG, Earthquake Engineering Research Liaison Committee, Science Council of Japan Association for Earthquake Disaster Prevention, Proceeding of the international Symposium on The Effect of Surface Geology on Seismic Motion(ESG), Vol. I-III, March 25-27, 1992.
    [15]Kenji Ishihara. Soil Behaviour in Earthquake Geotechnics[M]. Clarendon Press. Oxford,1996.
    [16]Steven L. Kramer, Geotechnical Earthquake Engineering[M]. Prentice-Hall International Series in Civil Engineering and Engineering Mechanics, 1995,12.
    [17]Hartzell S, Leeds A, Frankel A, Williams R A et al. Simulation of Broadband Ground Motion Including Nonlinear Soil Effects for a Magnitude 6.5 Earthquake on the Seattle Fault, Seattle, Washington[J]. BSSA, 2002, 92(2): 831–853.
    [18]Jian-Chu Chen, John Lysmer, H. Bolton Seed, Analysis of local variations in free field seismic ground motion[R]. College of engineering, University of California. Berkeley, California, Report No. UCB/EERC-81/03, January, 1981.
    [19]Marsh J, Larkin T J, Haines A J, and Benites R A. Comparison of linear and nonlinear seismic responses of two-dimensional alluvial basins[J]. BSSA, 1995, 85(3): 874-889.
    [20]Xiao-jun LI, Zhen-peng LIAO and Hui-min GUAN. An explicit finite e1ement-finite difference method for analyzing the effect of visco-elastic local topography on the earthquake motion[J]. ACTA SEISMOLOGICA SINICA, 1995, 8 ( 3): 447-456.
    [21]Joyner, W B. A method for calculating nonlinear seismic response in two dimensions[J]. BSSA, 1975(a), 65(5): 1337-1357.
    [22]Joyner, W B and CHEN A T F. Calculation of nonlinear ground response in earthquakes[J]. BSSA, 1975(b), 65(5): 1315-1336.
    [23]Joyner, W B. A FORTRAN program for calculating nonlinear seismic ground response[R]. U.S. Geol. Surv. Open-File Rept. 1977.
    [1] 赵凤新. 时程的相位差特性及设计地震动的合成[D][博士学位论文]. 北京:中国地震局地球物理研究所,61-75.
    [2] 欧文,辛顿. 曾国平,刘忠,徐家礼译,黄文彬校. 塑性力学有限元-理论与应用[M],北京:兵器工业出版社,1987.
    [3] 潘昌实主编,张弥,吴鸿庆主审. 隧道力学数值方法[M]. 北京:中国铁道出版社,1995.
    [4] 陈惠发 A.F.萨里普著,余天庆,王勋文译,刘再华校. 土木工程材料的本构方程(第一卷 弹性与建模)[M]. 武汉:华中科技大学出版社,2000.
    [5] 陈惠发著,余天庆,王勋文,刘再华译,刘西拉,韩大建校. 土木工程材料的本构方程(第二卷 塑性与建模)[M]. 武汉:华中科技大学出版社,2000.
    [6] 俞言祥,高孟谭. 台湾集集地震近场地震动的上盘效应[J]. 地震学报,2001,23(6) :615-621.
    [7] 王宁伟,姜焕民,战颖,等. 沈阳市工程地震基岩地震动参数确定[J]. 沈阳建筑工程学报:自然科学版,2001,17(3):171-175.
    [8] 李新乐,朱晞. 近断层地震速度脉冲效应对桥墩地震反应的影响[J]. 北方交通大学学报,2004,28(1): 11-16.
    [9] 王国权,周锡元. 921 台湾集集地震近断层强震记录的基线校正[J]. 地震地质,2004,26(1):1-13.
    [10]袁晓铭,孙锐,孙静等. 常规土类动剪切模量比和阻尼比试验研究[J]. 地震工程与工程振动,2000,20(4):133-139.
    [11]王国权,周锡元. 921 台湾地震近断层强震地面运动加速度时程的随机特性[J]. 防灾减灾工程学报, 2003, (4): 10-19.
    [12]刘启方,袁一凡,金星. 断层附近的地震动空间分布[J]. 地震学报,2004,26(2):183-192.
    [13]冯启民, 邵光彪. 近断层地震动地震动速度、位移峰值衰减规律的研究[J]. 地震工程与工程振动,2004,24(4):13-19.
    [14]李爽,谢礼立. 近场脉冲型地震动对钢筋混凝土框架结构的影响[J]. 沈阳建筑工程学报:自然科学版,2006,22(3):406-410.
    [15]李新乐,朱晞. 近断层地震动等效速度脉冲研究[J]. 地震学报,2004, 26(6):634-643.
    [16]李新乐,朱晞. 考虑场地和震源机制的近断层地震动衰减特性的研究[J]. 工程地质学报,2004, 12(2): 141-147.
    [17]廖文艺,罗俊雄,万绚. 隔震桥梁承受近断层地震之反应分析[J]. 地震工程与工程振动,2001,21(4):102-108.
    [18]陶夏新,王国新. 近场地震动模拟中对破裂的方向性效应和上盘效应的表达[J]. 地震学报,2003,25(2):191-198.
    [19]王东升,冯启民,翟桐. 近断层地震动作用下钢筋混凝土桥墩的抗震性能[J]. 地震工程与工程振动,2003,23(1):95-102.
    [20]徐龙军,谢礼立. 集集地震近断层地震动频谱特征[J]. 地震学报,2005,27(6):656-665.
    [21]杨迪雄,李刚,程耿东. 近断层脉冲型地震动作用下隔震结构地震反应分析[J]. 地震工程与工程振动,2005,25(2):119-124.
    [22]王焕定, 王伟. 有限单元法教程[M]. 哈尔滨:哈尔滨工业出版社,2003.
    [23]吕和祥, 蒋和洋. 非线性有限元[M]. 北京:化工工业出版社,1992.
    [24]安艺敬一(Aki,K.), 理查兹(Richards,P.G.),李钦祖等译. 定量地震学-理论和方法(第一卷;第二卷)[M].北京:地震出版社.1986.
    [25]朱金芳,徐锡伟,黄宗林,吴建春,张先康等著. 福州市活断层探测与地震危险性评价[M]. 北京:科学出版社.2005.
    [26]Wang G Q, Zhou X Y, Ma Z J et al. Corrected near fault recordings caused by the 1999 Chi-Chi Taiwan Earthquake. BSSA, Special Issue on the 1999 Chi-Chi, Taiwan, Earthquake. CD-ROM Supplement of Seismic Data.
    [27]Wang G Q, Zhou X Y, Zhang P Z, et al. Characteristics of amplitude and duration for near fault strong ground motion from the 1999 Chi-Chi, Taiwan, Earthquake[J]. Soil Dynamics Earthquake Engineering, 2002, 22: 73-96.
    [28]Owen, D. R. J., Hinton, E. Finite Elements in Plasticity: Theory and Practice[M]. Pinerdge Press Limited, Swansea, U.K., 1980.
    [29]Hall J F, Heaton T H, Halling M W, et al. Near-Source Ground Motion and its Effects on Flexible Building[J]. Earthquake Spectra, 11(4): 569-605.
    [30]Alaki B, Krawinkler H. Behavior of moment-resisting frame structures subjected to near-fault ground motions[J]. Earthq. Engrg. Struct.Dynam. 2004, 33: 687-706.
    [31]Mavroeidis G P, Dong G, Papageorigious A S. Near-fault ground motion, and the response of elastic and inelastic single-degree-of-freedom(SDOF) systems[J]. Earthq. Engng. Struct. Dynam. 2004, 33: 1023-1049.
    [32]Wang G Q, Boore D M, Ma Z J, et al. Data files from a preliminary study on the randomness of response spectra of the 1999 Chi-Chi, Taiwan, Earthquake[J]. Bull. Seis. Soc. Am., 2001, 91: 1388-1389.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700