长周期地脉动特征及其在都市地震防灾中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在土木工程、地震防灾等领域,地下岩土层的基本性状,尤其是横波速度构造极为重要,其在工程场地和结构的地震响应分析、建(构)筑物的设计与安全运行等方面都是不可或缺的基础资料。地脉动勘探由于不需要人工震源,而作为信号的地脉动则是由交通振动等人类活动和风暴、海浪等自然现象引起的环境噪音,被认为是一种简便、快速、低成本、对环境无特殊要求,同时又对环境不产生影响的勘探手段。
     由于长周期脉动信号十分微弱,其幅度一般只有几微米,因此要求探测仪器必须频带宽、灵敏度高、噪声低才能采集到高保真的有效波形。对于勘探深度数十米以下的大深度勘探,地脉动的信号主要来源于海洋的浪潮和风暴等自然现象,作为岛国的日本以及中国的沿海地区,信号强,比较容易观测,然而从沿海向中国大陆内部,远离海洋,地质和环境等条件变化大,是否能有效地观测到这些地区的长周期脉动信号还需研究,另外,地脉动信号的特性,包括信号强弱和频谱特性等方面的研究也亟待明确。
     在详细阐述地脉动观测、长周期地脉动观测和地脉动台阵观测的研究现状及存在的问题的基础上,从地脉动观测原理出发,以沿海至远离海岸线的内陆地区为研究区域,并在沿海和中间过渡区域设置对比点,通过定期长时间连续地脉动长周期观测及大量单点地脉动观测,开展中国广域内陆地区脉动信号的观测和研究,讨论了长周期地脉动观测测点布置、设备及参数选取、数据的质量保证措施、长周期地脉动特征及其在场地卓越特征评价中的应用等,探查从沿海到内陆地区地脉动的空间变化规律,尤其是长周期脉动特征的变化规律,评价地脉动的频谱稳定性,详细了解了沉积层厚度、横向变化,并对沿海地区及内陆地区的地脉动探测的适用性进行比较。
     在长周期地脉动观测在地震防灾中的应用方面,首先以上海市内东西向地脉动观测数据为基础,采用单点谱比法对上海市东西向覆盖土层分布进行反演,并与以往的大深度地下调查资料进行对比,对长周期地脉动观测在地下调查中的适用性进行了评价。在把握了我国广域地区长周期地脉动特征的基础上,针对沿海城市上海市实施了地脉动台阵观测,详细讨论了地脉动台阵观测方法、分析方法,研究了利用地脉动台阵观测方法推测地下剪切波速度构造的适用性。
Shear wave velocity (Vs) of soil is one of the key parameters used in seismic engineering and geotechnical engineering; which is an important parameter in evaluation of dynamic properties of a site. It is well known that the micro tremor observation is one of the most convenient methods to investigate the dynamic characteristics of the surface ground for no need of man-made explosion source which caused by human activities such as traffic vibrations and environmental noise from storm and ocean waves. The micro tremor is a kind of geophysics prospecting and drilling information, which is of abundant intention such as the information of soil site and engineering geological condition and so on.
     As the long period microtremor signal is very faint, which range can reach only a few microns, it is needed a widely frequency band, high sensitive and low noise detector to obtain the collect high fidelity effective wave data. Since the major source of the microtremor signal to reach exploration depth up to tens of meters is the ocean wave, storm and such natural phenomena, For the, it is easy to obtain strong signal in Japan and the coastal area in China. However, it is needed to discuss whether an effective long period microtremor signal can be obtained in mainland which far away from the ocean in Chinese, where the geological and environmental condition changes a great deal. Also, the research about microtreomor signal’s properties including the strongest and the weakest signals and the spectrum feature needs to be discussed urgently.
     Based on the detailed describe of the present status and the problems on the microtremor survey, long period microtremor survey and microtremor array survey, using microtremor observation principle and choosing the area from coastal region to the part far away from coastline with several comparison points setting on the coastal region and the intermediate area, a series of regular long-term continuous long period microtremor survey and a great number of single points microtremor survey are conducted. Chinese inland area's microtremor signal are observed and studied. The measurement method of long period microtremor survey, equipment and parameter selection, data quality guarantee measures and long period microtremor properties and its application in the site predominant characteristic evaluation are discussed. The variation of characteristics of microtremor from coast to inland areas is clarified, especially the variation of the long period microtremor. The spectrum stability of the microtremor is evaluated. Detailed information about thickness of sediment layers and the lateral variation are revealed, with the comparison to the microtremor survey's applicability in the coastal area and inland areas.
     In the aspect of the long period microtremor survey's application in earthquake and disaster prevention, there are many works have been done. First, based on the east-west microtremor survey data in Shanghai, single point spectrum analogy method is used for the east-west cover soil distribution inversion in Shanghai. It is compared to previous large scale underground survey data, and the underground survey application of the long period microtremor survey is valued. Then, understanding the long period microtremor feature in Chinese wan area, we carry out array microtremor survey in allusion to the coastal city Shanghai. In addition to this, array microtremor survey method and its analytical method is detailed discussed, also the applicability that using the array microtremor survey method to calculate underground shear wave velocity distribution.
引文
[1]贺会团.碎石桩复合地基承载力瞬态面波测试技术研究[硕士论文].河北:河北工业大学. 2004.
    [2]冯少孔.微动勘探技术及其在土木工程中的应用[J].岩石力学与工程学报, 2003, 22(6): 1029~1036.
    [3]王齐仁,杨天春.隧道地质灾害超前预报的地震反射法[J].地球物理学进展, 2006, 21(2): 643-649.
    [4]林淋.汶川地震地面运动场估计及地震烈度与地震动参数相关性分析[博士论文].河北:中国地震局工程力学研究所. 2011.
    [5]王兰民,吴志坚.汶川地震场地条件对地震动放大效应的影响[C].第八届全国地震工程学术会议论文集(I). 2010: 175~178.
    [6]廖成旺,邓涛,丁炜,谭耀银,陈亮.地脉动观测台阵定位误差影响的仿真研究[J].大地测量与地球动力学. 2007, 27(1): 91~95.
    [7] Omori F., On microtremors, Res. Imp. Earthq. Inv. Comm., 1908, Vol. 6, 1-6.
    [8] Matsushima T, Okada. H. Determination of deep geological structures under urban areas using long-period microtremors [J]. But-suri-tansa. 1990, 43(1): 21-23.
    [9] Okada H, Matsushima T. An exploration technique using long-period microtremors for determination of deep geological structures under urbanized areas[J], Butsuri-Tansa. 1990, 43: 402-417.
    [10] Aki K. Space and time spectra of stationary stochastic waves, with special reference to microtremors [J]. Bull. Earthq. Bes. Inst. 1957, 35: 415- 456.
    [11] Kudo, K., Yoshihiro S., Masanori H.. Current Studies In Japan On H/V And Phase Velocity Dispersion of Microtremors For Site Characterization[R], 13th WCEE, Vancouver, B.C., Canada. 2004, August: 1~6.
    [12] Liu H.P., David. M. B., William B.J., et al. Comparison of phase velocities from array measurements of Rayleigh waves associated with microtremor and results calculated from horehole shearwave velocity profiles[J]. Bull. Seism. Soc. Amer. 2000, 90(3): 666-678.
    [13]郭明珠,谢礼立,凌贤长.弹性介质面波地脉动单点谱比法研究[J].岩土工程学报. 2004, 26(4): 450~453.
    [14]师黎静,陶夏新.地脉动方法最新研究进展[J].地震工程与工程振动. 2007,27(6): 30~37.
    [15] Trifunac M.D., Udwadia F.E., Brady A.G.. Analysis of Errors in Digitized Strong-Motion Accelerograms [J] Bull. Seism. Soc. Amer. 1973, 63(a): 157-187.
    [16] Kubotera A., M.Otsuka. Nature of non volcanic microtremor observed on the Aso-Caldera [J]. 1970, 18: 115-124.
    [17] Frank Scherbaum, Klaus-G. Hinzen, Matthias Ohrnberger. Determination of shallow shear wave velocity profiles in the Cologne, Germany area using ambient vibrations [J] Geophysical Journal International. 2003, 152(3): 597-612.
    [18] Estrella H. F., Couzalez J. A.. SPAC: An alterliative method to estimate earthquake site effects in Moxico City [J], Geofisica international. 2003, 42(2): 227-236.
    [19]王振东.微动的空间自相关法及其实用技术[J].物探与化探. 1986, 10(2): 123~133.
    [20]林学文.场地的脉动评价[J].西北地震学报. 1991, 13(2): 76~81.
    [21]李文艺等.上海市软土地层地震反应特性的研究[R].上海:上海市建设技术发展基金会资助项目. 1991.
    [22]张在墉,李文艺,陶能付.长周期地面脉动在地震小区划中的应用[J].同济大学学报. 1994, 22(4): 421~426.
    [23]章文波,彭克中.利用近场地震加速度记录测定近震震级ML的研究[J].地震工程与工程振动. 1995, 15(3): 4~11.
    [24] Horike M. Inversion of phase velocity of long-period microtremors of the S-wave velocity structure down the basement in urbanized areas[J]. Journal of Physics of the Earth. 1985, 33(2): 59-96.
    [25] Seekins L C, Wennerherg L, Mwrgheriti L, et al. Site amplification at five locations in San Francisco, California; a comparison of waves, codas and micro tremors[J]. Bull Seism Soc Am. 1996, (86): 320-328.
    [26] Ohta Y., H. Kagami N., Goto K. Sudo. Observation of 1 to 5 second microtremors and their application to earthquake enginerring, Part 1: Comparison with long-period accelerations at the Tokachi-Oki earthquake of 1968[J]. Bull. Seism. Soc. Am. 1978, 68.
    [27] Kagami H., C.M. Duke, G.C. Liang, Y. Ohta. Observation of 1 to 5 second microtremors and their application to earthquake enginerring, Part 2: Evaluation of site effect upon seismic wave amplification due to extremely deep soil deposits[J]. Bull. Seism. Soc. Am. 1982, 72: 987-998.
    [28]小林菊次,陶夏新.用长周期脉动推测深土层构造的方法[J].国外地震工程,1981, 65~67.
    [29]王振东.微动应用技术讲座[J].国外地质勘探技术. 1990, 4: 12~16.
    [30] Gutenberg G.. Microseisms [J]. Advances in Geophysics. 1953(5): 53-92.
    [31] Kagami H. Observation of 1 to 5s microtremors and their application to earthquake engineering: Part VIII, simultaneous observation with sea waves[J]. Earthquake. 1983, 36(2): 609-618.
    [32] Yamanaka H. Continuous measurement of microtremors on sediment and basement in Los Angeles, California[J]. BSSA. 1993, 83(5): 1595-1609.
    [33] ?彭远黔,?路正,?李雷英.?场地脉动卓越周期在工程抗震中的应用[J].?华北地震科学.?2000,?18(4): 61~68.
    [34]于凯,车爱兰,冯少孔.长周期地脉动观测在深度地层调查中的应用[J].上海交通大学学报. 2011, 45(5): 701~705.
    [35] Ohta Y., H. Kagami N., Goto K Sudo. Observation of 1 to 5 second microtremors and their application to earthquake enginerring, Part 1: Comparison with long-period accelerations at the Tokachi-Oki earthquake of 1968[J]. Bull. Seism. Soc. Am. 1978, 68.
    [36] Okada H.. Estimation of underground structures down to a depth more than several hundreds of meters using long perion microtremors[J]. Proc of the th Japan Earthq Eng Symposium.Tokyo: Published by Japan Earthq Eng Symposium Orangizing Committee, 1986: 211~216.
    [37] Masanori Horike. Inversion of phase velocity of long-period microtremors to the S-wave-velocity structure down to the basement in urbanized areas [J]. J. Phvs. Earth. 1985, 33: 59-96.
    [38] Matsushima T., Okada. H.. Determination of deep geological structures under urban areas using long-period microtremors[J]. But-suri-tansa. 1990, 43(1): 21-23.
    [39] Okada H., T. Matsushima. An exploration technique using long-period microtremors for determination of deep geological structures under urbanized areas [J]. Butsuri-Tansa. 1990, 43: 402-417.
    [40] Kudo, K., Yoshihiro Sawada, Masanori Horike. Current Studies In Japan On H/V And Phase Velocity Dispersion of Microtremors For Site Characterization [J]. 13th WCEE, Vancouver, B.C., Canada. 2004, August: 1-6.
    [41] Frank Scherbaum, Klaus-G. Hinzen, Matthias Ohrnberger. Determination of shallow shear wave velocity profiles in the Cologne, Germany area using ambient vibrations [J]. Geophysical Journal International. 2003, 152(3): 597–612.
    [42] Estrella H. F., Couzalez J. A. SPAC: An alterliative method to estimate earthquake site effects in Moxico City [J], Geofisica international. 2003, 42(2): 227-236.
    [43] Liu H.P., David. M. B., William B.J., et al. Comparison of phase velocities from array measurements of Rayleigh waves associated with microtremor and results calculated from horehole shearwave velocity profiles[J]. Bull. Seism. Soc. Amer. 2000, 90(3): 666-678.
    [44] Satoh T., Kawase H., Iwata T. S-wave velocity structure of the Taichuug Basin, Taiwan, estimated from array and singe station records of microtremors[J]. Bull. Seism. Soc. Amer. 2001, 91(5): 1267-1282.
    [45]陶夏新,刘曾武,郭明珠.工程场地条件评定中的地脉动研究[J].地震工程与工程振动. 2001, 21(4): 18~23.
    [46] Feng Shaokong, Sugiyama T, Yamanaka H. Application of sensitivity analysis to array design for microtremor array survey [A]. In: Proceedings of the 102nd SEGJ Conference[C]. [s.l.]: [s.n.], 2000, 140-144.
    [47] Aki K., Space and time spectra of stationary stochastic waves, with special reference to microtremors [J], Bull. Earthq. Bes. Inst. 1957, 35: 415-456.
    [48] Henstridge J. D. A signal processing method for circular arrays[J]. Geophysics. 1979, 44: 179-185.
    [49] Capon, J., R. J. Greenfield, R. T. Lacoss. Long-period signal processing results for the large aperture seismic array [J]. Geophysics. 1969, 34: 305-329.
    [50] M. W. Asten, J. D. Henstridge. Array estimators and use of microseisms for reconnaissance of sedimentary basins [J]. Geophysics. 1984, 49: 1828-1837.
    [51] Ikuo Cho, Takaki Iwata, Takuya Shiga, Takehito Tokunaga, Michio Fukuyo, Yuzo Shinozaki. Data processing of circular arrays for an exploration method using microtremors: Applicability of Henstridge's method and new methods [J]. Exploration Geophysicists. 2004, 57(5): 501-516.
    [52] Hidekazu Yamamoto. An Experiment for Estimating Phase Velocities of Love Waves from Three-Component Microtremor Array Observation [J] Exploration Geophysicists. 2000, 53(2): 153-158.
    [53] J. Xia, R. D. Miller, C. B. Park, G. Tian. Inversion of high frequency surface waves with fundamental and higher modes [J]. Journal of Applied Geophysics. 2003, 52: 45-57.
    [54]崔建文.利用面波资料反演波速剖面的个局优化力法[博士论文].河北:中国地震局工程力学研究所. 1998.
    [55]石耀霖,金文.面波频散反演地球内部构造的遗传算法研究[J].地球物理学报. 1995, 38(2): 189~198.
    [56]冯少孔.微动勘探技术极其在土木工程中的应用[J].岩石力学与岩土工程学报. 2003, 22(6): 1029~1036.
    [57] H. Yamanaka, H. Ishida. Application of genetic algorithms to an inversion of surface wave dispersion data [J]. Bull. Seism. Soc. Am. 1996, 86: 436-444.
    [58] Shaokong Feng, Takeshi Sugiyama, Hiroaki Yamanaka. Effectiveness of multi-mode surface wave inversion in shallow engineering site investigations [J]. Exploration Geophysicists. 2005, 58(1): 26-33.
    [59] Yamanaka H., K. Motoki, S. Fukumoto, T. Takahashi, N. Yamada, K. Asano. Estimation of local site effects in the Ojiya city using aftershock records of the 2004 Mid Niigata prefecture earthquake and microtremors [J], Earth Planets Space. 2005, 57: 539-544.
    [60] Hiroaki Yamanaka. Estimation of local site effects in Monzenmachi, the Ishikawa prefecture, Japan, from microtremor array exploration and observation of aftershocks of the 2007Noto-Hanto Earthquake [J]. Butsuri-Tansa. 2008, 61(5): 385-396.
    [61] Takeshi Kurose. Multi-station joint inversion of receiver function and surface-wave phase velocity data for exploration of deep sedimentary layer [J], Exploration Geophysicists. 2007, 60(1): 19-27.
    [62]许建聪,简文彬,尚岳全.地脉动产生机理和传播特性的研究[J].浙江大学学报(工学版). 2005, 39(1): 33~38.
    [63]师黎静.基于地脉动的近地表三维速度结构探测和建模成像[博士论文].河北:中国地震局工程力学研究所. 2007.
    [64]刘建军,李跃明,车爱兰.长周期地脉动观测在西安地区地下构造调查中的应用[J].西北地震学报. 2011,33(S1): 403~408
    [65]杨学林,陈云敏,蔡袁强.利用地脉动确定地基自振频率[J].岩土工程学报. 1995, 17(4): 51~55.
    [66] Carlos Castro. An approach for systematic maniputation of disjunctive constraints in CSP: An application to scheduling problems. To be submitted, 1997.
    [67] Nakamura, Y. A method for dynamic characteristic estimation of subsurface using mi-crotremor on the ground surface [J]. Quart. Rep. Railway Techn. Res. Inst (RTRI). 1989, 30: 25-33.
    [68] Nakamura, Y. Clear identification of fundamental idea of Nakamura’s technique and its applications[C]. In: Proceedings 12WCEE. 2000, 1-8.
    [69] Konno K, Ohmachi T. Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor [J]. Bull Seismol Soc Amer. 1998, 88: 228-241.
    [70] Kudo, K. Practical estimates of site response[R]. In: Proceedings of the Fifth International Conference on Seismic Zonation, 1995, October 17-19, Nice, France, Ouest Editions Nantes, 3: 1878-1907.
    [71]王张华,张丹,李晓.长江三角洲晚新生代沉积物磁性特征和磁性矿物及其指示意义[J].中国地质. 2008, 35(4): 670~682.
    [72]黄光耀.黄土地裂场地桥梁结构地震反应分析[博士论文].西安:长安大学. 2007.
    [73]甘肃省桃树坪强震动台建台报告[R].甘肃省数字地震观测网络强震动项目组. 2007.
    [74]吴志坚,曾立峰,王兰民.地脉动在黄土地区S波速度构造探测中的应用[J].上海交通大学学报. 2011, 45(5): 696~700.
    [75]甘肃省天水强震动台建台报告[R].甘肃省数字地震观测网络强震动项目组. 2007.
    [76] Arai H, Tokimatsu K. S-wave velocity profiling by inversion of microtremor H/V spectrum [J]. Bullttin of the Seismological Society of America. 2004, 94(1): 53-63.
    [77] Arai H, Tokimatsu K. Effects of Rayleigh and Love waves on microtremor H/V spectra[C]. Proceedings of 12th World Conference of Earthquake Engineering, Auckland: [s.n.], 2000, 22-32.
    [78]师黎静,陶夏新,赵纪生.地脉动台阵方法的有效性分析[J].岩石力学与工程学报. 2006, 25(8): 1683~1690.
    [79]王建文,孙秀容,王宏科.双源面波地震勘探在煤层采空区探测中的应用[J].工程地球物理学报. 2010, 7(4): 403~407.
    [80]简文彬,李哲生,黄真萍等.地基土层构造与地微动频率效应[A].见:刘汉龙,土动力学与岩土地震工程[C].北京:中国建筑工业出版社, 2002, 416~421.
    [81]王锺琦,张荣祥,汪敏等.地震区工程选址手册[M].北京:中国建筑工业出版社, 1994.
    [82]胡钧,杜坚.上海场地土的脉动特性及剪切波速特征[J].物探与化探. 1997, 21(4): 305~307.
    [83]林建生,王源毅.泉州市地面脉动特征[J].西北地震学报. 1993, 15(3): 76~80.
    [84]简文彬,李哲生,黄真萍等.福建沿海地区地微动的谱结构特征[J].工程地质学报. 2002, 10(2): 216~219.
    [85]高广运,吴世明,周健等.场地卓越周期的讨论与测定[J].工程勘察. 2000, 5:29~31.
    [86]丁志俊.城市地震小区划及工程地震勘探[M].北京:地震出版社. 1991.
    [87] Castro R R, Mucciarelli M, Pacor F. S-waves site-response estimates using horizontal-to-vertical spectral ratios [J]. Bull. Seism. Soc. Am. 1997, 87(1): 256-260.
    [88]上海地球物理堪探技术应用与发展[M].上海市地质调查研究院.上海:上海科技出版社. 2010: 165~167.
    [89]陶夏新,师黎静,董连成.中国地脉动台阵联合观测[J].世界地震工程, 2002, 18(2): 24~31.
    [90] Capon J. Application of detection and estimation theory to large array seismology [J]. Proc. IEEE. 1969, 58: 760-770.
    [91] Yamanaka H, Ishida H. Application of genetic algorithma to an inversion of surface-wave dispersion data [J]. Bull, Seism. Soc. Am, 1996, 86: 436-444.
    [92] Haskell N. A. The dispersion of surface waves on multilayered media [J]. Bull., Seism. Soc. Am. 1953, 43: 17-34.
    [93] Knopoff L. A matrix method for elastic wave problems [J]. Bull., Seism. Soc. Am. 1964, 54: 431-438.
    [94] Feng Shaokong, Takeshi Sugiyama, Hiroaki Yamanaka. Multi-site joint inversion in array microtremor survey [J]. Butsuri-Tansa, 2003, 56(1): 1-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700